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Abstract: Anthocyanins, the pigmented flavonoids responsible for red and blue colors in horticultural
products, promote human health by preventing cancers and lowering the risk of cardiovascular disease.
Red onions contain several cyanidin- and peonidin-based anthocyanins. In this study, we constructed
a single-nucleotide polymorphism (SNP)-based genetic linkage map in an F;, segregating population
derived from a cross between the inbred line ‘SP3B’ (yellow bulb) and the doubled haploid line ‘H6’
(red bulb) to identify quantitative trait loci (QTLs) for total anthocyanin content of onion bulbs using
a genotyping-by-sequencing (GBS) analysis based on a reference gene set. A total of 101.9 Gbp of raw
sequences were generated using an Illumina HiSeq 2500 system and a total of 1625 SNP loci were
identified with the criteria of three minimum depths, lower than 30% missing rate, and more than 5%
minor allele frequency. As a result, an onion genetic linkage map consisting of 319 GBS-based SNP
loci and 34 high-resolution melting (HRM) markers was constructed with eight linkage groups and a
total genetic distance of 881.4 cM. In addition, the linkage groups were assigned to corresponding
chromosomes by comparison with the reference genetic map OH1x5225 through marker development
based on common transcripts. The analysis revealed one major QTL, gAS7.1, for anthocyanin synthesis
and two significant QTLs, gAC4.1 and gAC4.2, for anthocyanin content. The QTL qAS7.1, located on
chromosome 7 with a phenotypic variation of 87.61%, may be a dihydroflavonol 4-reductase (DFR)
gene that determines whether the bulb color is red or yellow. The QTLs gAC4.1 and gAC4.2 are
separately positioned on chromosome 4 with R? values of 19.43% and 26.28%, respectively. This map
and QTL information will contribute to marker development and breeding for high anthocyanin
content in bulb onion.
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1. Introduction

Bulb onion (Allium cepa L.; 2n = 2x = 16) is an economically and nutritionally important
vegetable crop worldwide [1]. The health benefits of onion are due to several functional compounds,
including anthocyanins (mainly in red/purple onions), flavanols such as quercetin (mainly in
yellow/brown onions), and alk(en)yl cysteine sulphoxides (ACSOs) [2]. Anthocyanins, type of
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flavonoid, are water-soluble vacuolar pigments that confer red, blue, and purple colors in horticultural
products depending on the pH [3]. Red onions contain four major cyanidin-based anthocyanins;
cyanidin 3-glucoside (Cy 3-Glc), cyanidin 3-laminaribioside (Cy 3-Lam), cyanidin 3-malonylglucoside
(Cy 3-MaGlc), and cyanidin 3-malonyllaminaribioside (Cy 3-MaLam) [4], and two minor peonidin
derivatives, peonidin 3-glucoside and peonidin 3-malonylglucoside [5].

Inheritance of onion bulb colors appears in a complex pattern [6,7]. Previous inheritance studies
have reported the presence of six major loci (I, C, G, L, L2, and R) that are responsible for bulb colors [1].
Particularly, the R locus and either the L or L2 locus are complementarily involved in the control of
yellow and red bulb colors [7,8], and the R and L loci were reported to correspond to the dihydroflavonol
4-reductase (DFR) and anthocyanidin synthase (ANS) genes, respectively [8]. The DFR and ANS genes
were assigned to chromosomes 7 and 4, respectively; using two complete sets of shallot (A. cepa) alien
monosomic addition lines [9]. Transcripts of the DFR gene were seen in red onions but were absent in
yellow onions [10], and it was suggested that blockage of DFR transcription or translation results in
a lack of anthocyanin production in yellow onion [11]. A total of 16 DFR-A alleles were identified,
and the process for identification of the alleles was reported [12-14]. On the other hand, ANS was
related to a pink color as well as anthocyanin production in onion [15-18]. However, the genetic
inheritance of anthocyanin content in red onion is poorly understood.

