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Introduction
Inflammatory disorders impact a large number of people 
and are a major source of morbidity and death across 
the world. The overall number of patients on immu-
nosuppressive medicines is continuously increasing. 
Long-term treatment of immunosuppressive drugs is 
associated with the possibility of infection and cancer 
due to the continuous suppression of antimicrobial and 
antitumor immunity [1, 2]. Exosomes with high biocom-
patibility, minimal immunogenicity, and toxicity provide 
insight into changed cellular or tissue states in a variety 
of diseases, and their detection in biological fluids has the 
potential to provide a multicomponent diagnostic read-
out [3, 4], and their lipid bilayer allows them to cross cel-
lular barriers [5]. Exosomes can also be used with various 
biological activities and targeting capabilities via surface 
engineering technologies. Because of their versatility, 
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Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular 
communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including 
inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are 
complex conditions that require innovative therapeutic approaches. This review summarizes recent advances 
in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers 
and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and 
improving functional outcomes in preclinical models of inflammatory disorders. However, further research is 
needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as 
to fully understand their mechanisms of action. Current limitations and future directions in exosome research 
underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes’ 
full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great 
potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
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they have considerable latent drug delivery systems for 
the treatment of chronic inflammatory disorders [6]. Fur-
thermore, exosomes generated from mesenchymal stem 
cells (MSCs), astrocytes, and dendritic cells (DCs) from 
inflammatory sites with immunomodulatory capabilities 
are commonly employed as transport vehicles to deliver 
cargo to inflammatory areas for improved anti-inflam-
matory effects [7–9]. Exosomes released by inflammatory 
cells have strong inflammatory affinity and targeting, thus 
they can transport cargo to inflammatory cells via the 
interaction of surface-antibody and cell surface recep-
tors, resulting in a more potent anti-inflammatory impact 
[9].

Exosome biogenesis, composition and target 
modification
Exosomes are double-membraned vesicles with diam-
eters ranging from 30 to 200  nm that cells secrete into 
their environment. Exosomes transport lipids, proteins, 
messenger RNA (mRNA), microRNA (miRNA), long 
non-coding RNA (lncRNA), and DNA, allowing them 
to maintain cellular homeostasis, remove cellular trash, 
and facilitate intercellular and interorgan communication 
(Fig.  1). Exosomes circulate across all body fluids and 
carry molecular messages in an autocrine, paracrine, and 
endocrine way [10].

A variety of essential components for cell communi-
cation are included in exosomes, including about 4,563 
proteins, particularly tetraspanins (Alix, TSG101, CD9, 

Fig. 1  Exosome biogenesis, their molecular composition, and protective effect on different inflammatory diseases. The figure is generated using Bioren-
der scientific image and illustration software ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​b​i​o​r​e​n​d​e​r​.​c​o​m​/​​​​​)​​​​
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CD63, CD81, and CD82), which control cell adhesion 
and fusion [11]. Additional proteins include different 
GTPases involved in intracellular transport and fusion, 
Rab proteins (Rab11, Rab27a, Rab27b), and heat shock 
proteins (HSP70, HSP90) [12]. Additionally, they have 
194 known lipids that are essential to the exosomal struc-
ture, such as phosphatidylcholines, phosphatidylserines, 
and sphingolipids [13]. Exosomes contain DNA, includ-
ing mitochondrial DNA, 1,639 mRNAs, and 764 miRNAs 
[14–16]. Certain miRNAs, such as miR-1 and miR-21, are 
associated with hematopoiesis and carcinogenesis [15]. 
Membrane proteins like CD55 and CD59 help to stabi-
lize exosomes outside of cells by inhibiting the comple-
ment system [17]. There are two ways that exosomes are 
secreted: constitutive release through the Trans-Golgi 
network and pathogen-inducible release [18], which is 
controlled by Rab proteins (Rab27a, Rab27b, Rab35 & 
Rab11) [19] and impacted by variables like as pH and 
potassium levels [17, 20]. Through processes like phago-
cytosis and endocytosis, exosomes can fuse with destina-
tion cells after being released, delivering their cargo and 
producing biological consequences [21–23].

Exosomes’ inherent characteristics offer them cer-
tain advantages in target cell absorption as compared to 
conventional nanomedicine delivery methods. However, 
additional changes are required to enhance exosomes’ 
capacity to target disease sites [24]. It is commonly recog-
nized that the most advanced targeted modification tech-
nique is genetic engineering, which aims to fuse ligands 
with distinctive functionalities to a wide variety of trans-
membrane proteins on the surface of exosomes, includ-
ing CD9, CD63, and Lamp2b. Plasmids or viruses that 
encode fusion ligands for transmembrane proteins can 
be used to genetically modify parental cells [25]. HSTP1 
and the membrane protein Lamp2b efficiently increased 
HSC-T6 cells’ absorption of exosomes [26]. Exosome 
direct engineering provides a regulated and effective 
method of alteration [27]. Small peptides, proteins, and 
other specific molecules can be attached to the surface of 
exosomes via physical and chemical techniques, improv-
ing their usefulness without compromising their integ-
rity [28]. By employing physical surface modification to 
momentarily break the lipid structure, physical altera-
tions enable exosomes to subsequently revert to their 
original state [29]. Mild reactions are used in chemical 
modifications to bind suitable molecules covalently or 
non-covalently without changing size [25, 30]. Target 
cells absorb exosomes by membrane fusion, receptor-
ligand interactions, and mostly endocytosis [31]. Fluores-
cent probes and laser confocal microscopy can be used 
to visualize exosome uptake and flow cytometry can be 
used to analyze the results [32]. Exosomes in living cells 
may be tracked in detail thanks to sophisticated methods 
like single-molecule localization microscopy (SMLM) 

[33]. Exosome distribution can also be tracked in vivo 
using other imaging techniques such as bioluminescence, 
nuclear imaging, CT, and MRI [34–36].

Exosome therapy has more benefits than stem cell-
based therapy, such as preventing immunological reac-
tions, preventing tumorigenicity, being stable and suited 
for long-term preservation, and promoting better signal-
ing in intercellular communication, among other benefits 
[3, 37, 38].

Different cell-derived exosomes and their function
Several studies demonstrated that therapeutic agents 
known as mesenchymal stem cells (MSCs) are being 
used to target the pro-inflammatory cytokines [39, 40]. 
In any case, the utilization of MSCs as therapeutics has 
a few downsides including potential cancer develop-
ment, non-specific differentiation, unwanted immune 
responses, difficulty of quality control, and short half-life 
before administration [41]. MSCs are intriguing alterna-
tive agents for the treatment of inflammatory diseases 
due to their immunomodulatory function. Several clini-
cal trials on MSC-based products are currently being 
conducted [42]. Exosomes released by macrophages can 
transmit miRNA from the host cell to a particular target 
cell, facilitating tumor invasion [43] proving exosomes a 
promise nanocarriers for chemotherapeutic medicines, 
neuroprotective proteins, and imaging agents, efficiently 
delivering therapies for drug-resistant malignancies, Par-
kinson’s disease, and gliomas [44].

