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Paternal effects in the initiation 
of migratory behaviour in birds
V. Méndez1,2*, J. A. Gill2, B. Þórisson1, S. R. Vignisson1,3, T. G. Gunnarsson1 & J. A. Alves1,4

What determines why some birds migrate and others do not? This question is fundamental to 
understanding how migratory systems are responding to environmental changes, but the causes of 
individual migratory behaviours have proven difficult to isolate. We show that, in a partially migratory 
population of Eurasian oystercatchers (Haematopus ostralegus), the migratory behaviour of progeny 
follows paternal but not maternal behaviour, and is unrelated to timing of hatching or fledging. 
These findings highlight the key role of social interactions in shaping the migratory behaviour of new 
generations, and thus the spatio-temporal distribution of migratory populations.

Animal migration has long been one of the most fascinating of natural phenomena. Migratory behaviour typi-
cally arises in seasonal environments, allowing individuals to exploit seasonal peaks of resource abundance in 
distinct locations across the  world1. However, rapid shifts in the distribution and migration phenology of many 
migratory  species2,3, and the consequent challenges to site-based conservation  strategies4, have highlighted the 
urgent need to determine the processes influencing individual migratory behaviour in order to understand and 
predict species’ responses to environmental change.

Most migratory avian species have a geographically broad non-breeding range, and individuals from the 
same breeding locations frequently travel to different parts of the non-breeding  range5. Migratory individuals 
are typically highly consistent and repeatable in the locations they occupy within- and between-years3,6–8, and 
individual fitness can be influenced by the conditions experienced on the locations occupied at each point in 
the annual  cycle9. Consequently, the processes influencing the initiation of individual migratory behaviour (e.g. 
distance and direction travelled) are likely to be major drivers of subsequent individual fitness and population 
 distribution3. Conditions experienced during the early stages of life, such as hatching date and the associated 
time available for chick growth, could potentially influence the initiation of individual migratory behaviour. 
For example, late-hatched chicks and/or those with slow growth rates could face constraints in preparing for 
migration, such as late-season resource constraints and shorter pre-migratory periods in which to acquire the 
necessary fat  reserves10, or have fewer opportunities to join experienced conspecifics during the post-fledging 
 period3,11,12. Hence, these juveniles could be more likely to migrate later in the autumn or to remain closer to 
the breeding grounds during winter than those hatched earlier in the season. The contributions of social infor-
mation to the initiation of migratory behaviour may be particularly important in species with strong flocking 
 behaviour13. However, juvenile migratory behaviour could also be influenced by parental migratory behaviour, 
particularly in systems where there is an extended period of post-fledging parental care of  juveniles14,15 or where 
migration takes place in family  parties16.

The development of individual migratory behaviour is a complex issue to unravel because it requires either 
experimental  manipulations17 or individuals from the same families to be tracked across migratory ranges, in 
systems with substantial variation in breeding phenology and migratory behaviour. In the population of Eurasian 
oystercatchers breeding in Iceland, individuals show marked differences in migratory behaviour, with ~ 30% of the 
population wintering in Iceland (hereafter referred as residents, but note that short-distance movements within 
Iceland can occur) and the remainder migrating at least 750 km over open ocean to coastal sites throughout 
western Europe (hereafter referred as migrants)18,19. As adult site-fidelity to breeding and non-breeding location 
is  high19,20, individual migratory behaviour is likely to be determined in early life. In this population, timing of 
breeding of migrants is influenced greatly by annual variation in weather conditions, while residents are more 
consistent in their timing of  breeding21. Oystercatchers are long-lived and monogamous, retaining the same 
mate and nesting site from year to  year22,23. Unlike most other shorebirds (though typical of most birds), young 
oystercatchers are fed by their parents throughout the growing period, and thus growth rates could be influenced 
by parental provisioning effort. A particularly relevant feature of this population is the relatively high propor-
tion of pairs of mixed migratory behaviour. In ~ 20% of pairs both members are resident, in ~ 46% of pairs both 
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members are migrant and ~ 34% of pairs have one migrant and one resident  member19. This system therefore 
provides an ideal opportunity to identify the influence of timing, growth and parental migratory behaviour in 
the migratory behaviour adopted by juveniles.

