
Breast adenocarcinoma liver metastases, in contrast to colorectal
cancer liver metastases, display a non-angiogenic growth pattern
that preserves the stroma and lacks hypoxia
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Although angiogenesis is a prerequisite for the growth of most human solid tumours, alternative mechanisms of vascularisation can be
adopted. We have previously described a non-angiogenic growth pattern in liver metastases of colorectal adenocarcinomas (CRC) in
which tumour cells replace hepatocytes at the tumour– liver interface, preserving the liver architecture and co-opting the sinusoidal
blood vessels. The aim of this study was to determine whether this replacement pattern occurs during liver metastasis of breast
adenocarcinomas (BC) and whether the lack of an angiogenic switch in such metastases is due to the absence of hypoxia and
subsequent vascular fibrinogen leakage. The growth pattern of 45 BC liver metastases and 28 CRC liver metastases (73 consecutive
patients) was assessed on haematoxylin- and eosin-stained tissue sections. The majority of the BC liver metastases had a replacement
growth pattern (96%), in contrast to only 32% of the CRC metastases (Po0.0001). The median carbonic anhydrase 9 (CA9)
expression (M75 antibody), as a marker of hypoxia, (intensity�% of stained tumour cells) was 0 in the BC metastases and 53 in the
CRC metastases (Po0.0001). There was CA9 expression at the tumour– liver interface in only 16% of the BC liver metastases vs
54% of the CRC metastases (P¼ 0.002). There was fibrin (T2G1 antibody) at the tumour-liver interface in only 21% of the BC
metastases vs 56% of the CRC metastases (P¼ 0.04). The median macrophage count (Chalkley morphometry; KP-1 anti-CD68
antibody) at the interface was 4.3 and 7.5, respectively (Po0.0001). Carbonic anhydrase 9 score and macrophage count were
positively correlated (r¼ 0.42; P¼ 0.002) in all metastases. Glandular differentiation was less in the BC liver metastases: 80% had less
than 10% gland formation vs only 7% of the CRC metastases (Po0.0001). The liver is a densely vascularised organ and can host
metastases that exploit this environment by replacing the hepatocytes and co-opting the vasculature. Our findings confirm that a non-
angiogenic pattern of liver metastasis indeed occurs in BC, that this pattern of replacement growth is even more prevalent than in
CRC, and that the process induces neither hypoxia nor vascular leakage.
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Blood vessels have comparable functions during organogenesis
and tumour growth. These include the maintenance of blood flow
necessary for delivery of oxygen and nutrients, as well as
bidirectional paracrine interactions between endothelium and
epithelium that influence proliferation, migration and differentia-
tion of both cell populations (Cleaver and Melton, 2003). In most
malignant human tumours, the vasculature results from angiogen-
esis, as evidenced by the formation of a desmoplastic stroma
containing small immature blood vessels clustered in vascular ‘hot

spots’, and by a relatively high fraction of proliferating endothelial
cells. Vascularisation in human solid tumours is measured in these
hot spots, which arise through angiogenesis and ongoing vessel
remodelling, and this measure has a widely confirmed prognostic
value in breast cancer (Vermeulen et al, 2002). Blood vessel growth
is an invasive process that destroys the surrounding tissue
architecture (Masson et al, 1998). Angiogenesis has traditionally
been regarded as the sole mechanism for a malignant tumour to
obtain a functional vasculature. The dormancy concept consoli-
dated this view: when the number of capillaries in the tumour
tissue in an animal model decreased, tumour cell proliferation was
not affected but the apoptotic fraction increased, leading to
‘dormant’ tumours (Holmgren et al, 1995).

In 1997, however, simple morphological observations in human
primary non-small-cell lung carcinomas led to the introduction of
a new concept of tumour vascularisation: ‘co-option’ of blood
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vessels of the surrounding normal parenchyma appeared to be an
efficient alternative for angiogenesis (Pezzella et al, 1997).
Subsequently, experiments in a rat glioma model suggested that
even angiogenic tumours initially co-opt normal blood vessels
after which a host defence response, governed by angiopoietin-2
expression on the co-opted endothelial cells, causes blood
vessel regression with concomitant hypoxia and vascular endo-
thelial growth factor (VEGF)-mediated angiogenesis (Holash
et al, 1999).