Dendric cells-derived exosomes (Dex) are involved 
in antigen-specific immunity and tolerance [45]. Dex 
has demonstrated immunostimulatory properties and 
potential as a cancer immunotherapy vaccine, effectively 
eliciting antigen-specific immune responses, enhancing 
cytotoxic T lymphocyte activity, and inhibiting tumor 
growth, particularly in hepatocellular carcinoma (HCC) 
[46, 47]. Exosome-mediated signaling is a novel way for 
fetal and maternal communication. It can send birth sig-
nals by increasing maternal pregnancy cell inflammation. 
Amniotic epithelial-derived exosomes cause inflamma-
tion in uterine cells and restore ovarian function by deliv-
ering miRNAs that resist apoptosis [48, 49]. Exosomes 
derived from endothelial progenitor can inhibit micro-
vascular dysfunction and sepsis by delivering miR-126 
and inhibiting neointimal hyperplasia following carotid 
damage in rats [50, 51]. Exosomes from cardiac fibro-
blasts have a vital function in activating the renin-angio-
tensin system in cardiomyocytes [52]. Exosomes from 
nephron cell origin can transmit pro-inflammatory or 
pro-fibrotic signals from tubular epithelial and intersti-
tial cells, including fibroblasts and immune cells. This can 
contribute to kidney fibrosis [53].

Anti-inflammatory medications, especially biologic 
disease-modifying antirheumatic drugs (bDMARDs), 
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which stop and slow the disease process in inflamma-
tory diseases, such as TNF inhibitors and rituximab, 
raise the risk of severe infections including bacterial, 
mycobacterial, and HBV reactivation [54]. Non-steroidal 
anti-inflammatory drugs (NSAIDs) have significant con-
cerns for individuals with treatment-resistant hyperten-
sion, high cardiovascular risk, and severe chronic kidney 
disease (CKD), and need rigorous pre-treatment evalu-
ation and monitoring [55]. Furthermore, combination 
medications for inflammatory bowel disease (IBD) that 
include TNF antagonists and corticosteroids dramati-
cally increase infection risks, although monotherapy with 
immunosuppressive drugs is rather safe [56]. Steroids 
used to treat IBD might worsen risk factors for athero-
sclerotic cardiovascular disease (ASCVD), increasing the 
chance of sudden myocardial infarction and stroke, espe-
cially in women and younger patients [57].

A recent study questions the effectiveness of using exo-
somes from adipose-derived stem cells (ADSC-Exos) in 
regenerative medicine. Exosome donors with metabolic 
problems had reduced adipose stem cell number and 
therapeutic potential [58]. Despite possible challenges, 

the utilization of exosomes derived from multiple cell 
types continues to show promise in the treatment of 
inflammatory diseases. Their distinct features and capac-
ity to target specific cells make them a feasible alterna-
tive to existing immunosuppressive medicines, which are 
frequently associated with considerable risks and adverse 
effects. As research advances, better knowledge and 
development of exosome-derived therapies may lead to 
safer and more effective therapeutic choices for control-
ling chronic inflammatory disorders, ultimately enhanc-
ing patient outcomes and quality of life.

Characterization techniques for exosomes in 
biomedical therapies
Exosomes are characterized by their physical, chemi-
cal, functional, structural, and biological properties, for 
critical biomedical therapies such as enzyme replacement 
therapy (ERT). Robust characterization methods are 
essential to ensure consistency in composition, structure, 
and functionality (Fig. 2). Previously, the morphology of 
exosomes was often described as cup-shaped but now 
the gold standards for morphological characterization 

Fig. 2  Different techniques for characterization of exosomes before therapeutic applications. The figure was generated using Biorender scientific image 
and illustration software (https://www.biorender.com/)
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are Electron Microscopic Technologies [59]. Visualizing 
exosome structure is crucial using transmission electron 
microscopy (TEM) and Cryo-TEM, although sample 
preparation can influence results [60, 61]. Scanning elec-
tron microscopy (SEM) aided backscattered electron 
detection and revealed surface morphology and features 
[62]. Nanoparticle tracking analysis (NTA) and Flow 
Cytometry measure particle diameter through light scat-
tering and Brownian motion, while dynamic light scat-
tering (DLS) assesses particle size distribution, despite 
challenges with heterogeneous particle size [63–65]. 
Atomic force microscopy (AFM) provides high-resolu-
tion three-dimensional imaging and biophysical insight 
[66].

The characterization of exosomes using western blot 
and qPCR is critical for understanding their molecular 
composition and functional roles [67, 68]. Western blot 
provides insight into exosomal protein content, while 
qPCR allows for the sensitive and specific quantification 
of RNA species, especially miRNAs. A positive signal for 
tetraspanins (CD63, CD9, CD81) and ESCRT compo-
nents (TSG101, Alix) confirms the presence of exosomes 
[69, 70]. The absence of negative markers such as cal-
nexin indicates that the exosome preparation is free from 
cellular contaminants. Quantitative PCR (qPCR) is a piv-
otal method for characterizing exosomes, particularly in 
analyzing their RNA content, such as microRNAs (miR-
NAs) [71]. Analyzing the proteome content of exosomes 
is as challenging as determining RNA content. Exosomes 
have yielded a variety of RNA types, including mRNA, 
miRNA, and others. For RNA extraction, commercial 
kits are frequently utilized, and the main technique for 
profiling is reverse-transcription quantitative polymerase 
chain reaction (RT-qPCR) [16, 72]. In order to amplify 
DNA and analyze its length and nucleotide sequences, 
this procedure transforms extracted RNA into cDNA 
[73]. RNA sequencing (RNA-seq) is an effective tool for 
characterizing exosomes, providing insights into their 
RNA content, including mRNA, miRNA, and non-cod-
ing RNAs. This approach enhances our understanding 
of exosome biogenesis, their role in disease mechanisms, 
and their potential as diagnostic or therapeutic agents in 
various conditions [74].

The main methods for determining the protein compo-
sition of exosomes are two-dimensional gel electropho-
resis (2DGE) and liquid chromatography combined with 
tandem mass spectrometry (LC-MS/MS) [75, 76]. Pro-
teins are removed and produced as peptide fragments, 
which are more suited for LC-MS analysis, following the 
purification of extracellular vesicles (EVs). High-pressure 
liquid chromatography is then used to isolate these pep-
tides before they are subjected to tandem mass spec-
trometry (MS/MS) [77]. Ions are created and segregated 
based on the mass-to-charge ratio in the first stage, and 

the chosen ions are broken up for additional examination 
in the second stage [77]. This allows the identification 
and quantification of thousands of proteins from complex 
samples by comparing the resultant data to a database.

Fluorescence correlation microscopy (FCM) and colo-
rimetric enable specific identification and quantification 
of exosomes [78], while enzyme-linked immunosorbent 
assay (ELISA) measures exosomal proteins [79]. Surface 
plasmon resonance (SPR) and nuclear magnetic reso-
nance (NMR) techniques further enhance characteriza-
tion by analyzing biochemical and structural data [80, 
81],. The SIMOA approach allows for the direct detec-
tion of plasma EVs [82], miR-141, cortisol, and IL-6, a 
3-plex created by combining direct nucleic acid hybrid-
ization with competitive and sandwich immunoassays 
[83]. Using Glypican-1 (GPC-1) [84] for detection over a 
dynamic range of 5 orders of magnitude, with limits as 
low as 10 exosomes per microliter.

Therapeutic impacts of exosomes in inflammatory 
diseases and biomedical therapies
Exosome-based therapies in inflammatory bowel disease 
(IBD)
IBD, encompassing Crohn’s disease (CD) and ulcer-
ative colitis (UC), is a chronic immunological condition 
affecting the gastrointestinal tract caused by a dysregu-
lated response to intestinal microbiota in genetically sus-
ceptible individuals [85]. The deregulation of mucosal 
immunity plays a pivotal role in the development and 
progression of IBD. Diagnosis is based on clinical symp-
toms, biochemical indicators, as well as imaging and his-
tological investigations [86, 87]. This section examines 
the possibility of exosome-based therapeutics with an 
emphasis on therapeutic efficacy and biomarker identifi-
cation in the management of IBD.