Genomic and genetic studies of onion are difficult due to its huge genome size (16.3 Gbp), biennial
life cycle, cross-pollinating nature, and high inbreeding depression [1]. For these reasons, the whole
genome sequencing of the onion is not yet completed [19]. Despite the difficulties, several studies on
genetic linkage mapping and marker development in the onion have been made. A low-density genetic
map of the onion, including 14 random amplified polymorphic DNA (RAPD) and 110 restriction
fragment length polymorphism (RFLP) markers, was first constructed using 58 F3 families derived
from a single F; plant from the cross of ‘Brigham Yellow Globe 15-23’ (BYG15-23) and ‘Alisa Craig
43" (AC43) [20]. An interspecific genetic map of A. roylei X A. cepa was made using 692 amplified
fragment length polymorphism (AFLP) markers [21]. In addition, the linkage groups were assigned to
the chromosomes of A. cepa L. via monosomic addition lines [22]. A total of 13 markers, including two
cleaved amplified polymorphic sequence (CAPS) and 11 single-strand conformation polymorphism
(SSCP) markers, were developed from 128 expressed sequence tag (EST) sequences and positioned on
the ‘BYG15-23" x "AC43’ map [23]. In the same population, 100 new genetic markers were developed
from EST sequences and the ‘BYG15-23’ X "AC43’ map consisting of 14 linkage groups encompassing
1907 <M was constructed [24]. A total of 37 simple sequence repeat (SSR) markers were developed to
distinguish between 35 onion cultivars [25], and 56 EST-SSR and four genomic SSR markers were used
for genetic diversity analysis of 89 inbred and open-pollinated bulb onions [26].

Next-generation sequencing (NGS) technologies have made it easier to identify a large number of
single-nucleotide polymorphisms (SNPs) to develop SNP markers and to construct genetic linkage
maps for plant genetics and breeding [27]. A total of 205 markers, including 11 indel, 90 CAPS,
and 104 high-resolution melting (HRM) markers, have been developed from NGS data, and a
framework linkage map of over 800 cM spanning all chromosomes was constructed in an F, population
from a cross between the two bulb onions ‘Nasik Red” and ‘CUDH2150" [28]. The 20 robust single
copy SSR markers selected from 166 SSRs were used for the estimation of genetic diversity within
and among 24 bulb onion populations [29]. A total of 597 SNPs identified from cDNA libraries
between the bulb onions ‘OH1’ and ‘5225” were positioned on a genetic map consisting of ten linkage
groups, and the map was compared with the ‘BYG1523" x ‘AC43’ map using 223 common SNPs [30].
A total of 54,165 protein-coding genes among 165,179 assembled transcripts totaling 203 Mb were
generated with de novo high-throughput RNA sequencing (RNA-Seq) analysis [31]. In addition,
35,505 isoforms, designated as draft reference transcripts (DRTs, version 1.0), were produced using
long-read sequencing [32]. The 301 SNP markers based on kompetitive allele specific PCR (KASP)
assays were developed using transcriptome sequencing, and two interspecific genetic maps between A.
roylei and A. fistulosum and between A. cepa and A. roylei were constructed using the SNP markers [33].
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From genotyping-by-sequencing (GBS), 175 SNPs and 57 from Fluidigm SNP assays were used for the
construction of an onion genetic map, which consisted of eight linkage groups and covered a total
length of 1339.5 cM [34]. A total of 1904 SNPs were discovered in 192 Korean short-day onion inbred
lines using double digest restriction site-associated DNA sequencing (ddRAD-seq) [35].

In this study, we aimed to construct an onion genetic linkage map using GBS analysis with the
previously reported reference gene set and without the reference whole-genome sequence and to
identify quantitative trait loci (QTLs) controlling anthocyanin synthesis and content in an F, population.

2. Results

2.1. SNP Detection and Genotyping Using GBS Analysis

GBS analysis was carried out with 96 F, onion plants for SNP detection and genotype
identification. In total, one billion raw reads and 101.9 Gbp of sequences were obtained using
Illumina HiSeq 2500 paired-end sequencing (Table 1). The raw reads were classified into 96 groups
(samples) using the barcode sequences. The average number of reads in each group was
10,075,947. Subsequently, the demultiplexed reads were trimmed by eliminating barcodes, adaptors,
and low-quality sequences. The average length of trimmed reads per sample was 77.75 bp, and accounts
for 86.2% of the total raw reads (Table 1). The trimmed reads were mapped on the reference gene
set of bulb onion (Table 2) [31]. As a result, only 35.5% of the raw reads were mapped and the total
number of mapped reads was 358,301,156 (Table 1). The average number of each mapped region was
16,718, and the average depth of each mapped region was 81.42 (Table 1). The average length of the
mapped regions was 1,855,555 bp, which covered 0.9141% of the onion reference gene set (Table 1).
Finally, a SNP matrix consisting of 96 samples and 8431 SNPs was generated (Table 1). After filtering
with a minimum depth of three, less than 30% missing rate, and over 5% major allele frequency,
1625 SNPs were obtained (Table 1 and Table S1).

Table 1. Summary of genotyping-by-sequencing data generated by using transcriptome sequences as
a reference.

