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The recently discovered ferroptosis is a new kind of iron-regulated cell death that
differs from apoptosis and necrosis. Ferroptosis can be induced by an oxidative stress
response, a crucial pathological process implicated in cardiovascular diseases (CVDs).
Accordingly, mounting evidence shows that oxidative stress-induced ferroptosis plays a
pivotal role in angio-cardiopathy. To date, the inhibitors and activators of ferroptosis, as
well as the many involved signaling pathways, have been widely explored. Among which,
epigenetic regulators, molecules that modify the package of DNA without altering the
genome, emerge as a highly targeted, effective option to modify the signaling pathway of
ferroptosis and oxidative stress, representing a novel and promising therapeutic potential
target for CVDs. In this review, we will briefly summarize the mechanisms of ferroptosis,
as well as the role that ferroptosis plays in various CVDs. We will also expound the
epigenetic regulators of oxidative stress-induced ferroptosis, and the promise that these
molecules hold for treating the intractable CVDs.
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INTRODUCTION

Cardiovascular diseases (CVDs), including heart conditions and vascular disorders, are the leading
cause of mortality around the world, and comprise approximately one-third of annual deaths
[World Health Organization (WHO), 2017]. Moreover, CVDs carry an enormous economic
burden to every country, especially China and India [The Institute for Health Metrics and
Evaluation (IHME), 2018]. The most prevalent CVDs include hypertension, coronary heart disease,
atrial fibrillation, and valvular heart disease, but most CVDs develop into heart failure at the
advanced or terminal stages. In 2017, update of the guidelines for the management of heart
failure released by ACC/AHA/HFSA (American College of Cardiology Foundation/American
Heart Association/Heart Failure Society of America), angiotensin receptor–neprilysin inhibitors
(ARNI) (sacubitril/valsartan) and sinoatrial node modulators (ivabradine) were classified as the
therapy for stage C heart failure in the evidence of level B-R, but require further high-quality
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randomized clinical trials to be conducted (Dixon et al.,
2012; Yancy et al., 2017). The current treatment of CVDs is
unsatisfactory, and the underlying mechanisms are not fully
understood. As such, it is imperative that new mechanisms and
corresponding therapeutic targets are explored.

Ferroptosis was first introduced by Dixon et al. (2012), and
was featured as an iron-dependent lipid peroxidation, a regulated
cell death that is different from apoptosis and necrosis. Currently,
ferroptosis was defined as a unique iron-dependent form of
non-apoptotic cell death triggered by erastin, an oncogenic RAS-
selective lethal small molecule, and inhibited by ferrostatin-1
in cancer cells or glutamate-induced cell death in organotypic
rat brain slices (Dixon et al., 2012). Mitochondria are crucial
in ferroptosis, tricarboxylic acid (TCA) cycle participates in
cysteine-deprivation induced ferroptosis and that the electron
transport chain (ETC) regulates the process (Gao et al., 2019).
Mitochondria participate in metabolism, and are the main source
of reactive oxygen species (ROS) (Tang D. et al., 2021). Oxidative
stress occurs when the antioxidant defense systems, such as GSH,
coenzyme Q10, and tetrahydrobiopterin (BH4), cannot find
equilibrium of ROS (Dixon et al., 2012; Bersuker et al., 2019; Doll
et al., 2019; Kraft et al., 2020; Soula et al., 2020). GSH, the major
antioxidant in mammalian cells, is tightly tuned intracellularly
and extracellularly for homeostasis (Gao et al., 2018), and is also
the key component in ferroptosis. Ferroptosis has been found in
many diseases, such as cancer, CVD, neurological disease, and
ischemia/reperfusion injuries in kidney, liver, lung, and skeletal
muscle (Stamenkovic et al., 2019). Ferroptosis may be a potential
mechanism underlying CVDs as many studies pointed out that
ferroptosis have been implicated in CVDs (Birnbaum et al., 1996;
Shiomi et al., 2004; Dabkowski et al., 2008; Fang et al., 2019).

