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Review

Introduction

Dengue virus (DENV) causes most of the world’s mosquito-
borne viral infections, and is the etiologic agent of dengue fever 
(DF), dengue hemorrhagic fever (DHF), and dengue shock syn-
drome (DSS). One of the first lines of host immunity against 
DENV is the type I interferon (IFN-I or IFNα/β) response, 
which inhibits viral replication, and sets the stage for the devel-
opment of adaptive immunity. DENV-mediated degradation of 
signal transducer and activator of transcription 2 (STAT2), a 
component of the IFNα/β signaling pathway, has emerged as 
an important determinant of DENV pathogenesis and host tro-
pism. Here we review the strategies that DENV uses to evade the 
type I interferon response, and postulate how studying DENV 
NS5-mediated STAT2 degradation may contribute to the devel-
opment of immunocompetent DENV mouse models and anti-
DENV therapeutics.

Dengue Disease and Dengue Virus

There are over 50 million DENV infections and approxi-
mately 500 000 cases of DHF/DSS annually.1 More than 2.5 bil-
lion people live in the warm climes that are home to expanding 
populations of Aedes aegypti and Aedes albopictus mosquitoes, the 
vectors of DENV.1 Many DENV infections are asymptomatic or 
show only mild symptoms but DF and DHF/DSS occur in a 
subset of patients. Older names for DF include “coup de barre” 
(“beating with a stick”) and “break bone fever” to describe the 
intense headache, myalgia and bone pain that accompany the 
disease.2-4 Other symptoms of DF include subthreshold vas-
cular permeability and increased liver enzymes. DF progresses 
to DHF/DSS when patients develop capillary leakage, throm-
bocytopenia and liver damage.2-4 Because host immunity is an 
important contributor to DENV pathogenesis,5,6 focusing on the 
interaction between DENV and the host immune response is a 
promising approach to the development of drugs and vaccines 
against DENV.

The recent discovery of DENV-5 brings the total number of 
known DENV serotypes to five.7 These five serotypes belong 
to the flavivirus genus of the Flaviviridae family. The flavivirus 
genus includes important arthropod-borne viruses such as West 
Nile virus (WNV) and Japanese encephalitis virus (JEV). All 
flaviviruses contain a capped single-stranded RNA genome. In 
addition to its role as the viral genetic material, the genome func-
tions as an mRNA whose translation yields a polyprotein that 
is cleaved by host proteases and the viral NS2B/3 protease to 
produce the structural and nonstructural proteins of the virus 
(Fig. 1). There are three structural proteins, capsid (C), premem-
brane/membrane (prM/M), and envelope, and seven nonstruc-
tural proteins, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 
(Fig. 1). The nonstructural proteins mediate replication of the 
viral RNA and antagonism of the host immune response, while 
the structural proteins encapsulate newly copied viral RNAs into 
DENV virions.

DENV Replication and the Type I IFN Response

DENV replicates in a variety of human cell types including 
endothelial cells, fibroblasts, dendritic cells (DCs), macrophages, 
and B cells.8-13 Infection of these cells leads to activation of the 
type I interferon (IFN-I or IFNα/β) response, an innate immune 
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Dengue virus (DeNv) is an important human pathogen 
whose byzantine relationship with the immune response is 
poorly understood. DeNv causes dengue fever and dengue 
hemorrhagic fever/dengue shock syndrome, diseases for which 
palliative care is the only treatment. DeNv immunopathogen-
esis studies are complicated by the lack of an immunocom-
petent small-animal model, and this has hindered anti-DeNv 
drug and vaccine development. This review describes strate-
gies that DeNv uses to evade the type i interferon response 
and focuses on how data gained from the study of DeNv NS5-
mediated STAT2 degradation may be used to create immu-
nocompetent DeNv mouse models and design anti-DeNv 
therapeutics.
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mechanism that protects the host against viral infections. During 
viral replication, double-stranded RNA and other pathogen-asso-
ciated molecular patterns (PAMPs) accumulate within the cell. 
The recognition of PAMPs by pattern recognition receptors such 
as retinoic-inducible gene I (RIG-I), melanoma differentiation-
associated protein 5 (MDA-5), and Toll-like receptor 3 (TLR3) 
leads to signaling events that culminate in IFNα/β production.14 
In vivo and cell culture experiments have shown that TLR3, 
RIG-I, and MDA-5 contribute to IFN production in response to 
DENV infection but that RIG-I and MDA-5 may serve redun-
dant roles.13,15,16 DENV-infected cells produce far less IFNα/β 
than cells infected with more potent inducers of IFNα/β such as 
Sendai virus due to the cleavage of STING,17-20 an adaptor protein 
that is believed to function downstream of MDA-5 and RIG-I 
as well as cyclic guanosine monophosphate-adenosine mono-
phosphate synthase (cGAS), a sensor of cytoplasmic dsDNA.21 
Despite this immune evasion mechanism, IFN production is not 
completely halted by NS2B/3 protease, and IFNα/β is secreted 

from infected cells as DENV infec-
tion proceeds.17 These quantities of 
IFNα/β are enough to inhibit DENV 
replication.9,12,13,22