Summary of Illumina Sequencing Data
Number of plants for multiplexing 96
Total number of raw reads generated 1,008,750,538 (100%)
Total base number of raw reads (bp) 101,883,804,338 (101.9 Gbp)
Total number of demultiplexed reads 967,290,922 (95.9%)
Total number of trimmed reads 869,413,090 (86.2%)
Total number of mapped reads 358,301,156 (35.5%)
Total number of mapped regions 1,604,901
Average depth of mapped region 81.42
Total length of mapped regions (bp) 1,855,555 (1.9 Mbp)
Total length of the reference gene set (bp) 202,991,716 (203.0 Mbp)
Coverage of the reference gene set 0.9141%
Total number of SNPs detected 8431
Total number of SNPs filtered 1625

Table 2. Summary of transcript-assembled contigs used as an onion reference reported by Kim et al. [31].

Number of Total Length Minimum Maximum Average Nso
Assembled Contigs (bp) Length (bp) Length (bp) Length (bp) Length (bp)

165,179 202,991,716 200 16,504 1228 1756
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2.2. Development of HRM Markers for Comparative Mapping

A total of 248 primer sets for HRM markers were designed based on common SNPs between the
populations SP3BxHS6 (in this study) and OH1x5225 [30]. Among them, only 34 were polymorphic
(Figure 1). The HRM marker types were clearly separated into three groups: A (SP3B genotype),
B (H6 genotype), and H (heterozygous genotype; Figure 1). The markers were positioned widely
throughout the genome on chromosomes 1-8. Detailed marker information is listed in Table 3.
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Figure 1. Melting curves of 34 high-resolution melting (HRM) markers developed in this study. A,
marker type of female parent (SP3B); B, marker type of male parent (H6); H, marker type of heterozygote.
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Table 3. List of HRM markers developed in this study.