The biological processes are regulated by genetics and
epigenetics. Epigenetics is known as the unchanged nucleotide
sequence of the gene that is modulated by several environmental
factors while genetics irreversibly change the gene code via
mutation (Borrelli et al., 2008). Epigenetics act on DNA
or chromatin by DNA methylation, histone modifications,
chromatin remodeling and noncoding RNAs (Prasher et al., 2020;
Wu et al., 2020). Based on epidemiological studies, alteration of
lifestyle and environment can reduce the risk of developing CVDs
(Wang et al., 2013). It has been suggested that ferroptosis can
be regulated by epigenetic, transcriptional, and post-translational
mechanisms (Chen et al., 2020). Accumulating evidence indicates
that a series of epigenetic regulators are involved in the processes
of ferroptosis. In the present review, we will elaborate on the
mechanism of ferroptosis, the roles of ferroptosis in CVDs, as well
as the roles of epigenetic regulators in oxidative stress-induced
ferroptosis, and we will offer an option for the therapeutic
application of ferroptosis in CVDs.

MECHANISM OF FERROPTOSIS

Cell death is frequently required to maintain the normal
functions of the body/system, either under physiological
conditions or pathophysiological circumstances. Two major
classifications of cell death are apoptosis and necrosis. Other

patterns of “non-classical” cell death, such as autophagy,
pyroptosis, and necroptosis, reportedly also have important roles
in cell survival and body function (Dixon et al., 2012).

Dolma et al. (2003) found a novel compound that can kill
tumor cells without damaging isogenic normal cell counterparts.
They named it “erastin,” and it induces nonapoptotic cell death
in a RASV12- and small T(ST)-dependent manner (Dolma et al.,
2003). Furthermore, Yang and Stockwell (2008) found that two
small molecules, RSL (ras-selective-lethal compound) 3 and
RSL5, were lethal to tumors with oncogenic RAS, similar to
the function of erastin. RSL3- or RSL5-induced cell death is
considered iron-dependent as it could be inhibited by either
iron chelation or decreased iron uptake, with increased levels
of ROS (Yang and Stockwell, 2008). Ferroptotic cells cannot
be restrained by inhibitors of necrosis, apoptosis, or autophagy
and exhibit morphological changes in mitochondria, such as
decreased size, increased membrane density, and reduction or
disappearance of cristae (Xie et al., 2016). In 2012, the team of
Dixon SJ conducted further research to support and extend this
newly discovered form of regulated cell death. They proposed
the concept of ferroptosis for the first time, and defined it
as the regulatory cell death induced by the accumulation of
lipid peroxides and ROS, which can be inhibited by lipid
peroxide inhibitors and iron chelators (Dixon et al., 2012).
Outer mitochondrial membrane (OMM) rupture was observed in
immortalized fibroblasts and glutathione peroxidase 4 (GPX4)-
inactivated kidney tissue (Angeli et al., 2014).

Iron is an important essential microelement in the human
body, and plays a key role in maintaining homeostasis of the
internal environment, and ensuring the normal physiological
functions of cells. Iron in the human body is mostly distributed
in the hemoglobin of red blood cells and the myoglobin
of muscles, but a small amount exists in enzymes, such as
cytochrome oxidase, peroxidase, and catalase. There are two
types of iron ions: ferrous and ferric. Ferric ions bind to
transferrin, and are transported into the cell, entering via the
transferrin receptor 1 (TFR1) on the cell membrane (Gao M.
et al., 2015). Ferrous ions reduced to ferric ions in the cell,
and are then transported and released into the cytoplasmic
iron pool. Ferrous ion can react with oxygen, and generates
ROS, such as hydroxyl radical (•OH) and hydrogen peroxide
(H2O2), in a process known as the Fenton reaction. Iron
overload leads to an increase of ROS, which cause harm to
DNA, protein, and lipids. The Haber–Weiss reaction provides
•OH from the substrates of H2O2 and superoxide (•O2

−): (1)
Fe3+
+•O2

−
→Fe2+

+O2; (2) Fe2+
+H2O2→Fe3+

+OH−+•OH
(Fenton reaction); (3) •O2−+H2O2→•OH+OH−+O2 (Gao M.
et al., 2015). Cellular iron overload can impair mitochondrial
oxidative phosphorylation and produce a large amount of ROS,
even exceeding the scavenging ability of the body’s antioxidant
system [e.g., glutathione (GSH) and GPX4], thereby oxidizing
cell membranes, as well as the unsaturated fatty acids on cell and
organelle membranes, forming lipid peroxides, destroying cell
structure and function, and causing cell damage or death (Dixon
et al., 2012; Ooko et al., 2015; Hassan et al., 2016).