Biomarker identification using exosome
There is no specific biomarker that distinguishes between 
UC and CD individuals in IBD. Notable biomarkers 
such as ASCA, pANCA, CRP, lactoferrin, and calpro-
tectin [88]. Alongside the saliva exosome biomarker 
PSMA7, the biomarkers α-amylase and calprotectin 
are also present in patients with IBD [89, 90]. Addition-
ally, IBD patients exhibit elevated levels of endogenous 
ANXA1-containing EVs, which might act as a biomarker 
for intestinal mucosa inflammation [91]. Exosomes from 
intestinal luminal aspirates in IBD patients could also 
show promise as fecal biomarkers for detecting mucosal 
inflammation [92]. Exosomal RNA NEAT1 has been pro-
posed as another potential biomarker for IBD pathogen-
esis [93]. Identifying precise and sensitive biomarkers for 
IBD could significantly enhance diagnosis, treatment, and 
prognosis, and pave the way for innovative medicines. 
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Therefore, continued research into these markers and 
their pathways is essential [94].

Therapeutic efficacy of exosome-derived treatments
Exosomes derived from murine colon cancer cells CT26 
(CT26-Exos) were isolated by using ultracentrifugation, 
characterized via proteome analysis, and evaluated in 
DSS induced IBD mouse model. Compared to the control 
and 293 T exosome therapies, CT26-Exos treatment sig-
nificantly reduced disease activity index (DAI) and colon 
shortening rate while histological examination showed 
decreased inflammatory infiltration and increased epi-
thelial goblet cells. Mechanistically, CT26-Exos specifi-
cally suppressed Th17 cell differentiation in the colon and 
inhibited pro-inflammatory cytokine release by colonic 
DCs [95]. Intravenous administering human adipose 
mesenchymal stem cell-derived exosomes (hADSC-Exos) 
to DSS-induced IBD animals improves functional recov-
ery, reduces inflammation, decreases intestinal cell apop-
tosis, promotes epithelial regeneration, and preserves 
intestinal barrier integrity. Furthermore, co-cultured 
injured colon organoids with hADSC-Exos and TNF-α 
demonstrate anti-inflammatory effects and enhanced 
proliferation of Lgr5+ ISCs and epithelial cells. These 
findings suggested hADSC-Exos as a potential treatment 
for IBD and highlighted a cell-free therapeutic strategy 
for the disease [96].

Similar to human umbilical cord mesenchymal stem 
cells (hucMSCs), exosomes labeled with indocyanine 
green (ICG) were injected into IBD animals, and within 
12  h, they targeted colon tissues. By upregulating IL-10 
expression and downregulating TNF-α, IL-1β, IL-6, 
iNOS, and IL-7 gene expressions in spleen and colon tis-
sues, the exosomes considerably reduced the severity of 
IBD. Exosome therapy also reduced macrophage infiltra-
tion in colon tissues of IBD animals. In vitro coculture of 
mouse enterocele macrophages with exosomes decreased 
iNOS and IL-7 expression, suggesting a potential mech-
anism for exosome-mediated inflammation control in 
IBD. Moreover, elevated IL-7 expression in colon tissues 
of colitis patients highlights a promising target for exo-
some-based IBD therapies [97]. Oral administration of 
colostrum-derived exosomes (Col-Exos) alleviates colitis 
symptoms such as weight loss, gastrointestinal bleeding, 
and persistent diarrhea by regulating intestinal inflamma-
tion. Bovine colostrum-derived exosomes exhibit excep-
tional stability and show significant potential as natural 
therapies for colitis recovery [98]. Exosomes derived from 
murine bone marrow-derived macrophages (BMDMs), 
cultured in the presence or absence of lipopolysaccha-
ride (LPS) were analyzed via miRNA sequencing in a 
DSS-induced IBD animal model. MiR-223 emerged as a 
key miRNA deteriorating intestinal barrier dysfunction; 
target prediction and time-dependent mRNA analysis 

identified Tmigd1 as a critical barrier-related factor [99] 
(Fig. 3).

Current limitation and future direction
However, the use of exosomes in therapeutic applications 
has been limited due to the hazards of aggressive behav-
ior and ambiguity regarding their biological function in 
other organs [100]. One notable limitation is the prob-
lem of purifying and characterizing exosomes, which is 
critical for their therapeutic value [101]. Infected cells 
can produce exosomes, which contain biomolecules that 
influence the innate immune responses of surrounding 
cells [102]. Overcoming these constraints necessitates a 
comprehensive research effort to develop reliable meth-
ods for isolating and characterizing exosomes, as well as 
a complete investigation of their biological activity and 
safety profile to ensure their safe and effective therapeu-
tic application.

Exosome-based therapies in acute liver injury and fibrosis
Hepatic fibrosis, caused by chronic liver damage, results 
in excessive collagen and extracellular matrix (ECM) 
buildup. Hepatitis B and C, alcoholic liver disease, and 
nonalcoholic steatohepatitis (NASH) all contribute to 
fibrosis [103]. Hepatic fibrosis was once believed to be 
irreversible [104]. TGF-β has a crucial role in chronic 
liver disease, influencing its development from injury to 
fibrosis [105]. TGF-β activates growth factors and cyto-
kines implicated in fibrogenesis, including PDGF, CCN2, 
ILs (IL-1α, IL-β, IL-6), and TNF-α [106, 107]. The acti-
vation of myofibroblasts from fibroblasts, which include 
hepatic stellate cells (HSCs), portal fibroblasts (PFs), and 
fibrocytes, is an important event in liver fibrosis. Fibro-
blasts either stay dormant or activate into myofibroblasts 
depending on the ECM composition [108].

Biomarker identification by using exosome
Accurately determining the degree and progression of 
liver fibrosis is critical for guiding clinical decisions on 
patient care. The “gold standard” in liver biopsy though 
effective, is expensive, invasive, and carries risk. Exo-
some components offer a promising alternative novel 
biomarker for the identification and evaluation of 
molecular markers associated with liver fibrosis, acting 
as a dynamic reflection of the core pathologic disease 
in patients. Moreover, exosomal components can be 
detected in circulating plasma and serum with stability 
owing to their resistance to proteinase-dependent deg-
radation, which makes them ideal biomarkers for various 
therapeutic applications [109, 110]. Studies have linked 
elevated amounts of CD10 protein in the urine exosomes 
of glycine N-methyltransferase mutant mice to steatosis, 
fibrosis, and hepatocellular injury [111]. Furthermore, the 
degree of fibrosis and inflammation has been correlated 



Page 7 of 19Saleem et al. Stem Cell Research & Therapy          (2024) 15:477 

with CD81-enriched serum exosomes in patients with 
chronic HCV infection [112]. Decreased levels of miR-
NAs (miR-34c, miR-151-3p, miR-483-5p, or miR-532-5p) 
in serum exosomes from CCl4-induced mice or human 
patients with F3/4 fibrosis suggest their potential as an 
indicator of disease severity [113].

Therapeutic efficacy of exosome-derived treatments
Human umbilical cord-derived MSC-Exos have been 
shown to modify macrophage phenotypes, regulating 
the inflammatory milieu in the liver and facilitating tis-
sue repair. Delivery of miR-148a, which inhibits the 
STAT3 pathway and targets Kruppel-like factor 6 (KLF6), 
resulted in this modulation, which suppresses pro-
inflammatory macrophages and promotes anti-inflam-
matory macrophages. These effects demonstrate the 
potential of MSC-Exos in treating liver fibrosis by con-
trolling inflammatory responses within the liver and 
orchestrating macrophage functions [114]. Adipose tis-
sue stem cells (ADSCs) derived exosomes inhibited pro-
fibrogenic indicators and the activation of hepatic stellate 

cells (HSCs). Glutamine synthetase (Glul) was upregu-
lated in hepatocytes during ADSC-Exos therapy, and the 
metabolic pathways for glutamine and ammonia were 
altered, according to an RNA-seq study. Glul inhibition 
reduced the therapeutic effects of ADSC-Exos, empha-
sizing the function of this compound in metabolic repro-
gramming to relieve hepatic fibrosis. According to Wu et 
al. results, targeting HSC activation and metabolic path-
ways with ADSC-Exos is a potentially effective therapeu-
tic approach for treating hepatic fibrosis [115].