The liver has a comparably dense vasculature as the lungs and
both organs frequently host metastases of carcinomas. The
hypothesis of our first study therefore was that metastases that
would be capable of preserving the stromal structure of the liver
might not become hypoxic and thus would not be dependent upon
angiogenesis for survival (Vermeulen et al, 2001). One of three
growth patterns of colorectal adenocarcinomas (CRC) metastases
in the liver, the replacement pattern, in which hepatocytes were
merely replaced by tumour cells, forming muralia that were in
continuity with the liver cell, was indeed characterised by co-
option of sinusoidal blood vessels at the tumour –liver interface,
by a lack of inflammation and desmoplastic stroma, and by a low
fraction of proliferating endothelial cells. Sinusoidal blood vessels
do not express CD34 and the co-opted vessel endothelium only
started to express this endothelial cell marker when they were
engulfed by a few rows of CRC cells. Tumour cell plasticity is also
exemplified by recently described alternative mechanisms of
intravasation (tumour cells express an endothelial-like phenotype
during vasculogenic mimicry (Hendrix et al, 2003) and are part of
the vessel wall) and of extravasation (intravascular growth of
tumour cell nests results in metastasis without the need for
extravasation; Alpaugh et al, 2002).

We have shown that cutaneous breast adenocarcinoma (BC)
deposits are a heterogeneous group with different degrees of
hypoxia-driven angiogenesis reflected in an infiltrative and an
expansive growth pattern (Colpaert et al, 2003a). Using the marker
carbonic anhydrase 9 (CA9) (Wykoff et al, 2000), we found
evidence of hypoxia in only 17% of the cutaneous deposits with an
infiltrative growth compared with 71% of the tumours with an
expansive, nodule-forming growth (P¼ 0.02). The infiltrative
growth pattern was further characterised by a relatively low
endothelial cell proliferation index (5 vs 18%; P¼ 0.004), and fibrin
deposition in a smaller fraction of the metastases (44 vs 100%;
P¼ 0.07). The cutaneous deposits with an infiltrative growth
respected the dermal architecture and co-opted pre-existing
collagen bundles, blood vessels and skin adnexa.

The aim of this study was to analyse the architecture of liver
metastases of BC and CRC with emphasis on the presence or
absence of angiogenesis and hypoxia. Radiological imaging studies
have revealed subgroups of liver metastases with different contrast
enhancement and delineation, supporting the hypothesis of
morphological heterogeneity (Yamaguchi et al, 2002).

MATERIALS AND METHODS

Tissue specimens of formalin-fixed, paraffin-embedded human
liver metastases from 49 patients with BC and from 28 patients
with CRC were retrieved from the files of the pathology
departments of the General Hospital Sint-Augustinus and of the
University Hospital of Antwerp. Twenty-eight BC metastases were
necropsy-derived. The other metastases were obtained after
elective surgery or needle biopsy. One tissue block, containing a
representative fraction of the tumour– liver parenchyma interface,
was used per patient.

Sections 5 mm in size were cut. A standard haematoxylin and
eosin stain was carried out to evaluate the growth pattern based on
the morphology of the tumour– liver parenchyma interface, as
described before (Vermeulen et al, 2001).

In the ‘desmoplastic’ growth pattern, the metastases were
separated from the surrounding liver parenchyma by a rim of
desmoplastic stroma in which a dense mononuclear infiltrate and
numerous capillaries were present. Often tumour cell nests were
infiltrating the stroma. The tissue architecture of the liver was not
conserved within the metastases.

In the ‘pushing’ growth pattern, liver plates were pushed aside
and ran in parallel with the circumference of the metastases at the
tumour– liver parenchyma interface. There was no desmoplastic
stroma formation, and the tumour cells were separated from the
hepatocytes by a thin layer of connective tissue fibres. A mild
inflammatory infiltrate was nearly always present at the interface.
The tissue architecture of the liver was not conserved within the
metastases.

In the ‘replacement’ growth pattern, tumour cells were replacing
hepatocytes in the liver plates, at the interface or throughout the
metastasis, conserving the tissue architecture of the liver, without
inflammation or fibrosis. Tumour cells and hepatocytes had
intimate cell–cell contact. Intra- and interobserver variability of
this classification was limited, as has been shown before
(Vermeulen et al, 2001).