It is widely accepted that ferroptosis is regulated by the
cystine/glutamate antiporter system (system Xc−) and GPX)
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(Dixon et al., 2012). System Xc− is an amino acid antiporter,
which mainly includes SLC7A11 (solute carrier family 7 member
11) and SLC3A2 (solute carrier family 3 member 2), which causes
the exchange of cysteine and glutamate into and out of the cell,
respectively, at a 1:1 ratio (Lewerenz et al., 2013). Glutathione
is an important antioxidant and free radical scavenger in vivo,
and can be categorized as either reduced (GSH) or oxidized
(GSSG). GPx4 converts GSH to GSSG, GSH/GSSG constitutes
an antioxidant system and provides reducing equivalents to
eliminate oxidative species (Xie et al., 2016; Yang W. S. et al.,
2014). The synthesis of GSH depends on the cysteine, which
is made by cystine, and glutamate-cysteine ligase (GCL). As a
member of the glutathione peroxidase family, GPX4 inhibits
ferroptosis by decreasing the level of lipid peroxides (Liang et al.,
2009). While erastin and RSL-3 are both inducers of ferroptosis,
erastin depends on VDAC2/VDAC3 or downregulation of
GSH. However, RSL-3 does not require the above-mentioned
molecules. Lipid oxidation is observed in both erastin and RSL3-
induced cell death. Further investigation verified that GPX4 is the
target of RSL-3 through a binding site (Yang W. S. et al., 2014).
Many inducers (e.g., erastin, RSL3, RSL5, buthioninesulfoximine,
acetaminophen, fin, lanperisone, sulfasalazine, sorafenib, and
artesunate) and inhibitors (e.g., ferrostatin, liproxstatin-1, and
zileuton) of ferroptosis have been identified, but the specific

mechanisms and pathways are diverse (Xie et al., 2016). In
summary, ferroptosis is a complex process, and more pathways
will be discussed in the following sections (Figure 1).

ROLES OF FERROPTOSIS IN CVDs

The Pathophysiologic Mechanisms of
CVDs
The heart is one of the most important organs, and is
responsible for pumping blood throughout the body, providing
energy and oxygen to nourish tissues and organs, and
removing metabolites, such as carbon dioxide. There are
complex regulatory mechanisms involved in maintaining normal
cardiac function.

Inflammation is an important molecular trigger in CVD.
Considerable evidence has shown the close relationship between
inflammation and atherosclerosis (Ross, 1999; Libby and Ridker,
2006; Wong et al., 2012), and some anti-inflammatory drugs,
such as statins, work to prevent cardiovascular events (Shepherd
et al., 1995; Ridker et al., 2001, 2005).

Endothelial dysfunction arises when endothelial cells (EC) are
injured, or if there is an imbalance between vasoconstriction

FIGURE 1 | Graphic mechanisms of ferroptosis. Dysregulation of intracellular iron metabolism or glutathione peroxidation pathways leads to accumulation of lipid
ROS and eventually causes ferroptosis. Various inducers and inhibitors are shown in the red box. Arrows indicate promotion; blunt-ended lines indicate inhibition.
Excessive free irons are the foundation for ferroptosis execution. Circulated Fe3+ was combined with transferrin, and then entered into cells by transferrin receptor.
Iron in Fe3+ form was deoxidized into iron in Fe2+, the latter generated ROS by Fenton reaction. System Xc- is an antiporter that imports cystine and exports
glutamate, providing cysteine for glutathione synthesis, can be inhibited by erastin. GPX4 is a redox enzyme which reduces reactive aldehydes (PUFAs-OOH) to their
alcohol form (PUFAs-OH), reduces ROS accumulation, plays important roles in the regulation of ferroptosis. RSL3 directly inhibit GPX4, which inhibits lipid
peroxidation and prevent cell death, triggering the accumulation of ROS and boost ferroptosis. Ferrostatin-1 reduced the production of lipid ROS and attenuated
ferroptosis. Cys, cysteine; Cys2, cystine; Glu, glutamate; Gly, glycine; GSH, glutathione; GSSH, glutathione disulfide; GPX4, glutathione peroxidase 4; PUFA,
polyunsaturated fatty acid.
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and vasodilation (Chatzizisis et al., 2007). The gathering of low-
density lipoprotein (LDL) in the subendothelial layer is thought
to be the initial event of atherogenesis (Russell et al., 1989;
Williams and Tabas, 1995; Tabas et al., 2007). Oxidative-LDLs
(Ox-LDLs) induce proinflammatory expression and formation
of foam cells, which lead to endothelial dysfunction (Berliner
et al., 2009; Golia et al., 2014), including the release of
proinflammatory cytokines, such as interleukin (IL), interferon-γ
(IFN-γ), and tumor necrosis factor (TNF; Ait-Oufella et al., 2006;
Moriya, 2019). Many autoimmune diseases (e.g., system lupus
erythematosus, psoriasis, and rheumatoid arthritis), are found to
correlate with increased cardiovascular risk (Kiss et al., 2006; Hak
et al., 2009; Vena et al., 2010; Dougados et al., 2014). When anti-
inflammatory therapy is applied to systemic lupus erythematosus
patients, the mortality of CVD is lower. The mortality is also
lower when anti-inflammatory therapy is given to patients
with psoriasis (Leonardi et al., 2012; Papp et al., 2012) and
rheumatoid arthritis (Liuzzo et al., 1999; Pasceri and Yeh, 1999).
Moreover, inflammatory responses, including the monocyte-
macrophages, neutrophils, T-cell subsets, and oxidative stress,
also contribute to the initiation and development of heart failure
(Tanai and Frantz, 2016).