TNF-α pretreatment of umbilical cord mesenchy-
mal stem cell-derived exosomes showed strong anti-
inflammatory effects in an acute liver failure (ALF) 
animal model brought on by LPS and D-GalN after it 
was enriched and examined for size and surface mark-
ers. Inhibiting the activation of NLRP3 and other 
inflammation-associated proteins, T-Exos therapy sub-
stantially decreased serum levels of ALT, AST, and pro-
inflammatory cytokines [116]. Through the reduction of 
collagen buildup, enhancement of liver function, sup-
pression of inflammation, and promotion of hepatocyte 

Fig. 3  (1) Therapeutic efficacy of exosomes derived from different cells. (2) Exosome biogenesis extracted from donor cells (3) Delivery of exosomes to 
the diseased area according to their therapeutic efficacy. The figure was generated using Biorender scientific image and illustration software (https://
www.biorender.com/)
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regeneration, hBM-MSCs-Exos therapy considerably 
reduced hepatic fibrosis. Mechanistically, in both hepatic 
stellate cells (HSCs) and liver fibrosis tissue, hBM-MSCs-
Exos suppressed the production of important elements 
of the Wnt/β-catenin signaling pathway (PPARγ, Wnt3a, 
Wnt10b, β-catenin, WISP1, Cyclin D1), as well as α-SMA 
and Collagen I [117]. Exosomes derived from NK-92MI 
cells (NK-Exo) were extracted and identified using 
transmission electron microscopy, nanoparticle track-
ing analysis, and western blotting. After that, mice with 
liver fibrosis produced by CCl4 and LX-2 cells treated 
with TGF-β1 were given NK-Exo. NK-Exo reduced CCl4-
induced liver fibrosis and decreased TGF-β1-induced 
HSC activation and proliferation. The exosome inhibitor 
GW4869 reversed this HSC-inhibitory action. Conse-
quently, NK-Exo efficiently prevents liver fibrosis brought 
on by CCl4 and HSC activation produced by TGF-β1 
[118] (Fig. 3).Rat bone-marrow-derived.

Current limitation and future direction
Many studies on chronic liver illnesses have made prog-
ress, but exosomes continue to present significant 
obstacles. The majority of present research on exosome-
based therapeutics is focused on cell and animal models, 
with clinical trials yet to be completed. Exosomes and 
microvesicles in human fluids are difficult to distinguish 
due to their similar sizes, necessitating the development 
of particular biomarkers. Further investigation into the 
molecular processes of exosome synthesis, release, and 
interaction with target cells is required for therapeutic 
use. As more researchers enter the field, the practical use 
of exosomes may soon benefit patients [119].

Exosome-based therapies in lung injury and inflammation
Acute lung inflammation is caused by an innate immune 
defense against invading microorganisms; chronic 
inflammation occurs when the response fails to eliminate 
the inflammatory trigger [120]. Acute lung injury (ALI) 
is a common clinical lung condition that can be fatal. In 
survivors, fibrotic lung healing may result in acute respi-
ratory distress syndrome (ARDS). Respiratory distress, 
hypoxemia, and non-cardiogenic pulmonary edema are 
the hallmarks of the debilitating clinical condition known 
as ARDS [121].

Therapeutic efficacy of exosome-derived treatments
Exosomes derived from macrophages, neutrophils, and 
epithelial cells in bronchoalveolar lavage fluid (BALF) 
throughout time after ALI was induced in mice using 
LPS. The main early secretors of pro-inflammatory cyto-
kines in BALF-exosomes stimulated neutrophils to gen-
erate cytokines and IL-10. Post-ALI fibrosis may have 
been exacerbated by neutrophil-derived IL-10 in BALF-
exosomes, which polarized macrophages to M2c [122]. 

Alveolar epithelial cells (AECs)-derived Exosome play a 
role in alveolar macrophage (AM) activation and sepsis-
induced ALI. By using a rat model of septic lung injury, 
Liu et al. discovered that GW4869 inhibited exosomes, 
which decreased lung harm. LPS-treated cells produced 
AEC-derived exosomes (LPS-Exos), which activated 
AMs and increased alveolar permeability and pulmo-
nary inflammation. By inducing the NF-κB pathway and 
downregulating PTEN, miR-92a-3p, which is abundant 
in LPS-Exos, stimulated AMs. These proinflammatory 
effects were lessened by inhibiting miR-92a-3p. Thus, 
exosomes produced from AECs activate AMs and cause 
inflammation through miR-92a-3p, indicating an ALI 
therapeutic target [123].

Rat bone-marrow-derived MSC exosomes outper-
formed the phosgene group in terms of respiratory per-
formance, wet-to-dry lung weight ratio, and total protein 
content in BALF. They reduced inflammatory markers 
TNF-α, IL-1β, and IL-6 while boosting IL-10. Further-
more, exosomes reduced MMP-9 and increased SP-C 
levels. Thus, MSC-derived exosomes reduce phosgene-
induced ALI by regulating inflammation, decreasing 
MMP-9, and increasing SP-C levels [124]. BMSC-derived 
exosomes suppress glycolysis in macrophages, mak-
ing them effective in treating sepsis-induced lung dam-
age. They decreased M1 polarization while promoting 
M2 polarization in MH-S cells (murine alveolar mac-
rophages) by reducing cellular glycolysis. Inhibiting 
hypoxia-inducible factor 1 (HIF-1) α resulted in the 
down-regulation of critical glycolysis proteins. In an 
LPS-induced ARDS mouse model, BMSC-derived exo-
somes decreased inflammation and lung damage while 
inhibiting LPS-induced glycolysis in lung tissue [125]. 
Macrophages absorbed ADMSC-derived exosomes, 
which reduced IL-27 release in vitro. In vivo, IL-27 dele-
tion reduced CLP-induced ALI, while ADMSC-derived 
exosomes blocked macrophage aggregation in lung tis-
sues, decreased IL-27 secretion, and decreased levels 
of IL-6, TNF-α, and IL-1β. Furthermore, ADMSC-exo-
somes reduced pulmonary edema, tissue damage, and 
vascular leakage, hence increasing survival rates. Inject-
ing recombinant IL-27 abolished the protective benefits 
of ADMSC-derived exosomes. Thus, ADMSC-derived 
exosomes reduce sepsis-induced ALI by reducing IL-27 
secretion in macrophages [126] (Fig. 3).

Current limitations and future direction
Cell-free treatment, notably with exosomes, has received 
a lot of attention for treating lung diseases. Despite 
advances, the actual mechanism of action of exosomes 
is still unknown, with recent studies focused on their 
RNA cargos but not fully comprehending other compo-
nents. Limitations include the high costs and technical 
problems of isolating and purifying exosomes, as well as 
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the requirement to immortalize stem cells for large-scale 
production, which entails hazards and complications 
[127].

Exosome-based therapies in neuroinflammation and 
traumatic brain injury
Therapies for neuroinflammatory diseases like mul-
tiple sclerosis, acute disseminated encephalomyeli-
tis, viral encephalitis, and bacterial meningitis, as well 
as other conditions of the central nervous system that 
have an inflammatory component (such as schizophre-
nia, migraine headaches, and neurodegenerative disor-
ders like Parkinson’s and Alzheimer’s disease), are being 
developed through extensive translational research [128]. 
Exosomes released by several neural cell types perform 
crucial roles in both CNS development and adult brain 
maintenance, such as synaptic activity control and regen-
eration after damage [129].