Glandular differentiation was graded according to the system of
Elston and Ellis for BC (Elston and Ellis, 1991). For CRC
metastases, the same grading system was used.

Immunohistochemical staining for CA9 was performed at the
Weatherall Institute of Molecular Medicine (John Radcliffe
Hospital, Headington, Oxford, UK) with the murine monoclonal
antibody M75 at a dilution of 1 : 50, as has been described before
(Chia et al, 2001). Bile ducts were used as an internal positive
control, given the constitutive hypoxia-independent expression of
CA9 by bile duct epithelium. The immunostaining was quantified
by semiquantitative scoring: a score of 0 –3 for the intensity of
staining in the majority of the tumour cells was given (0, no
staining; 1, weak staining; 2, moderate staining; 3, strong staining).
The fraction (%) of immunostained tumour cells was estimated.
The product of intensity score and percentage yielded a final global
CA9 score of 0– 300. The interface (about 20 tumour cell rows
adjacent to the liver parenchyma) and the centre of the metastases
were also evaluated separately for CA9 expression: any percentage
of immunostaining in the respective regions was scored as positive
CA9 expression.

Macrophages were immunostained with an anti-CD68 mono-
clonal antibody (clone KP-1, dilution of 1 : 80, DakoCytomation,
Glostrup, Denmark) on the Ventana NexES automated immunos-
tainer. Quantification of the relative immunostained area, as a
measure of the number of macrophages, was performed with the
Chalkley method, a point counting method using a microscope
eyepiece graticule (Chalkley et al, 1943). The � 400 field at the
tumour– liver parenchyma interface giving the impression of the
highest number of CD68-positive cells on low magnification was
selected and the Chalkley count was performed. From this field, an
imaginary cross through the centre of the metastasis and with 901
angles was constructed, and the three other fields at the
intersection of this cross and the interface were analysed. If a
field contained a portal tract, the adjacent � 400 field was taken,
given the high number of inflammatory cells present in portal
tracts independent of the degree of inflammation at the interface
elsewhere. The mean of the four counts was used for further
analyses.

The presence of fibrin was detected immunohistochemically
with the NYB.T2G1 monoclonal antibody (Accurate Chemical and
Scientific Corp., Westbury, NY, USA; dilution 1 : 100), which reacts
with the amino-terminal part of the B� chain only after removal of
fibrinopeptide B by thrombin, and hence binds to fibrin but not to
fibrinogen. The staining was performed on the DAKO Autostainer
(DakoCytomation) after pretreatment at 981C for 30 min in Target
Retrieval Solution (DakoCytomation). Fibrin deposition due to
tissue damage during excision/biopsy of the metastases was

Liver metastases, BC and CRC

F Stessels et al

1430

British Journal of Cancer (2004) 90(7), 1429 – 1436 & 2004 Cancer Research UK

M
o

le
c
u

la
r

a
n

d
C

e
llu

la
r

P
a
th

o
lo

g
y



usually present at the cut surface and was used as internal positive
control. Negative staining in the absence of internal positive
control staining resulted in exclusion of the result for further
analysis. In all other cases, fibrin staining was graded from 0 to 3
(0: no staining; 1: minimal staining; 2: moderate staining; 3:
extensive staining). This evaluation was performed both for the
interface and the centre of the metastases.

Immunohistochemical staining for LYVE-1 was carried out as
described previously (Beasley et al, 2002; Williams et al, 2003). In
brief, antigen retrieval at 981C for 30 min in Target Retrieval
Solution (DakoCytomation) was followed by incubation with the
affinity-purified LYVE-1 Ig (0.5mg ml�1) for 30 min. The staining
was performed using the DAKO Autostainer (DakoCytomation
peroxidase Envision kit).

Statistical analyses were performed using JMP-5 software (SAS
Institute, North Carolina, USA) on an Apple PowerBook G4 (Apple
Computer, California, USA).