Results
Whether individual chicks subsequently became residents or migrants was not associated with their hatch dates, 
measured as either relative (i.e. mean centred hatching date for each year; Table 1, Fig. 1a) or absolute hatch 
dates (Table 1), even though absolute hatch dates varied quite substantially among years (Fig. 1b). Similarly, 
pre-fledging growth parameters (asymptotic value of foot length and body mass (y∞), growth rate constant (k) 
and age at the inflection point (Ti)) did not differ between individuals that became resident or migrant (Supple-
mentary Table S3), and fledging dates (despite the smaller sample size) did not appear to influence the likelihood 
of becoming migrant or resident (Table 1; Fig. 1c). However, whether individual chicks subsequently became 
residents or migrants was strongly associated with paternal but not maternal migratory behaviour (Table 2; 
Fig. 1d), with fathers and their offspring sharing migratory behaviour in ~ 90% of cases while mothers’ behav-
iour had no association with offspring behaviour (Table 2). Seven chicks fledged from pairs with one resident 
and one migrant parent, and in all seven cases the chicks adopted the same migratory behaviour as their fathers 
(Supplementary Table S1). This paternal effect did not appear to result from differences in breeding phenology 
between migrant and resident fathers (mean relative hatch date of chicks from migrant fathers = − 4.22 ± 3.94 SE 
and from resident fathers = − 0.69 ± 3.60 SE, t = − 0.66, df = 19.84, p = 0.52; mean absolute hatch date of chicks from 
migrant fathers = 155.82 ± 4.70 SE and from resident fathers = 159.18 ± 3.90 SE, t = − 0.55, df = 19.34, p = 0.59).

Discussion
Tracking of individual Icelandic oystercatcher chicks to their non-breeding locations has revealed that most 
chicks adopt the migratory behaviour of their fathers, but not their mothers, and that time- or resource-con-
straints during the pre-fledging period appear to have little influence on subsequent migratory behaviour of these 
chicks. Given the lack of evidence of innate (genetic) control of migratory  destinations17,24, and the contribu-
tion of both partners to parental care during pre-fledging period in Haematopus sp.25,26, what mechanism could 
produce such strong paternal but not maternal effects?

Our results suggest that the migratory behaviour of individual oystercatchers is linked to social interactions 
during the post-fledging period, specifically the paternal bond. In monogamous, single-clutch shorebird spe-
cies, like oystercatchers, mothers commonly depart before, or at, chick fledging, while fathers often provided 
parental care for longer, even in species without direct parental  provisioning27,28. This extended maintenance of 
the paternal bond may be the underlying driver of the link between paternal and juvenile migratory behaviour. 
Despite being able to fly and feed independently, begging behaviour in fully-fledged juvenile oystercatchers has 
been observed to extend for several months after  fledging29, suggesting that parents (most likely  fathers27) may 
provide an extended period of parental care. For residents, paternal care that extends beyond the period when 
migratory individuals leave the breeding areas would mean that their offspring would likely also become resi-
dents. For migrants, paternal care may extend only into the period when pre-migratory flocks form, as shorebirds 
(including oystercatchers) typically do not migrate in family parties or remain together during  winter7,30–33. 
However, juveniles in pre-migratory flocks are likely to mix with and learn from experienced individuals that 
share the paternal migratory behaviour. Thus, the social cues experienced by offspring during the post-breeding 
period may be a key mechanism in the initiation and development of individual migratory behaviour. While we 
were unable to detect any significant effect of fledging date on migratory behaviour, virtually all of the earliest 
fledgers in our population went on to become migrants, and we cannot rule out the possibility that very late-
fledging individual lack the time or resources to undertake a migratory journey irrespective of paternal behaviour.

Migratory individuals (including oystercatchers) are typically site-faithful3,24 and the quality of sites they 
occupy can influence individual fitness and population-level  processes31,34. Consequently, the processes deter-
mining juvenile migratory and settlement decisions are likely to be key drivers of the evolution and maintenance 

Table 1.  Results from the generalised linear models testing for phenological effects on the likelihood of 
juveniles becoming migrant or resident. Note that the standard error associated with the estimate for 2018 is 
large as there are no resident juveniles from that year. a Reference year: 2015.