Exosomal biomarker in neuroinflammatory disorders
Neuroinflammatory disorders are frequently misdi-
agnosed due to unknown pathophysiology and a lack 
of early diagnostic markers [38, 130]. Exosome identi-
fication in Parkinson’s and Alzheimer’s disorders can 
help with early diagnosis and tracking [131]. Exosomes 
from cerebrospinal fluid (CSF) can be analyzed to help 
researchers understand illness development [132, 133].

Exosomes from neuroinflammatory disease samples 
are analyzed for protein markers α-syn and tau via mass 
spectrometry and immunoassay, as well as dysregulated 
exosomal RNAs such as miR-132 using RT-PCR. MiR-
132, miR-125b-5p and miR-132-3p were increased and 
downregulated in AD brain tissues and EVs, respectively, 
which delivers neuroprotection in tauopathies (disorders 
characterized by deposition of abnormal tau protein in 
the brain) [134–136], is downregulated in plasma-derived 
exosomes from Alzheimer’s patients [137] CSF vol-
ume has limitations, and nanoparticles identical to exo-
somes contaminate samples and are unrecognizable by 
nanoparticle tracking analysis (NTA) [138, 139]. A study 
published in the European Journal of Neurology suggests 
that the proportion of α-synuclein in brain-derived exo-
somes in the blood can serve as a biomarker for early-
stage Parkinson’s disease (PD) [140].

Stuendl et al. created a high-sensitivity ELISA utilizing 
0.5 mL of CSF to detect exosomal α-syn via electroche-
miluminescence [141]. Vandendriessche et al. employed 
the ExoView R100 platform to discriminate exosomes 
from other CSF particles in an Alzheimer’s animal model, 
detecting CD9+/CD81 + extracellular vesicles and cho-
roid plexus-specific CSF EVs using an anti-transthyretin 
antibody [142]. ExoView syndicates immunodetection 
and imaging in a small sample volume, and it shows 
potential for characterizing CSF-derived exosomes [139].

Therapeutic efficacy of exosome-derived treatments
hWJ-MSC (Human Wharton’s jelly mesenchymal stem 
cells)-derived Exosome inhibited LPS-induced inflam-
mation-related gene expression and pro-inflammatory 
cytokine production in BV-2 microglia and primary 
mixed glial cells. They influenced Toll-like receptor 4 
signaling in BV-2 microglia, preventing NFκB inhibi-
tor degradation and mitogen-activated protein kinase 
activation after LPS stimulation. hWJ-MSC-derived 
exosome delivered intranasal stretch to the brain and 
concentrated microglia-mediated neuroinflammation 
in rat pups which caused brain damage, indicating their 
promise as a treatment for perinatal brain injury [143, 
144]. Astrocyte-derived exosomes isolated from cultured 
astrocytes after exposure to brain extracts, facilitated the 
transition of microglia from the M1 to M2 phenotype, 
with miR-148a-3p playing critical role. Exosomes con-
taining miR-873a-5p reduced LPS-induced microglial 
M1 transition and inflammation by lowering ERK and 
NF-κB p65 activation, as confirmed in vitro and in vivo 
studies [145]. Similarly, miR-148a-3p controlled the phe-
notypic shift and suppressed the inflammatory response 
in microglia. In animal models of TBI, both miRNAs 
inhibited the nuclear factor κB pathway, improving neu-
rological results and reducing brain injury [146]. In sum-
mary, these findings highlight the therapeutic potential 
of astrocyte-derived exosomal miR-873a-5p and miR-
148a-3p in modulating the microglial phenotype and 
treating traumatic brain injury (TBI). Both miRNAs have 
been shown to reduce inflammation and improve neuro-
logical outcomes by inhibiting key pathways involved in 
microglial activation and brain injury.

Bone marrow MSCs-derived exosomes (BMSC-
Exos) decrease proinflammatory cytokines and enhance 
anti-inflammatory cytokines while also promoting the 
polarization of activated BV2 microglia to an anti-inflam-
matory phenotype. In mice models of traumatic brain 
injury (TBI), BMSC-Exos reduced cell death in corti-
cal tissue, suppressed neuroinflammation, and induced 
microglial anti-inflammatory phenotypes. MicroRNA 
sequencing identified miR-181b as an important role in 
this process. Overexpression of miR-181b in TBI mice 
models through lentiviral transfection reduced apoptosis 
and neuroinflammation while fostering an anti-inflam-
matory microglial phenotype through the interleukin 
10/STAT3 pathway [147]. The hADSC-Exos had similar 
effects to hADSC treatment in terms of functional recov-
ery, neuroinflammation suppression, neuronal apoptosis 
reduction, and neurogenesis enhancement. In vivo, imag-
ing revealed the accumulation of DiR-labeled hADSC-
Exos in the lesion area, and immunofluorescent staining 
confirmed microglia/macrophage uptake in brain slices 
and primary mixed neural cell cultures. In a lipopoly-
saccharide-induced inflammatory model, hADSC-Exos 
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suppressed microglia/macrophage activation by regulat-
ing P38 MAPK and NF-κB signaling pathways. hADSC-
Exo’s ability to target and enter microglia/macrophages, 
decreases their activity, thereby reducing inflammation 
and enhancing neurological recovery [148].

Neural stem cell- and mesenchymal stem cell-derived 
exosomes can promote axonal outgrowth and neural 
repair in PC12 cells, influence inflammatory responses, 
and cause microglial polarization towards the M2 phe-
notype. Furthermore, a nanofibrous scaffold loaded with 
these dual stem cell-derived exosomes (Duo-Exo@NF) 
enhanced functional recovery in a mouse traumatic brain 
injury model by lowering microglia and reactive astro-
cytes and increasing levels of growth-related protein-43 
and doublecortin [149] (Fig. 3).

Current limitation and future direction
More study is needed to improve their separation and 
characterization procedures, as well as to clarify their 
mechanisms of action, although exosomes have great 
promise as a novel therapy option for TBI and PCS 
[150]. Until now, Exosomal miRNA delivery has received 
minimal attention for its therapeutic potential in neuro-
logical illnesses [151, 152]. However, before conducting 
large-scale clinical research, isolation techniques must be 
developed and enhanced, along with a complete under-
standing of the extracellular vesicle biology aspects linked 
with the neurological system, to improve their sensitivity 
and specificity in the field of TBI application [153].

Exosome-based therapies in myocardial infarction
Myocardial infarction (MI), one of the major causes 
of death globally, occurs when the coronary artery 
is stopped by rupture or erosion of an atheroscle-
rotic plaque, resulting in cell death in the ischemia and 
hypoxic region [154]. Even though prompt interventions 
improve MI patients’ survival rates, permanent cardio-
myocyte loss and unfavorable left ventricular remodeling 
continue to cause heart failure or sudden cardiac death in 
many survivors [155, 156]. Therefore, additional effective 
therapeutic strategies are needed to improve the progno-
sis of patients with MI.