RESULTS

In four BC metastases, the interface, and thus the growth pattern,
could not be evaluated properly, and these cases were excluded
from further analysis. The majority of the BC liver metastases
showed a replacement growth pattern (96%) (Figure 1; Table 1). In
contrast, only one-third of the CRC liver metastases had these
growth characteristics (32%), while 50% clearly induced a
desmoplastic tissue reaction at the liver parenchyma–tumour
interface (w2 test Po0.0001) (Figure 2). The characteristics of the
replacement growth pattern were often present from interface up
to the centre in the BC cases, while they were limited to the
interface in all CRC liver metastases. In 15 metastases (eight of BC
origin and seven of CRC origin), a mixed growth pattern was
found. Only the dominant pattern was considered for further
analysis.

When comparing BC liver metastases with CRC liver metastases
(Table 2), the former showed less glandular differentiation (80%
grade 3 vs 7% grade 3; Po0.0001), less frequently had fibrin
deposition at the tumour– liver parenchyma interface (21 vs 56%;
P¼ 0.037), expressed CA9 only in a minority of cases at the
interface (16 vs 54%; P¼ 0.002) or in the central portion of the
metastases (28 vs 96%; Po0.0001) (Figure 3), and had a
significantly lower macrophage Chalkley count (4.3 vs 7.5

(median); Po0.0001). After excluding the 28 necropsy-derived
BC liver metastases, results were comparable (data not shown),
with P-values of o0.0001 (glandular differentiation), 0.02 (central
fibrin), 0.08 (fibrin at the interface), o0.0001 (central CA9), 0.009
(CA9 at the interface), 0.0004 (global CA9 score) and 0.001
(macrophage count).

Taking all liver metastases, there was a positive correlation
between the global CA9 score and the Chalkley count of the
macrophages (r¼ 0.43; P¼ 0.002).

Analysis of the influence of growth patterns on the different
parameters was performed in the CRC liver metastases group and
the BC liver metastases group separately. Forty per cent of the CRC
liver metastases with a pushing growth pattern vs only 5% of the
other liver metastases had extensive (grade 3) fibrin deposition at
the interface (P¼ 0.09) (Figure 4). Desmoplastic CRC liver
metastases had a mean macrophage Chalkley count of 9.3 (s.e.:
0.94; median: 9.5) vs 7.3 (s.e.: 0.69; median: 7.0) in the other CRC
liver metastases (P¼ 0.09) (Figure 5). Although the majority of the
non-replacement CRC liver metastases had CA9 expression at the
tumour– liver parenchyma interface and only a minority of the
replacement CRC liver metastases, this difference was not
significant. Of the BC liver metastases with a replacement growth,
only 24% had central CA9 expression, in contrast to all BC liver
metastases with a non-replacement growth (P¼ 0.06). Carbonic
anhydrase 9 expression at the tumour– liver parenchyma interface
was present in only 12% of the BC liver metastases with a
replacement growth, in contrast to all BC liver metastases with a
non-replacement growth (P¼ 0.02). Other associations were not
found.

The lymphatic endothelial/sinusoidal marker LYVE-1 was
expressed in the midzonal sinusoidal blood vessels of normal
liver parenchyma, as was reported previously (Banerji et al, 1999).

LiverTumour 

100 �m 

Figure 1 Breast cancer liver metastasis, replacement growth pattern
(haematoxylin and eosin stain): the tissue architecture of the liver is
preserved within the tumour tissue. There is close contact between
tumour cells and hepatocytes at the interface and no inflammation.

Table 1 Distribution of the growth patterns of the 73 liver metastases
according to the site of the primary tumour (w2 analysis; Pearson test)

Desmoplastic Pushing Replacement

Breast (n¼ 45) 1 (2%) 1 (2%) 43 (96%)
Colorectal (n¼ 28) 14 (50%) 5 (18%) 9 (32 %)
Total (n¼ 73) 15 (21%) 6 (8%) 52 (71%)
Po0.0001