Substrate metabolism is essential for normal cellular
physiological function, carbohydrates (e.g., glucose and lactate),
and fatty acids are the general cellular energy substrates (Ussher
et al., 2016). The production of ATP in the heart is derived mainly
from mitochondrial oxidative phosphorylation (OXPHOS), the
others come from glycolysis (Bertero and Maack, 2018). When
the cardiac supply cannot satisfy the demand, the heart will
shift from one substrate to another. The glucose metabolism
produces much more phosphates, but less ATP than lipids, which
means that glucose metabolism expends less oxygen compared
to fatty acid oxidation (FAO) when synthesizing equivalent ATP
(Nagoshi et al., 2011). As is shown in the Randle cycle, the lipid
metabolism correlates with glucose metabolism in a competitive
manner (Randle et al., 1963; Randle, 1998; Sugden, 2007).

Mechanistically, calcium overload regulates the
cardiomyocytes, especially in ischemia/reperfusion. When
the blood supply decreases, anaerobic metabolism will be
upregulated, but cellular pH and ATP production will decline.
Accordingly, the Na+/H+ exchanger (NHE) excretes hydrogen
ions in exchange for sodium ions (Pike et al., 1993; Sanada
et al., 2011). Ca2+ efflux deficiency, and constriction of the
reuptake by the endoplasmic reticulum (ER) due to the lack
of ATP, will result in calcium overload. Subsequently, the
mitochondrial permeability transition (MPT) pore will open,
and the mitochondrial membrane potential will change, further
weaken the production of energy. After the blood supply
is re-established, a cascade of events will be triggered to
aggravate the injury.

Many kinds of cell death were found to be engaged in
CVDs. Kuwana et al. (2002) provide compelling evidence that
the permeabilization of the OMM is involved in apoptosis.
When Ca2+ gets access into the mitochondria, and opens the
mitochondrial permeability transition pore (mPTP), water flows
into the mitochondria, causing it to swell and undergo necrosis
(Baines et al., 2005). Matsui et al. (2007) reported that autophagy

was mediated by AMP-activated protein kinase (AMPK)-
dependent pathway in the heart during ischemia/reperfusion
injury. Kanamori et al. (2011) verified that autophagy can protect
cardiomyocytes from death when suffering from ischemia.

Ohara et al. (1993) first pictured the hallmark of
oxidative stress in CVDs in a hypercholesterolemia model.
The redox crosstalk contributes to many diseases, such as
atherosclerosis. Endothelial dysfunction initiates the process
of atherosclerosis. Oxidized LDL (oxLDL) leads to the release
bioactive phospholipids that can activate ECs and promote
the pathogenesis of atherosclerosis (Hansson et al., 2006).
Judkins et al. (2010) discovered the elevated expression of
NOX2, an isoform of NADPH oxidase, in ECs and macrophages
of lipoprotein deficient ApoE-/- mice, which leads to the
formation of atherosclerotic lesions and increased aortic
superoxide production. Two studies led by Nishida et al. (2000,
2002) indicate that activation of G-protein coupled receptors
(GPCR) can generate ROS. Experiments on neonatal rat
ventricular myocytes verified the function of ROS in activating
hypertrophic growth signaling via G-proteins (Dai et al., 2011).
In hypertension, ROS elevate the concentration of intracellular
Ca2+ as a second messenger, causing vasoconstriction (Brito
et al., 2015). The NOX signaling pathway is important in
vascular processes, and lack of NO (nitric oxide), but increased
oxidative stress, can be observed in hypertension (Touyz, 2004).
Dudley et al. (2005) found increased oxidative stress and O2·−