Predictor Estimate Std. error z value p

1)
(Intercept) − 0.49 0.29 − 1.69 0.09

Relative hatching date − 0.01 0.03 − 0.18 0.85

2)

(Intercept) − 2.06 5.27 − 0.39 0.70

Absolute hatching date 0.01 0.03 0.23 0.82

Yeara

 2016 1.33 0.89 1.50 0.13

 2017 − 0.07 0.98 − 0.08 0.94

 2018 − 16.74 1768.36 − 0.01 0.99

3)
(Intercept) − 14.30 10.60 − 1.35 0.18

Fledging date 0.08 0.05 1.37 0.17
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of migratory routes and ranges (including partial migration), and of migratory range change and the associated 
implications for protected area  networks4. Our findings suggest that the social interactions experienced by 
individuals can directly influence the ontogeny of their migratory behaviour, and that the extent and timing of 
parental care can be key in shaping individual access to these social interactions.

Figure 1.  Potential factors determining the initiation of individual migratory behaviour in a partially migrant 
population. a Relative egg-hatching date of migrant (n = 31) and resident (n = 19) juveniles. b Annual variation 
in Julian egg-hatching date of migrant (n = 31) and resident (n = 19) juveniles. c Julian fledging dates of 
migrant (n = 6) and resident (n = 8) juveniles. d Proportion of migrant and resident juveniles grouped by their 
maternal (n = 21) and paternal (n = 22) migratory behaviour. Colour indicates juvenile migratory behaviour 
(blue = migrant, yellow = resident). The line inside the boxplot represents the median and the whiskers represent 
scores outside the inter-quartile range (middle 50%).

Table 2.  Results from the generalised linear models testing parental migratory effect on juvenile migratory 
behaviour. The estimates represent the log odds of adults having resident juveniles (non-reference category in 
the response variable).

Parent Parental migratory behaviour Estimate Std. Error z value Pr( >|z|)

Father
Migrant − 2.30 1.05 − 2.19 0.028

Resident 4.60 1.48 3.10 0.002

Mother
Migrant 0 0.50 0 1.000

Resident − 0.41 1.04 − 0.39 0.697
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Methods
Tracking of individuals. From 2015 to 2018, incubating adults were caught on the nest using a spring-trap, 
measured and individually marked with coloured leg-rings, and feather samples were collected for stable iso-
tope  analysis19. Chicks were first caught, metal ringed and measured in the nest and then fitted with individual 
combinations of colour-rings once tarsi had grown to a sufficient length (around 2 weeks old). Through a net-
work of volunteer observers reporting sightings of marked individuals across the wintering range, the migratory 
behaviour of 227 of the 615 colour-marked adults and 50 of the 377 colour-marked chicks have been identified 
(Supplementary Table S2). The winter period (during which only resident individuals are likely to be present in 
Iceland) was defined from the beginning of October to the end of February. No migrant individuals have been 
recorded in Iceland after September and the earliest returning migrants have been observed during the first week 
of March (personal observations). In addition, for 353 marked adults, migratory behaviour has been determined 
using a discriminant function analysis of stable isotope ratios (δ13C and δ15N), after calibration using the isotopic 
signatures of those individuals that were observed during winter within or outside  Iceland19 (Supplementary 
Table S2). For adults of juveniles with known migratory behaviour (n = 40 adults), their migratory behaviour 
was determined by either winter resighting (18; males = 11; females = 7) or stable isotope ratios (22; males = 10; 
female = 12). In three cases, the migratory behaviour of two juveniles originating from the same brood was 
determined (both adopted the same migratory behaviour). The discriminant function analysis used for the clas-
sification of migratory behaviour given the stable isotope ratio has an error rate of only 9%, and only individuals 
with ≥ 67% of assigned probability to one of the migratory behaviours were considered in this  study19. Since this 
analysis, 73 additional individuals with assignment probability of ≥ 0.67 have thus far been recorded in winter 
and all showed the assigned migratory behaviour.

Hatching date, growth and fledging date. We surveyed study areas in South, West and North-West 
Iceland from the beginning (mid-April) of the breeding season to the end (July) to search for  nests19. For nests 
found during incubation, we used egg flotation  methods35 to predict hatching date, assuming 28 days of incuba-
tion starting when last egg was laid, thus ensuring that newly hatched chicks would still be in the nest cup for 
initial measurement and ringing, and noted this as Julian hatching date.