Exosomal biomarkers
Researchers have discovered particular exosomal pro-
teins and miRNAs linked to particular acute myocardial 
Infection (AMI) by examining the molecular pathways 
of MI progression [157]. For instance, patients with AMI 
had greater plasma levels of miRNA-1, miRNA-133a, 
miRNA-208a and miRNA-499 than do people without 
AMI demonstrated to be a more accurate and precise 
biomarker for AMI than traditional cardiac troponin test 
(cTn) [158]. Exosomes generated from platelets that carry 
miRNA-21, miRNA-191, miRNA-223, miRNA-320, and 

miRNA-339 have been connected to platelet aggregation, 
which results in the development of atherosclerosis [159]. 
Cheng et al. created a microfluidic device that detects 
proangiogenic and cardioprotective miR-21 and miR-126 
from serum samples. This system combines exosome iso-
lation and microRNA extraction, with antibody-coated 
magnetic beads and field effect transistors (FETs) for 
detection. By targeting PTEN and FoxO1 and activating 
the AKT/mTOR pathway, miR-486 protects against car-
diac I/R injury and myocardial apoptosis and mediates 
the positive effect of exercise on myocardial protection 
[160]. The FET sensors are highly sensitive, detecting 
miRNAs at femtomolar concentrations using a 5-hour 
procedure. Although still in development, these devices 
have potential for exosomal investigations and CVD 
diagnosis [158, 161].

Therapeutic efficacy of exosome-derived treatments
M2 macrophage-derived exosomes (M2-Exos) dramati-
cally improved heart function, increased angiogenesis, 
and decreased infarct size both in vivo and in vitro. The 
increased abundance of miR-132-3p in M2-Exos was 
critical to these effects, as it reduced THBS1 expres-
sion by binding to its 3’UTR. M2-exos’ proangiogenic 
and cardioprotective activities were dependent on miR-
132-3p regulation. M2-Exos promotes heart healing 
by delivering miR-132-3p to endothelial cells, offering 
fresh insights into the mechanics of intercellular com-
munication in post-infarction angiogenesis [162] ADSC-
Exos dramatically increased left ventricular ejection 
fraction while decreasing MI-induced cardiac fibrosis 
and it reduced cardiomyocyte apoptosis while increas-
ing angiogenesis. ADSC-Exos stimulates microvascular 
endothelial cell proliferation and migration via miRNA-
205, which enhances angiogenesis and decreases cardio-
myocyte death. These findings indicate that ADSC-Exos 
can reduce cardiac injury and improve cardiac function 
recovery [163].

Induced pluripotent stem cell-derived cardiomyo-
cytes-derived Exosome (iCM-Exos), like cell transplanta-
tion, enhances cardiomyocyte survival under hypoxia as 
well as cardiac function in a mouse myocardial infarc-
tion model. They cause transcriptional alterations in 
the peri-infarct area, namely altering mTOR signaling, 
and increasing autophagy and autophagic flux. Thus, 
iCM-Ex might be a viable bioactive alternative to live 
cell injections for ischemic myocardial healing [164]. 
Mouse embryonic stem cell-derived exosomes (mES Ex) 
improved the survival, proliferation, and cardiac dif-
ferentiation of cardiac progenitor cells (CPCs), result-
ing in an increase in c-kit + CPCs and the production of 
new cardiomyocytes in the infarcted heart. Analysis of 
miRNA content in these exosomes indicated a consid-
erable presence of the miR-290-295 cluster, particularly 
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miR-294, which was associated with CPC survival, cell 
cycle progression, and proliferation [165]. BMSC-Exos 
under hypoxia-reoxygenation (H/R) conditions reduced 
apoptosis while increasing H9c2 cell proliferation, myo-
cardial damage, and motility. Molecular investigations 
revealed that apoptotic protease activating factor-1 
expression dropped whereas autophagy-related protein 
13 expression increased. The use of an autophagy inhibi-
tor reduced the positive effects of exosomes, implying 
that MSC exosomes prevent myocardial infarction devel-
opment by controlling autophagy [166].

Hybridization with platelet membranes increases exo-
some absorption by endothelial cells and cardiomyocytes 
by macropinocytosis. In vivo investigations showed that 
hybrid exosomes can target the heart in a mouse myo-
cardial infarction mode, and demonstrated more thera-
peutic efficacy than non-modified exosomes, offering 
proof-of-concept evidence for improving exosome bind-
ing and accumulation in wounded tissues [167] (Fig. 3).

Current limitation and future direction
However, there are significant limits and hurdles to 
using exosomes in the setting of myocardial infarction. 
Despite their numerous benefits, exosomes’ biologi-
cal activities, safety, and therapeutic specificity remain 
unknown [168]. Furthermore, the variability of exosome 
populations and the complexity of their cargo, which 
can comprise proteins, lipids, and nucleic acids, make 
developing exosome-based therapeutics difficult [169]. 
Another restriction is the ability to efficiently transfer 
exosomes to the target tissue because their tiny size and 
fragile nature might make it difficult to transport and 
keep at the site of damage [169].

Exosome-based therapies in acute kidney injury
Acute kidney injury (AKI) is caused by numerous factors 
such as hypoxia, mechanical trauma, surgery, drugs, and 
inflammation [170]. AKI also lowers the glomerular fil-
tration rate and causes blood creatinine, urea nitrogen, 
and other metabolites to accumulate, which is indica-
tive of a rapid decline in renal function [171, 172]. The 
syndrome’s corresponding clinical manifestations, which 
constitute a common clinical emergency [173, 174], are 
also caused by AKI. In the majority of instances, com-
plete recovery is not attained, despite the renal tissue’s 
inherent capacity to heal following damage [175]. As a 
result, several treatment modalities for renal regenera-
tion are under consideration.

Exosomal biomarkers
miRNAs have recently shown promise as biomarker can-
didates in AKI. In intercellular communication, miRNAs 
have a function in controlling gene expression. Because 
they bind to certain proteins like Ago2 or are carried by 

exosomes [176, 177], these molecules can act in organs 
that are far from their place of origin. This allows for the 
stable maintenance of miRNAs in bodily fluids. In the 
field of oncology, miRNAs are already regarded as prom-
ising biomarkers for diagnostic and therapeutic targets 
due to their stability and accessibility [178]. Detection on 
clinical serum samples showed that blood urea nitrogen 
(BUN), serum creatinine (SCr), and TLR9 were elevated 
and miR-342-5p level was suppressed in the serum of 
patients with S-AKI [179]. According to Saikumar et 
al., miRNA-21 and − 155 may be translational biomark-
ers for the identification of AKI and may be essential for 
the pathophysiology of kidney damage and the process 
of tissue repair [180]. Additionally, miR-29c is known to 
decrease renal interstitial fibrosis by activating HIF-α and 
the PI3K-PKB pathway [181, 182], while miR-205 and 
miR-19 affect renal damage by controlling PTEN (Phos-
phatase and TENsin homolog deleted on chromosome 
10) [183–185].

Therapeutic efficacy of exosome-derived treatments
Mesenchymal stem cells (MSCs) were extracted from 
a fresh human umbilical cord and characterized using 
2D (2D-Exos) and 3D culture. 3D-Exos outperformed 
2D-Exos in terms of renoprotective efficacy in treat-
ing cisplatin-induced AKI, and they provide an efficient 
method for the continuous generation of MSC-Exos, 
which has greater therapeutic potential for cisplatin-
induced AKI [186]. Sepsis-induced acute kidney injury 
(S-AKI) is attenuated by exosomes released by fibroblas-
tic reticular cells (FRCs), among which CD5L is the most 
prevalent protein. Through the selective binding of kid-
ney tubular cells by modified CD5L-enriched FRC-Exos, 
NLRP3 (nucleotide-binding oligomerization domain, 
Leucine-rich Repeat, and Pyrin domain 3) inflamma-
some activation was inhibited by PINK-Parkin-mediated 
mitophagy, increasing kidney function and survival. 
FRC-Exos shows significant promise as a drug delivery 
vehicle with highly targeted therapeutic potential for 
S-AKI [187].