IFNα/β signaling ensues when 
IFNα/β from an infected cell binds 
to type I IFN receptors (IFNAR1/2) 
found on the surface of the infected 
cell or nearby cells. IFNAR1/2 engage-
ment leads to the activation of Janus 
kinase 1 (JAK1) and tyrosine kinase 2 
(Tyk2), two tyrosine kinases that physi-
cally associate with IFNAR1/2. Tyk2 
and JAK1 phosphorylate signal trans-
ducer and activator of transcription 1 
(STAT1) and signal transducer and acti-
vator of transcription 2 (STAT2), which 
interact with interferon regulatory fac-
tor 9 (IRF9) to form IFN-stimulated 
gene factor 3 (ISGF3), a complex that 
recognizes IFN-stimulated response 
elements (ISREs). Binding of ISGF3 
to the ISREs of IFN-stimulated genes 
(ISGs) leads to the transcription of 
ISGs (Fig. 2A).23 Several ISGs encode 
proteins with anti-DENV activity. For 
example, interferon-induced transmem-
brane proteins 1, 2, and 3 (IFITM1, 
IFITM2, and IFITM3) inhibit early 
steps in dengue replication while 
viperin, interferon-stimulated gene 20 
(ISG20), and dsRNA-activated kinase 
(PKR) inhibit the synthesis of DENV 
macromolecules.24-27 Previously unchar-
acterized ISGs such as IFNα-inducible 
protein 6 (IFI6), hepanarase (HPSE), 
and N-ethylmaleimide-sensitive fac-

tor attachment protein α (NAPA) have also been identified as 
inhibitors of DENV replication.28

Type I IFN Signaling Evasion  
by DENV

DENV and DENV replicons inhibit IFNα/β signaling in 
human cells.29-37 In fact, DENV has devoted a significant por-
tion of its genome to antagonizing human type I IFN signaling. 
NS2A, NS4A, and NS4B have been shown to inhibit STAT1 
phosphorylation while NS5 has been shown to mediate protea-
some-dependent STAT2 degradation (Fig. 2A).31-35,37 However, 
these four viral proteins also have roles that are distinct from 
IFNα/β signaling antagonism. For example, NS2A is required 
for virion assembly, while NS4A and NS4B are required for 
induction of the membranes upon which viral replication occurs, 
and for organization of the replication complex, respectively.38-40 
Expression of any of the three decreases ISRE promoter activation 

Figure 1. The DeNv virion and genome. (A) DeNv contains a capped plus-strand RNA genome that 
is surrounded by a shell composed of capsid (C) proteins. The capsid is enveloped by a lipid bilayer 
embedded with envelope (e) and membrane (M) proteins that mediate virus entry into susceptible 
cells. (B) The DeNv genome functions as an mRNA whose translation yields a polyprotein that is pro-
cessed by the viral NS2B/3 protease and host proteases to give the structural and nonstructural pro-
teins of the virus.
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and STAT1 phosphorylation, but their combined expression has 
an even stronger inhibitory effect.31

NS5 is a multidomain protein that encodes many functions. 
The NS5 N-terminus encodes a methyl transferase that induces 
methylation of guanine N7 and 2-hydroxyl ribose of the viral 
RNA cap.41,42 These modifications are required for viral replica-
tion and for evading the antiviral IFN-induced tetratricopeptide 
repeat (IFIT) proteins, respectively.41,42 The N-terminus of NS5 
also contains a guanylyltransferase, which is required for 5′ RNA 
cap synthesis.43 NS5’s most studied role is that of the viral RNA-
dependent RNA polymerase (RdRp), which is encoded by its 
C-terminal domain.44-46 NS5 mutants that are deficient in one or 
more roles while being proficient in others have been character-
ized,47,48 and it is thought that phosphorylation may serve as a 
switch among the various functions.49 Over the past decade, fla-
vivirus NS5 proteins have surfaced as potent antagonists of IFN 
signaling.34,35,50-54 However, NS5 proteins of different flaviviruses 
accomplish their IFN signaling inhibition in disparate ways. For 
example, WNV and JEV inhibit IFN signaling by preventing 

phosphorylation of signaling proteins while DENV NS5 pro-
motes the proteasomal degradation of human STAT2.34,37,51,54