Liver

TumourDesmoplastic
rim 

50 �m 

Figure 2 Colorectal cancer liver metastasis, desmoplastic growth pattern
(haematoxylin and eosin stain): a rim of desmoplastic stroma separates the
liver parenchyma from the tumour tissue. A dense inflammatory cell
infiltrate is present in the stroma nearby the liver parenchyma.
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This constitutive expression was used as internal positive control
of the immunohistochemical staining. In the desmoplastic CRC
liver metastases, there were few if any LYVE-1-positive vessels in
the connective tissue capsule or in the metastases. In most of the
metastases with this growth pattern, LYVE-1 expression was
absent or attenuated in the midzonal sinusoids of the surrounding
liver parenchyma. In contrast, in the BC and CRC liver metastases

with a replacement growth pattern, LYVE-1 expression in the
sinusoids of the liver parenchyma that made contact with the
tumour cells was not attenuated. Moreover, sinusoidal blood
vessels engulfed by up to about 20 tumour cell rows still expressed
LYVE-1 at the tumour –liver interface (Figure 6), whereas those
towards the centre of the metastases expressed less of the receptor.

DISCUSSION

The liver is a target organ for metastasis of BC and CRC. The
parenchyma is supported by a dense vasculature composed of
branches from both venous and arterial blood vessels. Liver cell
plates, usually composed of only two rows of hepatocytes, are
intimately associated with sinusoidal blood vessels, in this way
minimising the development of acute or chronic hypoxia in a
tissue with a high cell density and a high metabolic activity. As
hypoxia is the most important stimulus of angiogenesis, it was the
hypothesis of this and a former study (Vermeulen et al, 2001) that

Liver 

Tumour 

100 �m 

Figure 4 Immunostaining of fibrin (brown) in a desmoplastic colorectal
cancer liver metastasis: fibrin deposits mainly in the liver parenchyma
surrounding the metastasis.

Table 2 Comparison of glandular differentiation, fibrin deposition, CA9
expression and the macrophage content of breast cancer and colorectal
cancer liver metastases

Breast Colorectal

Glandular differentiation (n¼ 45) (n¼ 28)
1 1 (3%) 21 (75%)
2 8 (17%) 5 (18%)
3 36 (80%) 2 (7%) Po0.0001

Fibrin, central (n¼ 37) (n¼ 24)
0 16 (43%) 6 (25%)
1 10 (27%) 4 (17%)
2 2 (6%) 4 (17%)
3 9 (24%) 10 (41%) P¼ 0.15

Fibrin, interface (n¼ 38) (n¼ 25)
0 30 (79%) 11 (44%)
1 6 (15%) 10 (40%)
2 1 (3%) 1 (4%)
3 1 (3%) 3 (12%) P¼ 0.037

CA9, central (n¼ 44) (n¼ 24)
� 32 (73%) 1 (4%)
+ 12 (27%) 23 (96%) Po0.0001

CA9, interface (n¼ 45) (n¼ 24)
� 38 (84%) 11 (46%)
+ 7 (16%) 13 (54%) P¼ 0.002

Global CA9 score 14.478.6 (0) 74.5714.9 (52.5) Po0.0001

Macrophage count 4.5770.28 (4.25) 8.2570.60 (7.50) Po0.0001

Differences in categorical variables are validated by two-tailed Fisher’s exact test.
Continuous variables are expressed as mean7s.e. (median). Differences are
validated by Wilcoxon test.

Bile duct 

50 �m 

Figure 3 Carbonic anhydrase 9 immunostaining of a colorectal cancer
liver metastasis: strong staining (brown; score 3þ ) of the tumour cells.
Constitutive expression by bile duct epithelium (internal positive control).

Liver Tumour

100 �m 

Figure 5 Anti-CD68 immunostaining demonstrating numerous macro-
phages (brown) in the desmoplastic rim surrounding a colorectal cancer
liver metastasis. The Kupffer cells in the liver parenchyma are also
immunoreactive.
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liver metastases in which tumour cells would be able to preserve
the architecture of the liver stroma could grow without hypoxia
and subsequent angiogenesis. We have indeed shown that a
minority of CRC liver metastases display a replacement pattern,
characterised by low endothelial cell proliferation, a high tumour
cell proliferation to endothelial cell proliferation ratio and only
weak expression of CD34 in the constitutively CD34-negative
endothelial cells of the co-opted sinusoidal blood vessels.