Human Amnion Epithelial Cells (hAECs)-derived exo-
somes showed kidney protective properties that were 
comparable to those of their parent cells. In vivo, exo-
somes prevented endothelial cell hyperactivation while 
in vitro, they preserved the adhesion connection between 
endothelial cells. The mechanism by which exosomes 
inhibited the activation of the proinflammatory nuclear 
factor kappa B (NF-κB) pathway in the kidneys of CLP 
mice and Primary Human Umbilical Vein Endothelial 
Cells (HUVECs) treated with LPS [188]. In the S-AKI 
model, exosomes derived from bone marrow mesen-
chymal stem cells (BMSCs-Exos) reduce inflammatory 
responses and apoptosis while also altering proteins 
linked to autophagy and the autophagic pathway. This 
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suggests that BMSCs-Exos reduces S-AKI by regulating 
autophagy through the AMPK(adenosine monophos-
phate-activated protein kinase) /mTOR (mechanistic 
target of rapamycin) pathway [189]. During ischemia-
reperfusion and hypoxia-reoxygenation injuries in rats, 
Human urine stem cells-derived exosomes (USC-Exos) 
can complement circ DENND4C, which is deficient in 
HK-2 cells (An immortalized proximal tubule epithelial 
cell line from normal adult human kidney). Through the 
DENND4C/miR 138-5p/FOXO3a pathway, it promotes 
cell proliferation and prevents NLRP3 activation to lessen 
pyroptosis and lower AKI, perhaps offering a new target 
for the clinical therapy of AKI [190].

Current limitation and future direction
Large-scale production, clinical application safety and 
efficacy study, and BMSCs-Exo designed to optimize 
cellular absorption and the biological information they 
provide are the specifics [189]. For the best therapeutic 
outcomes, it is still need to create and implement cus-
tomized protocols about the ideal stimulation param-
eters. Second, it would be very beneficial for future 
research to determine the main sources of releasing 
plasma exosomes with nephroprotective effects gener-
ated by mVNS, given the variety of exosome sources in 
circulation [191].

In this review, we discussed the results of studies about 
different cell-derived exosomes used for the therapy of 
inflammatory diseases (Table 1).

Limitation and future prospective
Despite exosomes’ potential as a therapeutic alternative, 
there are substantial obstacles and limitations to their 
usage, including the need for dependable methods for 
collecting and characterizing exosomes, as well as a lack 
of understanding of their biological activity and risk pro-
file. Further study is required to fully explore exosomes’ 
promise as a therapeutic therapy for inflammatory dis-
eases. In quantitative terms, batch-to-batch manufac-
turing, coupled with detection accuracy, the functional 
research of the engineered delivery system might be quite 
complex. Additionally, before clinical trials, the donor 
of MSCs should be investigated for infectious or genetic 
diseases. Further studies are needed to explore the exact 
signaling pathways and exact dosage of exosomes for 
clinical use.

Size and density are used in a variety of microfluidics 
devices (filtration, on-chip centrifugation). Antibodies 
are not required for these devices; yet, their primary chal-
lenges are clogging and size overlap. Purchasable exo-
some specimens might not match the precise exosome 
kinds that were requested, leading to inaccurate catego-
rization. Understanding the characteristics and functions 

of exosomes may be hampered by a lack of thorough ana-
lytical characterization [192].

Proteomics and live-cell imaging have demonstrated 
that exosome membrane proteins are essential for infor-
mation transfer via exosomes. Identifying disease-spe-
cific exosome membrane proteins and learning more 
about their physiological and pathological roles in vari-
ous conditions has significant implications for future 
clinical applications, particularly in diagnostics and treat-
ments [193].

However, present exosome-cargo-loading techniques 
are insufficient to provide the loading efficiency needed 
for clinical applications. Transfection methods should 
help to simplify the procedure and lower the cost of 
mass production. The present physical therapy, such 
as electroporation, is the most effective way for load-
ing nucleic acids like siRNA or miRNA into exosomes. 
However, because this process can cause the aggregation 
and destruction of charged nucleic acids, as well as alter 
the characteristics of exosomes, novel techniques are 
required [194]. Poor yields Exosomes are another signifi-
cant barrier to therapeutic implementation. The majority 
of preclinical experimental research uses cell culture to 
obtain exosomes. Exosomal protein production is limited 
to less than 1  µg per ml of culture, necessitating large-
scale cell culture for clinical studies [195, 196].

Exosomes have emerged as an appealing alternative to 
cell treatment because of their flexibility, which allows 
scientists to change their composition to produce the 
desired exosomes containing specific medicines, RNA, or 
proteins. Recently, DNA-containing exosomes have been 
shown to increase T cell priming and infiltration, result-
ing in a tumor-specific immunological response [197, 
198]. Advances in nanomaterials technology have worked 
with the improvement of nanocomposite biomimetic 
frameworks and nano hydrogel scaffolds that coordinate 
the positive properties of natural and synthetic materials, 
possibly opening up another road for future research on 
bio-scaffold-loaded exosomes, especially when combined 
with 3D printing technology [199].

Furthermore, chronic disease, drug use, and immuno-
logical conditions can all influence a patient’s reaction 
to exosome therapy. These characteristics may influ-
ence cell sensitivity or resistance to treatment. Patients 
may develop an immunological reaction to treatment, 
which causes exosomes to be eliminated or lose func-
tion. More research is needed to determine how these 
characteristics influence the efficacy of exosome therapy 
[200]. Hence, while exosomes are regarded as a promis-
ing platform for targeted cargo delivery, major efforts are 
critically required to move exosome-based cargo delivery 
from scientific theory to practical application.

Tetraspanin proteins are not ubiquitously and 
uniformly present on the exosomal surface [201]. 
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Diseases Exosome sources 
for therapeutic 
effect

Model Target Ref-
er-
enc-
es

Inflamma-
tory bowel 
disease

Murine Colon Can-
cer cell CT26-Exos

In vivo Mouse Model Pro-inflammatory cytokine secretion by colonic DCs and 
selective suppression of Th17 cell

[95]

Human ADSC-Exos In vivo C57BL/6 (6–8 weeks) mice; In 
vitro Cell line Hcoepic, MSCs, and Human 
adipose tissues;

Increased the growth and empower colon organoids [96]

hucMSCs-Exos In vitro human umbilical cord MSCs, In 
vivo Male KM mice (6-week)

Inhibit the expression of IL-7 in macrophages and reduce 
inflammatory responses

[97]

Bovine colostrum-
derived Exosomes

In vivo Murine Model Alleviate colitis Symptoms by modulating intestinal inflam-
matory immune responses.

[98]

Macrophage-de-
rived exosomes

In vivo C57BL/6 mice aged 7 weeks Colitis induced by inducing intestinal barrier Dysfunction 
through the inhibition of TMIGD1.

[99]

Liver Injury 
and Fibrosis

hucMSCs-Exos In vivo C57BL/6 J mice (6–8 weeks) Induce proinflammatory macrophages into an anti-inflam-
matory phenotype

[114]

ADSC-Exos In vivo C57/BL6 mice; In vitro Immortal-
ized human hepatic stellate cell line LX-2 & 
Mouse hepatocyte cell line AML12

Suppress HSCs activation and modify hepatocellular 
glutamine synthetase-mediated glutamine and ammonia 
metabolism.

[115]

TNF-α pre-
treatment of 
hucMSCs-Exos

In vivo C57BL/6 male mice (6 week); In 
vitro RAW264.7 mouse celiac monocytes

Inhibiting the activation of the NLRP3-related inflammatory 
pathway and increasing the expression of microRNA 299 3p 
in T-Exo.

[116]

Human 
BMSCs-Exos

In vivo Sprague Dawley (SD) rats (8-week 
old)

Improve CCl4-induced liver fibrosis by inhibiting Wnt/β-
catenin signaling, preventing HSC activation.