production relating to NADPH oxidase in an atrial fibrillation
model. Aforementioned articles show evidence suggesting the
function of oxidative stress in various kinds of CVDs, but further
research on the mechanisms of oxidative stress may produce
some unexpected breakthroughs.

Oxidative Stress-Induced Ferroptosis
and CVDs
Cardiomyocytes account for approximately 75% of the heart’s
volume, and are rich in mitochondria. They are the main
source of cardiac energy metabolism, and are the main site for
the production of reactive oxidative species (ROS). Different
kinds of cell death, including apoptosis, necrosis, pyroptosis,
and ferroptosis, have been shown to be involved in the
pathophysiologic process of various CVDs. Studies that describe
the roles of ferroptosis in CVDs are listed in Table 1.

With the development of international research on ferroptosis,
various types of iron death inducers and inhibitors were invented,
but the specific mechanisms remain unknown. Myocardium
iron overload is detected in mice I/R model, and the treatment
of ferroptosis inhibitors can greatly improve cardiac function
after I/R (Bulluck et al., 2016; Fang et al., 2019). Proteomic
studies found that the down-regulation of myocardial GPX4
expression was detected in the early-stage (1 day) and mid-term
(1 week) of myocardial infarction in mice, and inhibition of GPX4
expression or function in an in vitro model can significantly
increase ferroptosis of myocardial cells (Park et al., 2019).
Park et al. (2019) revealed that ROS and GPX4 is downregulated
in the progression of MI regarding the involvement of the
glutathione metabolic pathway. Li et al. found that severe
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TABLE 1 | Existing studies suggesting the roles of ferroptosis in cardiovascular diseases.

References Year Models Findings Pathways

Li et al., 2020 2020 DM model were injected with
streptozotocin in the tail vein

Inhibited ferroptosis could alleviate diabetes
myocardial IRI

ATF4-CHOP pathway

ERS pathway

I/R model was made by ligation of LAD

Chen et al., 2019 2019 Aortic banding (AB) group and
sham-operated (SO) group

Increased TLR4 and NOX4 in HF; activated
autophagy and increased ferroptosis

TLR4/NADPH oxidase 4 pathway

TLR4-siRNAs group and NOX4-siRNAs
group

Feng et al., 2019 2019 Sham hearts, excised hearts in perfusion
with KH buffer+LIP-1, or KH buffer+vehicle

Decreased infarct size, increased
mitochondrial function

VDAC1

GPX4

Lip-1 protected heart from I/R injury

Li et al., 2019 2019 Non-transplant-related myocardial IRI with
vehicle or Fer-1. WT, TLR4-, CD14-, and
Trif-deficient hearts

Inhibited ferroptosis and targeted the
TLR4/Trif/type I IFN pathway improved IRI
and inflammation after heart transplant

TLR4/Trif/type I IFN pathway

Song et al., 2021 2021 AMI models with infusion of PBS or
exosomes

Decreased AMI mice myocardial injury
through inhibiting ferroptosis

miR-23a-3p

DMT1

Tang L. J. et al., 2021 2021 Rat model of myocardial ischemia or IRI Ferroptosis mainly occurred in the phase of
myocardial reperfusion but not ischemia

ACSL4, iron, malondialdehyde, and
GPX4

Wang J. Y. et al., 2020 2020 A TAC mice model to establish Chronic
Heart Failure

MiR-351 can decreased the level of MLK3 The JNK/p53 signaling pathway

Wang C. Y. et al., 2020 2020 Cecal ligation and puncture (CLP)
operation. Control (ctrl), CLP, CLP + Dex,
and CLP + Dex + YOH groups

Decreased sepsis-induced myocardial
ferroptosis

HO-1, iron

GPX4

Tadokoro et al., 2020 2020 Doxorubicin-induced cardiomyopathy (DIC)
model in GPx4 Tg mice and GPx4 hetKO
mice