SP3BxH6 Map OH1x5225 Map * Transcript ID Y
No- Chr. No. * P(::;\t/};m Marker Name Forward Primer Reverse Primer Hé6 SP3B  Chr. No. * P?:ﬁ; n AC.Combine.Assembly.v.1.0
1 1 23.1 i34152_369-HRM TCCACATATCTCATATTGCGCTCA CTTTGGCTTAACTTACCCGATTAC G A 1 8.7 AC.Combine.Locus_5700
2 1 63.6 i37206_320-HRM CCGGTTGTGGTTGGTCGAA ACAAGTTAGTGGCACGTTACAAAA G T 1 59.0 AC.Combine.Locus_9298
3 2 39.6 i26238_573-HRM ACAAACCTTATGCAGATACACTCA GCAACATCAAAAGCTCCCCATC T C 2 67.3 AC.Combine.Locus_14118
4 2 55.4 i26198_779-HRM TTCTATTACCGGAGCTGTAGTTGG CAAATGCAATATCTCCAAGGGCTT G A 2 95.5 AC.Combine.Locus_9799
5 2 82.8 i30225_1161-HRM GAAGGGACAGTTCAAGGTAGTAGG TCTCAAATTCCTTCTCCAACTTCA G A 2 154.5 AC.Combine.Locus_7495
6 2 96.9 i32865_1404-HRM TAGTCAGAATCTTCCTCTCCTGGT AGTGGAGGAAGATGAAGAAGTTGA A G 2 193.2 AC.Combine.Locus_19254
7 2 100.7 i32416_685-HRM AGCAATGAAGTACGATTTACAGCA TGAAGAAGAACCCTCCAACGTTAT T C 2 203.3 AC.Combine.Locus_17664
8 2 116.5 i33538_1298-HRM AATCGCCATTAGAAAGCTTTACCG TACACTAAACCCTACAAACGTCGA C G 2 217.9 AC.Combine.Locus_250
9 2 126.2 i26131_2020-HRM GCTTCTTTGGCCCCATATTCAAG CATTTGCATAATGTGAGAAAGCGC T C 2 227.0 AC.Combine.Locus_1772
10 3 0 i35099_237-HRM GAAGGATGCTGGTAAGAGGTCTAC ATTATCCAAACCTGTACCCGTGAA C T 3 0.0 AC.Combine.Locus_31460
11 3 20.2 139498_201-HRM AAGAGTTGGGTGTGAAAGGAGATT CCTGTGTTGAGATTTGGGGATTTC T C 3 12.7 AC.Combine.Locus_89589
12 3 25.8 i33531_1155-HRM CCTTATGCAGATTCACCATGGAAG CGGATCTCGTTTAACAGTGGAAAG T C 3 12.7 AC.Combine.Locus_14239
13 3 39.2 i35038_601-HRM GACTTGGAGTGCAGTTGAGAC AATCATCGGGCCTCAATGTTCAA G A 3 25.1 AC.Combine.Locus_14173
14 3 100.9 i26005_1583-HRM CAGAGATCTCAACTTGTTCCCTGA ATTGCATACCTCGAATCGCCTTTA A G 3 174.0 AC.Combine.Locus_9082
15 4 0 i29163_2080-HRM TTCAGTAAACAAAAGATCGGCTGA AAATCGGCCATCTTATTGTCTCCA G A 4B 0.0 AC.Combine.Locus_8343
16 4 26.2 i26442_1225-HRM ACATTCTTCAAAGCGGTAACAACC CAGTCATATACACCTTTATGCAAGT A G 4A 28.3 AC.Combine.Locus_1490
17 4 54.3 126526_748-HRM AGGAGGTAATGCACTGATTATTTGT TGCACAATTGAGAGAAGGTGTTTT A G 4B 52.4 AC.Combine.Locus_10803
18 4 62.0 i32123_1465-HRM CACGAATCCATAAGAGTTATCGCA TGATCAGGGCTAGGAAAGTTTGAT T C 4B 52.4 AC.Combine.Locus_5789
19 5 68.6 i25881_1343-2-HRM TTCTGACAATTTGACCGGTTGAAG CGCGGTTACTCAAGGTTTAAGATT T C 5 59.0 AC.Combine.Locus_3681
20 5 69.1 i25881_1343-1-HRM CCATCCTGAACACGATAAACCTTC GATTAGGAGTTTGGCTTTGCTGTG C T 5 59.0 AC.Combine.Locus_3681
21 5 85.6 i29728_1131-HRM CACAAAGGGGAATCAATAATCGCA GCCTGCTCTTGGAACTGATAAAAT T C 5 119.4 AC.Combine.Locus_2597
22 5 112.1 i30593_868-HRM TAAAGACCACAACAGACTCGTTCA TTGGTTAAGGGAGTCTATGTGAGC T C 5 178.6 AC.Combine.Locus_70708
23 5 1152 i36364_683-HRM GAACCCGCCTAAGAACCAGAA TTCATCCTCGGACTGTCTACTAGA G A 5 176.4 AC.Combine.Locus_24909
24 5 118.4 i29592_700-HRM CTTCTAGAGTTGGTGTTGTGTCCA ACTCTATGCAAACTTCACCTGAGA G C 5 178.6 AC.Combine.Locus_4560
25 6 54.8 i30880_1388-HRM CGTTGGAAGATTATGTTCATCGCA TTGGCTGCAGTGAAGTAGGTATAG C A 6B 9.3 AC.Combine.Locus_8405
26 6 73.3 i35768_1013-HRM GACATGCCGCAATCCAAGATTAG CGGTAGATGGTGAAATTTGTGTCA T C 6B 30.2 AC.Combine.Locus_37095
27 6 91.1 i32739_152-HRM AAACGGCCATCTTGAAGCAATAGA GCAAAACTTGGTCAGATAGAGAGC G A 6B 41.0 AC.Combine.Locus_12004
28 6 91.7 i36782_698-HRM GCATGTTGATAGGAATTCGAATGC GTGTTGTCTTGTTCTCGTGGTTC A T 6B 443 AC.Combine.Locus_15991
29 7 15.6 i39918_357-HRM ATAACCTCTTCTCAATTCGAACTTC TCCGATCCTCAATGACGACAATAA C G 7 39.1 AC.Combine.Locus_48105
30 7 38.8 i29101_1894-HRM CATACCAACCTGCACACTTAAACA GTACCATAGCGACATCCTATAGCC A G 7 92.6 AC.Combine.Locus_854
31 7 434 i28923_2628-HRM TACTATGGGAATTAGCTACGATGC AACCGTCTATCCTGGAACCCTA C T 7 94.8 AC.Combine.Locus_51
32 8 182 i31126_1315-HRM ACTCTACTTGATGTTCAGTGTGGC CTTGTCATCATCTTTCCCTAGGCT T C 8 18.2 AC.Combine.Locus_2785
33 8 22.0 i30907_420-HRM TGGCTCTACTGGGGATTTGTTAAA CACTCGGCAAATATCCCTGGTAG C T 8 15.4 AC.Combine.Locus_65044
34 8 66.9 i31261_1350-HRM GTCCCCTAGAAACAGATCTCCAAC CGACTGTGACTTTTCGGGAATTTA A C 8 69.4 AC.Combine.Locus_815

* Map information originated from the results of Duangjit et al. [30]. ¥ Transcript ID information originated from the results of Kim et al. [31]. * Chr. No., chromosome number.