Degradation of STAT proteins is a common mechanism of 
virus-mediated IFN signaling inhibition. For instance, expres-
sion of the V proteins of human parainfluenza virus 2 (HPIV2) 
or parainfluenza virus 5 (PIV5) leads to proteasome-mediated 
degradation of STAT2 and STAT1, respectively.55,56 However, 
DENV NS5-mediated STAT2 degradation requires an extra 
step as compared with paramyxovirus-induced degradation. 
Unlike HPIV2 V, NS5 does not mediate STAT2 degradation 
when it is simply expressed exogenously from a plasmid.34,35 
Instead NS5 has to be expressed as part of a larger precursor 
protein that is then proteolytically cleaved to yield a STAT2-
degradation-competent NS5 (Fig. 2B).34 During a DENV 
infection, NS2B/3 protease cleaves NS5 away from NS4B, and 
it is this processed NS5 that facilitates STAT2 degradation.34 
STAT2 degradation also proceeds when an NS5 construct con-
taining a tobacco etch virus (TEV) protease cleavage site at 
its N-terminus is expressed in cells expressing TEV protease, 

Figure 2. DeNv antagonizes iFNα/β signaling. (A) iFNAR1/2 engagement by iFNα/β leads to the activation of Janus kinase 1 (JAK1) and tyrosine kinase 
2 (Tyk2), two tyrosine kinases that are associated with iFNAR1/2. Tyk2 and JAK1 phosphorylate signal transducer and activator of transcription 1 (STAT1) 
and signal transducer and activator of transcription 2 (STAT2), which interact with interferon regulatory factor 9 (iRF9) to form iFN-stimulated gene fac-
tor 3 (iSGF3), which recognizes iFN-stimulated response elements (iSRes). Binding of iSGF3 to iSRes leads to the transcription of iFN-stimulated genes 
(iSGs). Several iSGs, such as iSG20, viperin and iFiTM1–3, encode proteins with anti-DeNv activity. NS5 inhibits iFNα/β signaling by targeting STAT2 for 
degradation while the NS2A, NS4A and NS4B proteins inhibit STAT1 phosphorylation. (B) DeNv-mediated STAT2 degradation requires proteolytic cleav-
age of NS5, which promotes its interaction with UBR4, a 600 kD host protein. The interaction of NS5, STAT2 and UBR4 are required for NS5-mediated, 
proteasome-dependent STAT2 degradation.



e27715-4 JAK-STAT volume 3 

suggesting that it is cleavage alone and not the identity of the 
protease catalyzing the cleavage that determines if NS5 is able 
to efficiently mediate STAT2 degradation.34 In fact, our group 
was able to take advantage of this unique feature to engineer an 
NS5 construct that would effectively mediate STAT2 degrada-
tion when expressed in cells. When DENV NS5 is engineered 
with an ubiquitin moiety fused to its N-terminus (ubiquitin-
NS5), cellular hydrolases cut ubiquitin away from NS5 similarly 
to how the viral protease cuts NS4B away from NS5 during 
DENV infection.34 When we purified NS5 from human cells 
expressing tagged ubiquitin-NS5, we identified a 600 kD host 
protein known as UBR4.37 UBR4 binds preferentially to proteo-
lytically-processed DENV NS5 over unprocessed DENV NS5 
but does not bind to other f lavivirus NS5 proteins (Fig. 2B). 
DENV-mediated STAT2 degradation and DENV replication 
decrease when UBR4 levels are reduced by RNA interference 
in interferon-competent primary dendritic cells and cell lines.37 
However, decreasing UBR4 levels in cells that cannot produce 
IFNα/β does not affect DENV replication unless exogenous 
IFNα/β is added to these cells.37 Thus UBR4 is required by 
NS5 to antagonize IFNα/β signaling but does not appear to 
be necessary for other aspects of DENV replication. Though 
UBR4 does not contain a known E3 ligase motif like a HECT 
or RING domain, it is a member of the N-recognin/UBR fam-
ily, which contains several confirmed E3 ligases.57 Whether 
UBR4 functions as an E3 ligase or as the recognition subunit 
of a larger E3 ligase complex is currently under investigation, 
but its identification as an important player in DENV-mediated 
STAT2 degradation lays the foundation for designing therapeu-
tics that target the NS5/UBR4 interaction.