In the present study, we have shown that BC liver metastases
have different growth characteristics to CRC metastases: nearly all
BC metastases had a replacement pattern that, in contrast to CRC
metastases, was often also present in the centre of the metastases.
In addition, this was characterised by minimal fibrin deposition,
lack of CA9 expression in most of the BC metastases and a lower
macrophage content compared to CRC metastases (Figures 7–9).

The induction of angiogenesis by breast cancer has been shown
to be highly variable when comparing patients. In a study of
cutaneous breast cancer deposits, an infiltrative growth pattern, in
which cancer cells respect the dermal architecture and co-opt pre-
existing blood vessels, was characterised by CA9 expression in only
17% of the tumours (Colpaert et al, 2003a). Fibrin was present in
the dermal stroma in 33% of the deposits with an infiltrative
growth pattern, and the endothelial cell proliferation was 4.2%
(median value). For the expansive growth pattern, the respective
values were 71, 89 and 16.4% (respective P-values: 0.02; 0.02;
0.004). Fifty-one per cent of the cutaneous deposits expressed the
infiltrative, less or non-angiogenic growth pattern vs 18% with an
expansive and angiogenic growth. The remainder of the metastases
had a mixed growth pattern with intermediate characteristics.
Also, primary BC has a variable angiogenic profile: inflammatory
BC, a highly aggressive subtype with extensive dermal lympho-
vascular permeation, has been shown to have an endothelial cell
proliferation fraction two-fold higher than non-inflammatory BC
(19 vs 11%, respectively; P¼ 0.01) (Colpaert et al, 2003b). Liver
metastases of BC apparently are at the other end of the angiogenic
spectrum: the majority of the BC liver metastases co-opt the pre-
existing sinusoidal blood vessels in a replacement growth pattern
that has been shown to have a low proliferative activity of the
endothelial cells (Vermeulen et al, 2001).

LYVE-1 is a receptor for hyaluronan mainly expressed on
lymphatic endothelial cells (Banerji et al, 1999). Together with the

liver sinusoids, the lymphatic system is responsible for the
degradation of hyaluronan via LYVE-1. Expression of LYVE-1
has indeed been demonstrated on the endothelial cells of liver and
spleen sinusoidal blood vessels (Banerji et al, 1999). In the liver
metastases of BC and CRC with a replacement growth pattern, the
blood vessels close to the interface, but well surrounded by tumour
cells, continued to express LYVE-1. This observation, together with
the conserved stromal architecture within the replacement-type
metastases, strengthens the blood vessel co-option hypothesis.
Interestingly, the co-opted sinusoidal blood vessels in the
replacement growth pattern started to express CD34, which is
not expressed constitutively on sinusoidal endothelial cells, at a
distance of a few cell layers from the interface (Vermeulen et al,
2001). Both the apparent loss of LYVE-1 expression and the gain of
CD34 expression indicate paracrine interactions between tumour
cells and co-opted endothelial cells, yet without eliciting angiogen-
esis or desmoplasia. Recently, Williams et al (2003) have also
reported the apparent loss of LYVE-1 from lymph vessels that were
engulfed by invasive breast cancer cells. The possible mechanisms

Liver Tumour 

50 �m 

Figure 6 Expression of LYVE-1 (brown, immunostaining) by sinusoidal
endothelial cells within the liver parenchyma at the interface with a
replacement-type breast cancer liver metastasis (arrow heads). Sinusoids
engulfed by tumour cells express LYVE-1 at the tumour– liver interface
(arrows) and lose this expression towards the centre of the metastasis
(towards the right on the microphotograph).

Tumour 

Liver 

50 �m 

Figure 7 Carbonic anhydrase 9 immunostaining of a breast cancer liver
metastasis: replacement growth and no immunostaining (constitutive
expression by bile duct epithelium (internal positive control) was present
in the section (not shown)).

Tumour 

Liver

50 �m 

Figure 8 Immunostaining of fibrin (brown) in a replacement breast
cancer liver metastasis: no staining at the tumour– liver interface (internal
positive control: fibrin in a sinusoidal blood vessel (arrow)).
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of this loss and its physiological consequences are currently under
investigation (DG Jackson, unpublished). The desmoplastic-type
metastases contained very few, if any, LYVE-1-expressing vessels,
supporting the other data of angiogenesis as means of vascularisa-
tion in this growth pattern (Figure 10).