Plants 2020, 9, 616 60f17

2.3. Construction of an Onion Genetic Linkage Map

An onion genetic linkage map consisting of 319 GBS-based SNPs and 34 HRM markers on eight
chromosomes was constructed with a total genetic distance of 881.4 cM (Figure 2, Table 4 and Table S2).
The number of markers on each chromosome ranged from 36 to 64 with an average of 44, and the
average marker interval was 2.5 cM (Table 4). The shortest and longest chromosomes were 7 and 5,
with genetic distances of 73.9 cM and 142.8 cM, respectively (Table 4).

Table 4. Summary of the onion genetic linkage map constructed from an F, population of SP3BxH6.

Chromosome Length of Linkage  Total Number of Number of SNPs Number of HRM
No. Maps (cM) Markers (A+B)  Resulting from GBS (A) ? Markers (B) ¥
1 122.5 36 34 2
2 127.9 53 46 7
3 134.1 42 37 5
4 94.5 38 34 4
5 142.8 45 39 6
6 111.3 64 60 4
7 739 38 35 3
8 74.3 37 34 3
Total 881.4 353 319 34
Average 110.2 44 40 4

# GBS, genotyping-by-sequencing. ¥ HRM, high-resolution melting.
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Figure 2. Comparison of two onion genetic linkage maps, the SP3BxH6 map constructed in this study and the OH1x5225 map developed by Duangjit et al. [30].

Bar left or right number, map position (centi Morgan, cM); bar left or right name, marker name; underline, common marker; -HRM in marker name, HRM marker;

dotted line, connection between the same transcript-based markers.
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2.4. Comparison of the SP3BxH6 and OH1x5225 Onion Genetic Linkage Maps

The SP3BxH6 genetic linkage map generated in this study was compared with the previously
reported onion reference genetic map for OH1x5225 to assign each linkage group to the corresponding
chromosome (Figure 2). First, through a BLAST search with the mapped transcript sequences, only seven
common transcripts were identified; including three (i33531_1155, i35038_601, and i31357_1109) on
chromosome 3, one (i37258_745) on chromosome 5, two (i30848_646 and i28276_1535) on chromosome
6B, and one (i31126_1315) on chromosome 8 (Figure 2). Second, a total of 34 HRM markers were
developed using SNPs derived from common transcripts (Figure 1 and Table 3). These markers enabled
the comparison between SP3BxH6 and OH1x5225 (Figure 2).

2.5. Identification of a Major QTL for Anthocyanin Synthesis of Onion Bulbs

Only 69 bulbs were harvested from 96 F, onion plants due to cultivation problems, which were
segregated into 51 red bulbs and 18 yellow bulbs (Figure 3), fitting to the segregating ratio of 3:1
(red:yellow; Table 5). This shows that the red bulb color is caused by the expression of a single dominant
gene and yellow bulb color results from homozygous recessive alleles of the gene. QTL analysis using
these data revealed a major QTL, gAS7.1, for anthocyanin synthesis in the onion (Table 6). This QTL
was identified at the 13.8 cM position on chromosome 7 with a logarithm of odds (LOD) score of
9.19 and a phenotypic variance of 87.61% (Table 6). The segregation of red and yellow bulbs was
completely consistent with the genotype of the closest marker (125488.1_1462) to gAS7.1 (Figure 2
and Table S3). In the marker, the homozygous genotype of SP3B led to yellow bulbs, whereas the
homozygous genotype of H6 or the heterozygous genotype caused red bulbs.

Figure 3. Bulb colors of 69 F, individuals derived from a cross between Allium cepa ‘SP3B” and "H6’.
Numbers, No. of F, individual; R, red color; Y, yellow color.
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Table 5. Segregation analysis of onion bulb colors in an F, population of SP3BxHS6.

Number of Onion Plants

) . Expected

Population Generation p . X2 Val Value
P Red Bulb Yellow Bulb Total  Ratio alue P

SP3BxH6 F 51 18 69 3:1 0.0435 0.835

Table 6. Summary of significant quantitative trait loci (QTLs) for anthocyanin synthesis and content
identified in the F, onion population of SP3BxHS6.

QTL Peak

. L. Additive Dominance R%Z LODY LOD
Trait QTL  Chr Marker Interval P‘::ll\t;;m Effect Effect (%)  Value  Threshold *
Anthocyanin 170 7 1254881 1462-i39918_357-HRM 13.8 -0.9573 0.2401 8761  9.19 53
synthesis
Anthocyanin  gAC41 4 T57513.1_314-T53764.1_356 7.0 -0.0299 -0.0513 1943  3.26 3.0
content gAC42 4  T84695.1_220-i32123_1465-HRM 62.0 -0.0399 -0.0335 2628  3.03 3.0

zR?, proportion of variance explained by the QTL at the test site. ¥ Logarithm of the odds (LOD). * LOD threshold
was determined with a 1000 times permutation test.