Decreased GPX4 and increased ferroptosis
in mitochondria

GPX4

Nemade et al., 2018 2018 Purified human iCell cardiomyocytes which
are derived from hiPSCs treated
with/without etoposide

The inhibitor of ferroptosis and apoptosis
attenuated the heart injury caused by ETP

p53-mediated ferroptosis pathway

Park et al., 2019 2019 Myocardial infarction mouse model Downregulation of GPX4 in MI advanced
ferroptosis in cardiomyocytes

Glutathione, ROS, and GPX4

DM, diabetes mellitus; LAD, left anterior descending branch; I/R, ischemia/reperfusion; IRI, ischemia reperfusion injury; AB, aortic banding; SO, sham-operated; AMI,
acute myocardial infarction; CLP, Cecal ligation and puncture; DIC, Doxorubicin-induced cardiomyopathy; HF, heart failure; Dex, Dexmedetomidine.

myocardial damage is observed in DM rat with I/R and cell
in high-glucose reoxygenation. Ferrostatin-1, the inhibitor of
ferroptosis, reduces the endoplasmic reticulum stress (ERS) and
myocardial injury in diabetes mellitus (DM) rats with I/R,
whereas erastin shows the opposite effect (Li et al., 2020).
Ferroptosis is thought to contribute in the progression of
heart failure. Chen et al. (2019) found that toll-like receptor
4 (TLR4) and NADPH oxidase 4 (NOX4) were up-regulated
and differentially expressed genes (DEGs) in myocardium
resulting from heart failure. The HF rats with knock-down
of TLR4 and NOX4 by lentivirus siRNA were detected with
attenuated autophagy and ferroptosis, improved heart function,
and decreased death of myocytes. Friedmann Angeli et al.
(2014) showed that liprostatin-1 suppresses ferroptosis in human
cells. Feng et al. (2019) provided evidence suggesting that Lip-
1 reduced the size of MI and preserved the mitochondrial
function via the I/R model reperfused with Lip-1, further
study suggested that Lip-1 treatment reduced VDAC1 level
and oligomerization, increased antioxidant GPX4 protein level

and decreased mitochondrial ROS production. Tang et al.
concluded that ferroptosis participates in the phase of reperfusion
rather than ischemia (Tang L. J. et al., 2021). The addition of
ferrostatin-1 leads to reduced size of MI, and it improved systolic
function. It is proposed that ferroptosis and the TLR4/Trif/type
I IFN signaling pathway initiate the inflammation which is
involved in the adhesion of neutrophils and endothelium after
cardiac transplantation (Li et al., 2019). Human umbilical cord
blood (HUCB) mesenchymal stem cells (MSC)-derived exosomes
inhibited ferroptosis, and exhibited cardioprotective effects on
myocardial injury of acute myocardial injury mice, which may
be related to the reduced divalent metal transporter 1 (DMT1)
expression caused by miR-23a-3p (Song et al., 2021). Mixed
lineage kinase 3 (MLK3) regulates oxidative stress through
the JNK/p53 signaling pathway, inducing ferroptosis in the
pathophysiologic process of myocardial fibrosis under pressure
overload (Wang J. Y. et al., 2020).

Research conducted by Wang C. Y. et al. (2020) found
that dexmedetomidine can promote sepsis-related myocardial
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ferroptosis and heart injury, acting through the decline of Ho-
1 overexpression, iron levels, and GPX4 activity. Doxorubicin
(DOX) is a traditional anthracycline chemotherapeutic with
dose-dependent cardiac toxicity. In a study conducted by
Tadokoro et al., DOX induced ferroptosis via downregulation
of GPX4 and lipid peroxidation in mitochondria (Tadokoro
et al., 2020). The other anti-cancer drug, etoposide (ETP),
also causes cardiotoxicity. Human pluripotent stem cell-derived
cardiomyocytes (hPSC-CMs) treated with liproxstatin-1 had
increased function after the addition of ETP. The activation of
the p53-mediated ferroptosis pathway by ETP is the key toward
ETP-induced cardiotoxicity (Nemade et al., 2018). In summary,
ferroptosis can be a target for protection against many CVDs,
such as autotaxin (ATX), ferritin H, rapamycin, apart from
ferroptosis inhibitors, such as ferrostatin-1 and liproxstatin-1
(Baba et al., 2017; Bai et al., 2018; Fang et al., 2019, 2020).