The interaction between NS5 and UBR4 may also inform 
DENV vaccine design. An ideal live vaccine is attenuated 
but immunogenic. Live vaccines such as the truncated NS1 
influenza virus mutants that are defective at evading the IFN 
response, have been shown to safely induce immunity in ani-
mal models.58 We have found that NS5/UBR4 interaction and 
DENV-mediated STAT2 degradation require amino acids 
threonine 2 and glycine 3 of NS5.37 Mutation of these residues 
or others that prevent interaction of NS5 and UBR4 but leave 
other functions of NS5 intact could result in viruses that would 
be attenuated in humans due to their increased sensitivity to 
the effects of IFNα/β. Such viruses may function as effective 
DENV vaccines.

NS5-Mediated STAT2 Degradation is a Determinant 
of DENV Host Tropism

DENV is unable to replicate in wild-type mice but it can 
replicate in mice that have defects in IFN signaling due to the 
absence of IFNα/β receptors or one or more STAT proteins.15,59-61 
Our group has shown that a major reason that DENV replicates 
efficiently in human but not mouse cells is DENV’s ability to 
subvert human but not murine IFNα/β signaling. DENV NS5 
can bind human STAT2 but is unable to bind murine STAT2, 
and as a consequence, mouse STAT2 is not degraded in DENV-
infected mouse cells.59 In a side-by-side comparison of the effects 

of human STAT2 and mouse STAT2 in STAT2-deficient human 
or murine cells, IFNα/β was able to inhibit DENV replication in 
cells expressing murine STAT2 but not in cells expressing human 
STAT2.59 Furthermore, DENV NS5 binds murine UBR4 in 
murine cells.37 This suggests that replacing murine STAT2 with 
human STAT2 in mice could potentially result in an immune-
competent animal that would permit DENV replication, espe-
cially as murine and human STAT2 are interchangeable in the 
type I IFN signaling cascade.62 In the mouse model of PIV5, 
transgenic expression of human STAT2 permits parainfluenza 
virus 5 V protein to evade IFN signaling by binding STAT1.63 
This strategy would be unsuitable for DENV however, because 
murine STAT2 would still be available to transmit signals within 
the cascade.

Though STAT2 knockout mice support DENV replica-
tion, they do not develop hemorrhagic disease.15,34 Serious den-
gue illness occurs only in mice that lack components of both 
type I and type II IFN signaling, indicating that a good mouse 
DENV model may require modification of type II IFN signal-
ing components or downstream effectors in addition to replac-
ing murine STAT2 with human STAT2. Two recent papers 
suggest that DENV tropism is also determined at the level of 
IFN production.18,20 NS2B/3 protease cleaves human but not 
murine STING and this results in increased type I IFN produc-
tion and lower DENV replication in mouse vs. human cells.18,20 
Thus other pathways may also need to be modified to create the 
ideal DENV mouse model. A clonal immunocompetent mouse 
model would be an improvement on the currently available 
DENV models: AG129 mice and mice humanized with CD34+ 
human cells. AG129 mice lack type I and type II IFN receptors 
and are therefore not amenable to studying how the immune 
system participates in DENV disease. Though humanized mice 
develop a human-like system, engraftment of CD34+ human 
cells is variable and can lead to considerable variation from 
mouse to mouse.64,65 It is likely that a human STAT2 knock-in 
mouse would have a functional immune system but would also 
permit enough DENV replication to allow for the isolation of 
DENV variants that are better at evading later blocks to viral 
replication. This would expedite the identification of additional 
determinants of DENV pathogenesis thus providing new targets 
for rational drug design.

Conclusions

A large portion of the DENV genome is devoted to encoding 
proteins such as NS2B/3 protease, which inhibit IFNα/β expres-
sion, and NS5, NS4B, NS2A, and NS4A, which inhibit IFNα/β 
signaling. The NS5 protein of all flaviviruses tested so far have 
been shown to antagonize IFN signaling by completely different 
mechanisms suggesting that the NS5 IFN signaling antagonism 
function arose independently several times throughout evolution. 
It is likely that the NS5 protein acquired the IFN signaling inhi-
bition function in each case because the polyprotein-based strat-
egy of flaviviral protein expression results in excess expression of 
NS5 even though only small amounts are needed for polymerase 
and transferase functions. The study of DENV-mediated IFN 
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