2.6. Identification of Two QTLs for Anthocyanin Content of Onion Bulbs

Anthocyanin content of 51 red bulbs in the F, population ranged from 0.0098 to 0.5061 pg x
100 mg~! (Figure 4). The average anthocyanin content was 0.0994 ug x 100 mg~!, and the average
standard deviation was 0.0133 pug x 100 mg~!. This continuous variation of anthocyanin content
indicates that it is quantitatively controlled (Figure 4). Using this data, two significant QTLs, gAC4.1
and gAC4.2, for anthocyanin content of onions were identified by a QTL analysis (Table 6). The QTLs
were found at 7 and 62 ¢cM on chromosome 4 with LOD scores of 3.26 and 3.03 and R? values of
19.43% and 26.28%, respectively (Table 6). The negative additive effects on anthocyanin content
were derived from the SP3B genotype and observed in both QTLs (Table 6). A GBS-based marker,
T35733.1_806, and an HRM-based marker, i32133_1465-HRM, were the closest markers to gAC4.1 and
gAC4.2, respectively (Figure 2 and Table 6). For both markers, the homozygous paternal genotype (B)
had the highest total anthocyanin content (0.18 pg x 100 mg~" in T35733.1_806 and 0.19 ug x 100 mg~!
in T5789-1-C4; Figure 5A,B). The onion lines with both paternal alleles for the markers also showed the
highest total anthocyanin content (0.31 pg x 100 mg~!; Figure 5C).

0.4

Total anthocyanin content (ug x 100 mg™')

. h“m““””lIIIIIIHIIH|iiiimimmn "

8516545288453982 8 29777643 1 911156 7 488472 4 35747819 9 4942382273596358 141041 90807137832479 5 8918533496
No. of F, individuals

Figure 4. Total anthocyanin content of 51 red bulbs in the F, population of SP3BxH6.
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Figure 5. Comparison of the average total anthocyanin content according to genotypes for T35733.1_806
(A) and i32123_1465-H (B) markers and their combinational genotype (C). A, genotype of female parent
(SP3B); B, genotype of male parent (H6); H, genotype of heterozygote.

3. Discussion

The whole-genome sequence of the bulb onion is not yet made public. Nevertheless, we successfully
constructed an onion genetic linkage map using a GBS analysis with the reference of transcriptome
sequences (Figure 2). There have been a few reports on the onion genetic map construction using
NGS technologies. Baldwin et al. [28] reported 195 molecular markers including 11 Indels, 90 CAPSs,
and 104 HRMs derived from NGS data, and Duangjit et al. [30] generated 597 SNP markers from
transcriptome sequences using the KASP platform. Jo et al. [34] developed an onion genetic map using
reference-free GBS analysis, but only 175 SNPs were mapped. We mapped a total of 319 SNPs in this
study, divided into eight linkage groups covering a genetic distance of 881.4 cM (Figure 2 and Table 4).
This is the first paper that reports the construction of an onion genetic linkage map using GBS analysis
with a reference transcriptome sequence. This method will be useful for onion genetic mapping until
the whole genome sequence is released.

The onion genetic linkage map of SP3BxH6 was compared with the previously reported genetic
map of OH1x5225 using common SNP markers (Figure 2) [30]. The 34 developed HRM markers
were widely distributed throughout the genome (Figure 2 and Table 3). All the linkage groups of
SP3BxH6 were assigned to the corresponding chromosomes of OH1x5225 (Figure 2). By doing so,
we were able to compare the positions of the QTLs to those detected by Duangjit et al. [36].

Segregation analysis of red and yellow bulb colors revealed the presence of one dominant gene
responsible for red color through anthocyanin synthesis (Figure 3 and Table 5). Additionally, QTL
analysis for anthocyanin synthesis identified only one major QTL, gAS7.1, on chromosome 7 with
a high R? value of 87.61% (Table 6). In previous studies, El-Shafie and Davis [7] proposed that red
bulbs are conditioned by dominant alleles at the R and L loci, and Kim et al. [10,16] suggested that
the R locus is DFR and the L locus is ANS. These genes were proven to be complimentarily involved
in the control of red and yellow bulb colors using molecular markers [10-12,14,16,18]. In addition,
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hybridization analysis using alien monosomic addition lines suggested that the DFR and ANS genes
are located on onion chromosomes 7 and 4, respectively [9]. In this study, gAS7.1-linked marker
(T25488.1_1462) cosegregated with bulb colors (red and yellow; Table S3). These results imply that the
strongest candidate gene for the QTL qAS7.1 is DFR. However, DFR was not possible to be positioned
in this map because a marker for the gene was not developed. We suggest further research on marker
development for DFR gene to clarify the assumption.