A possible explanation for the higher fraction of angiogenic,
desmoplastic liver metastases of CRC compared to BC might be
that primary CRC are more angiogenic than primary BC. Indeed,
using the same method for both tumour histiotypes to quantify
angiogenesis by counting proliferating endothelial cells, the
median proliferation fraction was more than six times higher in
primary CRC than in BC (8.9 vs 1.4%, respectively; Po0.0001)
(Vermeulen et al, 1997). This supports the rationale of counting
microvessels in vascular ‘hot spots’ as a prognostic marker in solid
human tumours: stroma containing more newly formed blood
vessels is more likely to give rise to angiogenic metastases.
Treatment of patients with metastatic colorectal cancer with
bevacizumab, an anti-VEGF monoclonal antibody, has shown a
clear synergy with chemotherapy, supporting the high angiogenic

activity measured in our studies of primary colorectal cancer and
its metastases in the liver (Kabbinavar et al, 2003).

The angiogenic proteome of the metastases seems to be similar
to that of the primary tumours, since even in the less-vascularised
skin, about half of the BC metastases grow with minimal induction
of vessel sprouting, reflected by low endothelial cell proliferation.
Taken together, the ‘seed’ might have more influence on the
growth pattern than the ‘soil’. Nevertheless, the more angiogenic
CRC can induce liver metastases with a blood vessel co-opting
replacement growth pattern, as shown by us (this study;
Vermeulen et al, 2001) and by Prall et al (2003). Three types of
invasion of the liver parenchyma have been described by the latter
authors, based on the number of apoptotic hepatocytes at the
tumour– liver interface and on the degree of compression of the
reticular connective tissue of the liver parenchyma surrounding
the metastases. A pattern that resembles the replacement pattern of
our study was characterised by prominent apoptosis of hepato-
cytes at the interface, with conservation of the reticular connective
tissue architecture of the liver, with debris, but without fibrosis.
The other two invasion patterns showed decreasing destruction of
hepatocytes and increasing compression of the stroma surround-
ing the metastases with the formation of a pseudocapsule. These
invasion patterns correspond to our pushing and desmoplastic
growth patterns.

Other interesting observations concerning growth patterns of
liver metastases originate from animal tumour models. Solaun et al
(2002) have described two subtypes of colon carcinoma liver
metastases that differ regarding their position in the liver tissue
and regarding their connection to the local microvasculature: the
portal type and the sinusoidal type. In the sinusoidal type of
metastases, the blood vessels were recruited, without disturbing
the liver architecture. The portal type induced a desmoplastic
stromal reaction that surrounded the metastases and disturbed the
liver architecture. Necrotic areas frequently developed in these
metastases. The histological microphotographs in this publication
show similar growth patterns as the replacement-type and
desmoplastic-type metastases of our study. The main difference,
however, is that the two types of metastases develop in the same
animal after injection of a single tumour cell line, while patients in
our study have liver metastases with a single growth pattern,
independent of their position in relation to a portal tract. Whether
the source of the blood vessels of human liver metastases is
associated with the growth pattern or with the route of entrance of
tumour emboli, arterial or venous, is not clear.

In a second animal tumour model (Griffini et al, 1997), 27% of
the colon carcinoma liver metastases were small and totally
encapsulated by stroma, which was always connected with adjacent
portal tracts. All these metastases grew distant from the liver
surface and consisted of well-differentiated acini. The majority of
the metastases, however, were larger in diameter, and were not
surrounded by a capsule. The metastases consisted mainly of
undifferentiated cancer cells in direct contact with hepatocytes and
without much desmoplastic stromal reaction. Most of these
metastases were in contact with the liver capsule. In our study,
human BC liver metastases were poorly differentiated and in most
of these metastases, there was no desmoplastic reaction. The low
degree of differentiation in the replacement growth patterns might
be the consequence of less reciprocal interactions between cells
from the desmoplastic stroma and epithelial tumour cells. On the
other hand, less-differentiated tumour cells might more easily
adopt a hepatocyte-like phenotype, induced by the sinusoidal
blood vessels, a process analogous to liver development during
foetal life (Zaret, 2002).