[117]

Exosomes derived 
from natural killer 
cells

In vivo BALB/c mice (6–8 weeks); In vitro 
LX-2 cells (human HSC line)

Inhibited TGF-β1-induced HSC proliferation and alleviated 
CCl4-induced liver fibrosis

[118]

Lung Inflam-
mation and 
Injury

Alveolar Epithe-
lial Cells-derived 
Exosome

In vivo SD rats (4–5 weeks old); In vitro 
alveolar epithelial cell line RLE-6TN

Activate AMs, which cause pulmonary inflammation and 
constitute a potential diagnostic biomarker for ALI.

[122]

Alveolar macro-
phage-derived 
exosomes

In vivo (SPF) Balb/c mice ( 10 weeks); In 
vitro rat alveolar macrophage cell line 
NR8383

BALF-exosomes as a modulator of the inflammatory re-
sponse and cell communication during ALI

[123]

BMSCs-Exos In vivo SD rats (4–6 weeks old) Effects on phosgene-induced ALI by regulating inflamma-
tion, decreasing MMP-9 production, and increasing SP-C 
levels.

[124]

BMSCs-Exos In vivo Adult male C57BL/6 mice; In vitro 
murine alveolar macrophage cell line 
MH-S

Inhibited endotoxin-induced glycolysis and alleviated LPS-
induced inflammation and lung pathological damage.

[125]

ADSC-Exos In vivo C57BL/6 mice aged 6–8 weeks and 
IL27r−/−C57BL/6 mice

Inhibited IL-27 production in macrophages alleviated sepsis-
induced ALI

[126]

Neuroinflam-
mation and 
Traumatic 
Brain Injury

hucMSCs-Exos In vivo Wistar rat pups(2 days old); In vitro 
human Wharton’s jelly-derived mesenchy-
mal stem cells

Suppressing pro-inflammatory cytokine transcription and 
production, as well as reducing microglial accumulation.

[143]

Astrocyte-derived 
exosomes

In vivo mice (C57BL/10ScNJ (10–12 weeks); 
In vitro damaged brain tissue

Reduces neuroinflammation by inhibiting the NF-κB signal-
ing pathway and microglia-mediated inflammation.

[145, 
146]

BMSCs-Exos In vivo C57BL/6J male mice (6–8 week); In 
vitro BV2 cells (RRID: CVCL_0182)

Polarization of microglia to the anti-inflammatory phenotype, 
inhibiting neuroinflammatory response

[147]

hADSC- Exos In vivo Sprague-Dawley rats (6–8 weeks); 
In vitro Mixed neural cell culture

Improving the injury microenvironment, reducing exac-
erbated neuronal injury, and preventing proinflammatory 
activation.

[148]

Dual mesenchymal 
stem cells and 
neural stem cells 
derived exosome

In vivo Murine Model Modulate microglial polarization toward the M2 phenotype, 
enhance axonal outgrowth, and neural repair in PC12 cells.

[149]

Table 1  Therapeutic effects of exosome-derived from different cells in attenuation of inflammatory diseases
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Customized Simoa assays (use antibodies against par-
ticular exosomal transmembrane markers) were used to 
capture all subpopulations of vesicles detected in each 
sample. To address this issue, membrane-sensing pep-
tides [202] that recognize common properties of all tiny 
EVs membranes have been created and are being used 
in Simoa technology. This innovative technique could 
be fine-tuned for exosomal use, allowing extraction and 
analysis straight from any biofluid, without a pre-isola-
tion process. Additionally, peptides are versatile; they can 
be used on a variety of platforms. Taken together, these 
advancements provide a promising outlook for the future 
of exosome research and therapeutic use [203].

Conclusion
To summarize, exosomes have demonstrated signifi-
cant potential as a novel therapy option for wide-rang-
ing inflammatory diseases, including inflammatory 
bowel disease, liver injury and fibrosis, lung injury and 
inflammation, neuroinflammation and traumatic brain 
injury, and myocardial infarction. Their distinctive char-
acteristics, including excellent biocompatibility, low 

immunogenicity and toxicity, and capacity to overcome 
cellular barriers, make them ideal candidates for drug 
delivery. Exosomes can be changed and manufactured 
to have varied biological functions and targeting capa-
bilities, and have been demonstrated to successfully 
transport proteins, nucleic acids, tiny chemicals, and 
nanoparticles into inflammatory microenvironments. 
Furthermore, exosomes generated by inflammatory cells 
and MSCs have been shown to have a high inflammatory 
affinity and targeting, making them effective for deliver-
ing cargo to inflammatory cells and influencing immune 
responses.
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Diseases Exosome sources 
for therapeutic 
effect

Model Target Ref-
er-
enc-
es

Myocardial 
infarction

M2 macrophage-
derived exosome

In vivo C57BL/6 male mice (8–10 weeks); In 
vitro Human endothelial cells

Enhanced the angiogenic ability of Ecs, promoting angio-
genesis after myocardial infarction

[162]

Embryonic Stem 
Cell-Derived 
exosomes

In vivo male C57BL/6, 8–12 weeks old; In 
vitro MEFs, H9c2 myoblasts, and human 
umbilical vein endothelial cells

Has cardiac regeneration capabilities and affects both cardio-
myocytes and CPC-based repair mechanisms in the heart.

[165]

ADSC-Exos In vivo male C57BL/6 wild-type mice; In 
vitro human microvascular endothelial 
cells (HMEC-1)

Alleviate cardiac injury and promote cardiac function 
recovery

[163]

BMSCs-Exos In vivo male Sprague Dawley rats (3 
weeks); In vitro cardiac H9c2 cells

Inhibitory effects on myocardiocyte apoptosis associated 
with MI,

[166]

Induced cardio-
myocytes-derived 
exosome

In vivo Female beige mice (10–14 weeks); 
In vitro included induced pluripotent stem 
cell-derived cardiomyocytes (is

Regulating autophagy in hypoxic cardiomyocytes, enabling a 
cell-free, patient‐specific therapy.

[164]

Acute Kidney 
Injury

hucMSCs-Exos In vivo Adult male;
In vitro Mouse tubular epithelial cells

The cell viability of cisplatin-injured TECs was significantly 
improved by treatment with 3D-Exos

[186]

FRCs -derived 
Exosome

In Vivo 25–30-gram C57/BL6 mice CD5L-enriched FRC-Exos, inhibits NLRP3 inflammasome by 
PINK-Parkin-mediated mitophagy, increasing kidney function 
and survival rate.

[187]

hAECs-derived 
Exosomes

In vivo (8–12 weeks)Male C57BL6/J mice
In vitro Human umbilical vein endothelial 
cells

Exosomes prevented sepsis-induced NF-κB pathway activa-
tion and endothelial hyperactivation, preserved the endothe-
lial cell adhesion junction, and inhibited LPS-induced

[188]

BMSCs-Exos In vivo Adult male Sprague-Dawley rat; In 
vitro human renal tubular epithelial cell 
line HK-2

BMSCs-Exos mitigate inflammation and apoptosis through 
autophagy in S-AKI.

[189]

USC-Exos In vivo Adult Sprague Dawley rats; In vitro 
HK-2 H/R model

Exosomes reduce pyroptosis and AKI by promoting cell pro-
liferation and blocking the activation of the NLR family pyrin 
domain containing 3 via the circ DENND4C/miR 138-5p/
FOXO3a pathway.

[190]

Note: (ADSC-Exos) adipose-derived stem cells derived exosomes, (hucMSCs-Exos) human umbilical cord mesenchymal stem cells derived exosomes, (BMSCs-Exos)
Bone marrow mesenchymal stem cells derived exosomes, (USC-Exos) Human urine stem cells-derived exosomes, ( FRCs) fibroblastic reticular cells

Table 1  (continued) 
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