The distribution of anthocyanin content in F, onion bulbs suggests the trait is quantitatively
controlled (Figure 4). QTL analysis for anthocyanin content of onion bulbs revealed two significant
QTLs, gAC4.1 and gAC4.2, on chromosome 4 (Table 6). In a previous study, Duangjit et al. [36] identified
four QTLs on chromosomes 1, 4, and 8 for anthocyanin concentration and intensity of the red bulb
color using segregating haploid progenies of the onion derived from a cross between OH1 (yellow)
and 5225 (red). The QTL on chromosome 4 was closely linked to the three markers c00160_1169,
i26182_1158, and 139401_224, which were positioned between 55.9 and 56.7 cM (Figure 2) [30]. It might
also correspond to the QTL gAC4.1 since they are located in a similar position (Figure 2). In this study,
we additionally found the QTL gAC4.2, which was not detected in the previous study, and no QTLs
identified on chromosomes 1 and 8 (Table 6). The L locus was proposed to encode the ANS gene,
which is located on onion chromosome 4 [9,16], and Khar et al. [8] reported an additional locus (L2)
on chromosome 4 linked to the L locus that also interacts with the R locus to regulate red bulb color.
Therefore, the QTLs gAC4.1 and qAC4.2 need to be compared with the L and L2 loci.

The two markers (T35733.1_806 and i32123_1465-H) were closely linked to the QTLs (JAC4.1 and
gAC4.2), respectively (Table 6). The genotypic analysis of the markers showed that the homozygous
paternal genotype (B) had the highest anthocyanin content and heterozygous genotype (H) was
similar to the homozygous maternal genotype (A; Figure 5A,B). These results suggest that both QTLs
are recessive genes. In addition, simultaneous homozygous paternal genotype markers (B and B)
showed exclusively high anthocyanin content (Figure 5C). This result means that the two QTLs have
complementary interaction. Hence, these markers are believed to be very useful for marker-assisted
selection for high anthocyanin content in onion breeding.

4. Materials and Methods

4.1. Plant Materials

An F; segregating population consisting of 96 individuals was used to construct an onion genetic
map and identify QTLs for anthocyanin synthesis and content. The population was generated by
self-pollination of an F; hybrid crossed between an inbred onion line with yellow bulb (SP3B) as a
maternal line and a short-day type doubled haploid (DH) onion line with red bulb (H6) as a paternal
line. The plants were cultivated in the open farm fields of Chonnam National University (Gwangju,
South Korea) from October 2017 to June 2018.

4.2. Phenotyping of Bulb Color

Phenotypes of anthocyanin-presence and -absence were discriminated by visually observing bulb
color; red and yellow bulbs indicate anthocyanin presence and absence, respectively. These phenotypic
data were used to identify the position(s) of the gene(s) controlling anthocyanin synthesis.

4.3. Assessment of Anthocyanin Content

Total anthocyanin content of the F, onion bulbs was assessed according to the method described
by Shin et al. [37]. Anthocyanin extraction was performed as follows: the twelfth piece of bulb per each
sample was crumbled in a mortar with liquid nitrogen. Of the bulb powder 100 mg was placed in a
2.0 mL microcentrifuge tube with 600 puL of extraction buffer (methanol containing 1% HCI), incubated
for 6 h at 4 °C in dark, and then centrifuged at 4 °C for 5 min at 13,000 rpm using a centrifuge (Hanil
Scientific Inc., Gimpo, Korea). A 600-pL aliquot of the supernatant was transferred to a new 1.5-mL
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microcentrifuge tube, and 200 pL of distilled water and 200 pL of chloroform:isoamyl alcohol (24:1)
were added. The mixture was centrifuged for 5 min at 13,000 rpm at 4 °C, and 750 puL was then
transferred to a new 1.5-mL microcentrifuge tube. An aliquot of 300 pL was transferred to a new
96-well microplate, and absorbances were measured at 530 nm and 657 nm using an Epoch microplate
spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA). The degree of total anthocyanin
content was determined by calculating the following function: total anthocyanin content = (As3pnm) —
0.25 X (Ags7nm) [38]. Total anthocyanin content was assessed five times per sample and averaged.

4.4. DNA Extraction

Genomic DNA was extracted from young leaves of each F; individual according to the method
described by Lee et al. [39]. The DNA was dissolved in 100 pL of distilled water and treated with 0.1 pL
of 10 mg-mL_l RNase solution (Bio Basic Canada Inc., Ontario, Canada). The DNA concentration was
measured using a BioDrop LITE (BioDrop UK Ltd., Cambridge, UK).