If the replacement growth pattern is indeed composed of less-
differentiated tumour tissue, a worse prognosis would be expected.
We have investigated an analogous phenomenon in primary lung
cancer (Sardari Nia et al, 2003), and found that the alveolar growth
pattern according to Pezzella et al (1997) in lung tumours indeed

Tumour 

Liver 
50 �m 

Figure 9 Anti-CD68 immunostaining demonstrating the Kupffer cells in
the liver parenchyma. No macrophages at the tumour– liver interface of
this breast cancer metastasis with replacement growth.

50 �m 

Liver 

Tumour 

Figure 10 Expression of LYVE-1 (brown, immunostaining) by sinusoidal
endothelial cells in the liver parenchyma surrounding a desmoplastic
colorectal liver metastasis (arrows). No staining within the tumour tissue.
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predicts shorter disease-free and overall survival. These tumours
co-opt the blood vessels of the alveolar septa and are comparable
to the liver metastases with a replacement growth pattern.
Computed tomographic (CT) imaging of liver metastases has been
shown to be predictive for recurrence after hepatic resection
(Yamaguchi et al, 2002). CT contrast-enhanced images of liver
metastases were subtyped according to the shape of the metastases
and the irregularity of the outline of the nodules. Liver metastases
with the most irregular shape and contour were predictive of
reduced 5-year disease-free survival. Although this implies that
growth and vascularisation patterns might influence prognosis, it
is not clear how the images relate to the histological findings. We
are currently performing studies to elucidate this important
question.

Liver metastases of CRC had a significantly higher number of
macrophages at the interface with the liver than BC metastases.
Inflammation and cancer progression are intimately linked
(Coussens and Werb, 2002) and, for instance, in primary BC, the
degree of vascularity was positively associated with the number of
hot spots of macrophages expressing HIF-2alpha (Leek et al, 2002).
Since the HIF-2alpha expression in macrophages is induced by
hypoxia (Burke et al, 2002), and since macrophages in tumours
migrate to hypoxic areas, their presence in CRC liver metastases
indicates a lower oxygen tension, which accords with the elevated
CA9 expression compared to BC liver metastases.

Both CA9 and VEGF-A are regulated by transcriptional HIF
complexes (Wykoff et al, 2000). VEGF induces blood vessel
hyperpermeability resulting in extravasation of fibrinogen. Fibrin
is then formed upon contact with the subendothelial matrix,
supporting angiogenesis and inducing a wound-healing response
with tumour stroma generation (Dvorak, 1986). The angiogenic
CRC liver metastasis indeed frequently contained fibrin in contrast
to the non-angiogenic BC metastases.

Finally, since 28 of 49 BC metastases were necropsy-derived
compared to none of the CRC liver metastases, which were usually
resected together with the primary colorectal tumour, it might be
that advanced stage and multiple chemotherapy courses have

influenced the growth pattern of BC metastases. Exclusion of the
necropsy-derived BC liver metastases and statistical re-analysis did
however not change the results.

In conclusion, this study shows that liver metastases of BC
mainly co-opt sinusoidal blood vessel during their growth, in
contrast to most of the CRC metastases, that expand with
concomitant hypoxia-driven angiogenesis. The vessel-co-opting
replacement growth pattern and the angiogenic desmoplastic
growth pattern have also been observed in animal tumour models.
This histopathological study opens perspectives for the study of
the mechanisms responsible for the differences in tumour
vascularisation of liver metastases. Whether metastases with a
replacement growth pattern can sustain a more intense hypoxic
stress before inducing angiogenesis, or whether hypoxia is not an
issue due to the co-option of highly functional sinusoidal blood
vessels, is not clear. Another possible mechanism is that
angiogenesis is suppressed by endogenous angiogenesis inhibitors,
which overrule local VEGF production. Additionally, some
angiogenesis inhibitors seem to be able to inhibit HIF-1-induced
transcriptional activation of VEGF expression (Mabjeesh et al,
2003).

The clinical relevance of our study is corroborated by the
observation in one of the animal models that endostatin, an
endogenous angiogenesis inhibitor, inhibits the growth of liver
metastases with an efficacy that varies according to the growth
pattern (Solaun et al, 2002).
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