Oystercatcher parents remain in the vicinity of the nest after chick hatching and feed them throughout the 
growing period. Chicks were therefore recaptured and measured every 3–4 days from hatching (age 0 days) until 
fledging. We measured body mass to the nearest 1 g using a spring balance and foot length (tarsus + middle toe) 
to the nearest mm using an aluminium wing ruler. Fledging date/age was defined as the first day/age when chicks 
were able of independent fly for at least 100 m (estimated visually).

The hatching date of 14 out of the 50 juveniles with known migratory status was unknown as we failed to find 
their nest during incubation. To estimate their hatching date, we back-calculated this parameter from age at ring-
ing using the logistic growth curve built from 273 monitored chicks of known age (Supplementary Figure S1).

Data analysis. To analyse whether hatching date influenced migratory behaviour, we performed a general-
ised linear model with a binomial error distribution and logit link function, where juvenile behaviour (migrant 
or resident) was modelled as a function of Julian hatching date and year. We also tested whether timing of hatch-
ing within the season influence their migratory behaviour. For this, each observation (i) per year (j) was centred 
around the respective sampled population mean (Χij –‾Χj) (hereafter, relative hatching date). Then, we used the 
same model structure with juvenile behaviour as response variable and relative hatching date as predictor. For 
these analyses, 50 juveniles (31 migrants and 19 residents) with known hatching date were considered.

We explored growth rate for foot length and body mass and assessed whether chick growth was best described 
by logistic growth, yt = y∞/(1 + exp(− k(t − Ti))), or Gompertz growth curve, yt = y∞ x exp(− exp(− k x (t − Ti))), 
where yt is the biometric response, t is age, y∞ is the asymptotic value of response variable, k is the growth rate 
constant and Ti is the age at the inflection point. For logistic growth, the inflection point occurs at y(Ti) = y∞/2, 
and for Gompertz at y(Ti) = y∞ /e. Then, we investigated differences on each growth parameter between migrant 
(n = 14) and resident (n = 14) juveniles considering only those that were measured at least twice and only includ-
ing measurements up to 35 days of age (mean fledging age 34.4 days ± 3.9 SD, n = 14). We used nonlinear mixed 
models, with chicks as a random effect to account for pseudo-replication. For the random structure, we only 
allowed chicks to vary randomly with respect to their asymptotic size (y∞), as allowing other parameters to vary 
resulted in lack of model convergence. We then compared models with and without migratory behaviour effect 
on y∞, k and Ti, and selected the most parsimonious model, which is the model with the fewest parameters within 
2 ΔAICc of the top  model36.

In order to investigate the potential effects of fledging date on migratory behaviour, we built a logistic regres-
sion model with Julian fledging date as the predictor and juvenile migratory behaviour as response variable. We 
added year as fixed effect to control for potential annual variation, but year was not significant and was therefore 
excluded. For this analysis, 14 juveniles (8 residents and 6 migrants) with known fledging date were considered.

To explore the influence of parental strategy on juvenile migratory behaviour, we constructed two generalised 
linear models with a binomial error distribution and logit link function, where juvenile migratory behaviour was 
modelled as a function of maternal (n = 21) or paternal strategy (n = 22). Sample size differs between models as 
for a few pairs the behaviour of only one of the adults was known. In addition, we performed a t-test to examine 
whether breeding phenology (mean relative and absolute hatch date) differed between migrant and resident 
fathers. All analysis and calculations were performed in R 3.6.337.

Ethics approval. All animal handling and protocols were carried out in accordance with relevant guidelines 
and regulations. Ethical approval was provided by Animal Welfare and Ethical Review Board from University of 
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East Anglia. Birds were captured, marked and sampled with permission from the Icelandic Institute of Natural 
History (Licence No. 3240) and International Wader Study Group (Permit No. 3240).

Data availability
Data from the study has been archived at Dryad: https ://doi.org/10.5061/dryad .00000 0010; https ://datad ryad.
org/stash /share /D4AdI dH3Kd Ucfnq -HgC3E VUHVU m-5ztC1 q50Y1 m3bYA .
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