4.5. Genotyping-by-Sequencing Analysis

Genomic DNAs from 96 F; individuals were used to construct the library for GBS analysis.
The GBS library was constructed according to the method by Eun et al. [40] with the exception of double
digestion with the two restriction enzymes Pstl and Mspl. The pooled GBS library was sequenced using a
HiSeq 2500 (Illumina, Inc., San Diego, CA, USA) using the paired-end read method. The raw sequences
were demultiplexed into 96 samples and the demultiplexed sequences were trimmed by removing the
barcode, the adapter, and low-quality sequences. The cleaned sequences were aligned to the onion
reference gene set consisting of 165,197 assembled contigs (Table 2) [31] using the Burrows—Wheeler
alignment (BWA) program version 0.6.1-r104 [41]. Raw SNP detection, consensus sequences extraction,
and SNP matrix generation were performed according to the method by Eun et al. [40].

4.6. High-Resolution Melting Analysis

HRM analysis was conducted according to the method described by Jeong et al. [42] using a
LightCycler® Real-Time PCR (Roche, Basel, Switzerland). The melting curve was analyzed with
High-Resolution Melt software version 1.1 (Roche), and the genotypes were classified into three
groups: A (SP3B marker type), B (H6 marker type), and H (heterozygous marker type). The newly
developed polymorphic HRM markers were added to the SP3BXH6 map and compared with the
OH1x5225 genetic linkage map [30].

4.7. Genetic Linkage Mapping

Genetic linkage maps were constructed using the JoinMap version 4.1 (Kyazma B.V., Wageningen,
The Netherlands). Only SNPs fitting with the 1:2:1 ratio of the x2-test were used (Table S2). A logarithm
of odds (LOD) score of 3.0 was regarded as the threshold to determine the significant linkage between
markers. Genetic map distances (cM) were calculated by the Kosambi mapping function [43]. The final
linkage map was created using the MapChart version 2.1 software [44].

4.8. Assignment of Linkage Groups to Onion Chromosomes

Common transcripts were used to assign the linkage groups to onion chromosomes. The transcripts
of the reference gene set [31] were compared to those of the standard genetic linkage map OH1x5225 [30].
In addition, a total of 248 primer sets for HRM markers were newly designed, which were selected from the
SNPs derived from common transcripts between the reference gene set and the previous map OH1x5225.

4.9. QTL Analysis

QTL analysis was conducted using windows QTL Cartographer version 2.5 program [45] with the
composite interval mapping (CIM) method. The LOD threshold for significance level (p = 0.05) was
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estimated with a 1000 times permutation test. QTL analysis was carried out using two phenotypic data:
anthocyanin synthesis (AS) and anthocyanin content (AC). Anthocyanin synthesis indicates the presence
or absence of anthocyanin, while anthocyanin content refers to high or low amounts of anthocyanin.

5. Conclusions

In summary, we performed GBS and HRM analyses on 96 F, onion plants and constructed a genetic
linkage map with 319 SNPs and 34 HRM markers, consisting of eight linkage groups and covering
881.4 cM with an average marker interval of 2.5 cM. Through QTL analysis, we identified a major
QTL, gAS7.1, for anthocyanin synthesis and two significant QTLs, §AC4.1 and gAC4.2, for anthocyanin
content in the onion. In conclusion, the map information of the transcripts and markers will contribute
to complete the onion whole-genome sequencing, and the QTL information for anthocyanin synthesis
and content will be useful for molecular marker development for marker-assisted selection (MAS).
This will help to facilitate the breeding of bulb onions with higher anthocyanin content.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/5/616/s1,
Table S1: The SNP matrix generated by GBS analysis, Table S2: Statistics for GBS-based SNP and HRM markers
mapped in this study, Table S3: Cosegregation of the SNP marker (T25488.1_1462) with bulb color in an F,
population of SP3BxHS6.
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Abbreviations

AC anthocyanin content

AFLP amplified fragment length polymorphism
ANS anthocyanidin synthase

AS anthocyanin synthesis

CAPS cleaved amplified polymorphic sequence
CIM composite interval mapping

cM centi Morgan

ddRAD-seq double digest restriction site-associated DNA sequencing
DFR dihydroflavonol 4-reductase

EST expressed sequence tag

GBS genotyping-by-sequencing

HRM high-resolution melting

KASP kompetitive allele specific PCR

LOD logarithm of odds

MAS marker-assisted selection

NGS next-generation sequencing

QTL quantitative trait loci

RAPD random amplified polymorphic DNA
RFLP restriction fragment length polymorphism
SNP single-nucleotide polymorphism

SSCP single-strand conformation polymorphism

SSR simple sequence repeat
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