EPIGENETIC REGULATORS OF
FERROPTOSIS AND OXIDATIVE STRESS

Epigenetic Regulators of Ferroptosis
In 1942, Waddington CH first proposed the name “epigenotype”
and used the term “epigenetics” as the branch of biology
emphasizing the relation between genes and their products
(Waddington, 2012). Owing to the technological advances and
new discoveries, the definition of epigenetics has evolved.
Nowadays the most common definition is “the study of
mitotically and/or meiotically heritable changes in gene function
that cannot be explained by changes in DNA sequence” (Bonasio
et al., 2010). One hallmark of epigenetics is the fixed nucleotide
sequence (Goldberg et al., 2007). It is a new direction for the
therapy of some related diseases. Epigenetics is a bridge that links
genotype and phenotype. Currently, the epigenetic process can be
clarified into DNA methylation, histone modification (including
methylation, acetylation, phosphorylation, ubiquitination, and
SUMOylation) and RNA-based mechanism [including long
non-coding RNAs (lncRNAs) and microRNAs (miRNAs)]
(Prasher et al., 2020).

Several studies have investigated the effect of some epigenetic
molecules in ferroptosis in recent years. In Jiang et al.’s
study, lymphocyte-specific helicase (LSH), a DNA methylation
modifier, can interact with WDR76 to inhibit ferroptosis at the
transcriptional level. WDR76 induce lipid metabolic gene and
ferroptosis related gene expression in DNA methylation and
histone modification via LSH and chromatin modification, the
process is affected by lipid ROS and iron concentration (Tao et al.,
2017). LncRNAs are made up of over 200 nucleotides but the
ability to code protein is relatively low. Abnormal expression of
LncRNAs have been shown to be associated with tumorigenesis.
For example, LncRNAs participate in the pathophysiology of
non-small cell lung cancers (NSCLC) by regulating ferroptosis
(Wu et al., 2020). LncRNA function analysis showed that the
ferroptosis pathway is associated with SLC7A11 which was
downregulated in XAV939-treated NCI-H1299 cells, giving a
potential therapeutic target for NSCLC (Yu et al., 2019). Different
LncRNAs play different roles in ferroptosis. P53RRA activates

the p53 pathway and influences gene transcription to promote
ferroptosis, whereas LINC0336 decreases iron concentration
and lipid ROS by interacting with ELAV-like RNA binding
protein 1 (ELAVL1) to inhibit ferroptosis (Mao et al., 2018;
Wang M. et al., 2019). Deubiquitinase is encoded by BRCA1-
associated protein (BAP1). Several studies have revealed that
BAP1 can inhibit ubiquitinated histone 2A (H2Aub) occupancy
on the SLC7A11 promoter (Zhang et al., 2018). Experiments
confirm that the downregulated SLC7A11 leads to cystine
starvation and GSH depletion to block ferroptosis (Fan et al.,
2018). Monoubiquitination of histone H2B on lysine 120
(H2Bub1) promotes the expression of SLC7A11 and regulates
many metabolic-related genes, but the p53-USP7-H2Bub1 axis
regulates ferroptosis (Wang Y. F. et al., 2019). Selenium-induced
selenome gene augmentation can inhibit ferroptosis and protect
neuronal cells at the epigenetic level (Alim et al., 2019). Research
shows low DNA methylation and elevated levels of H3K4me3 and
H3K27ac upstream of GPX4, indicating that high levels of GPX4
may be related with epigenetic regulation (Zhang et al., 2020).
Wang et al. reported that overexpression of KDM3B (a histone
H3 lysine 9 demethylase) led to decreased histone H3 lysine 9
methylation, but increased the expression of SLC7A11 with the
transcription factor, ATF4 (Wang Y. S. et al., 2020).

Epigenetic Regulators of Oxidative
Stress Response
There are also some epigenetic factors that affect oxidative stress
response, but have not yet been proven to be directly related to
ferroptosis, owing to the close contact between ferroptosis and
oxidative stress, a brief introduction is made here. Experimental
studies exploring epigenetic regulators of the oxidative stress
response are shown in Table 2.

Many studies regarding epigenetic regulation have been
conducted in cancers, mental illnesses, and immune diseases
in recent years. Epigenetic regulation also plays a strong part
in CVDs. In a study conducted by Xiao et al. (2019), they
found that S-adenosylhomocysteine (SAH) levels in plasma were
positively correlated with oxidative stress, and were inversely
correlated with flow-mediated dilation and methylation of
p66shc promoter in CAD (coronary artery disease) patients and
normal subjects. Further research indicates that inhibition of
SAH hydrolase results in the increased level of SAH and oxidative
stress by epigenetic regulation of p66shc expression, leading to
the endothelium injury that may accelerate the progression of
atherosclerosis (Xiao et al., 2019).

Nitric oxide is a fundamental molecule that can regulate
vasodilatation and prevent vascular inflammation (Tsutsui et al.,
2006). SIRT1, a class III histone deacetylase involved in the aging
of mice fibroblasts, human ECs, and tumor cells (Ota et al., 2006),
may be relevant to the production of ROS and oxidative stress
(Hwang et al., 2013). Ota et al. conducted a series of studies on
the effects of SIRT1 in ECs. The elevated level of NO strengthens
the SIRT1 activity and delays endothelial senescence, but the
accumulation of oxidative stress and decreased production of
NO in aging will lead to SIRT1 inactivation (Ota et al., 2008).
Cilostazol, a selective inhibitor of PDE3, protects ECs from

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 August 2021 | Volume 9 | Article 685775

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-685775 August 14, 2021 Time: 15:43 # 7

Li et al. Epigenetic Regulators in Cardiovascular Diseases

TABLE 2 | Experiments on the epigenetic regulators of oxidative stress response.

References Year Models Findings Pathways

Xiao et al., 2019 2019 Animals were conducted with apolipoprotein
E-deficient (apoE−/−) and heterozygous SAHH
knockout (SAHH+/−) mice

Inhibition of SAHH led to decrease SAH levels in
plasma, increase oxidative stress and endothelial
dysfunction

p66shc-mediated pathway

Ota et al., 2010 2010 HUVECs were pretreated with vehicle, atorvastatin,
pravastatin, or pitavastatin diluted in EGM-2
medium for 1 day

Decreased oxidative stress-induced endothelial
senescence

The Akt Pathway

Ota et al., 2008 2008 Proliferating HUVECs exposed for 24 h to the
indicated concentrations of sirtinol (Calbiochem) or
nicotinamide (NAM, Wako Chemical Industries)
diluted in medium.

Decreased oxidative stress-induced premature
senescence

SIRT1

Hu et al., 2019 2019 NRVFs and rat aortic smooth muscle cells were
equilibrated in corresponding medium with 0.1%
FBS for 24 h prior to incubation with DMSO,
TMP195, or AI-1 for 48 h

HDAC5 inhibition stimulated cardiac NRF2 activity
by triggering oxidative stress and HDAC5 catalytic
activity reduced cardiomyocyte oxidative stress

NRF2

Costantino et al., 2018 2018 Diabetes was induced in 4-month-old male C57/B6
mice by a single high dose of streptozotocin. An
equal volume of citrate buffer was administered in
control animals

P66Shc upregulated and induced oxidative stress in
the diabetic heart. In vivo gene silencing of p66Shc
rescued diabetes-induced myocardial dysfunction

P66shc

Xu et al., 2017 2017 The specific HDAC3 inhibitor RGFP966 and
pan-HDAC inhibitor valproic acid were
subcutaneously injected into the mice every other
day for 3 months

RGFP966 prevented diabetes-induced cardiac
dysfunction, inhibited diabetes-induced oxidative
stress and inflammation in the mouse

DUSP5-ERK1/2 pathway

Hussain et al., 2020 2020 Diabetes was induced by streptozotocin and
control group

Decreased JunD mRNA and protein expression in
STZ-induced diabetes

JunD

apoE−/−, apolipoprotein E-deficient; SAH, S-adenosylhomocysteine; SAHH, SAH hydrolase; HUVECs, Human umbilical vein endothelial cells; STZ, streptozotocin.

ischemic damage by producing NO. Ota and his colleagues
observed cells treated with H2O2 or Cilostazol, and evaluated the
expression of senescence-associated beta-galactosidase assay (SA-
betagal). They found that cilostazol increased phosphorylation
of Akt at Ser473, as well as eNOS at Ser1177, but the
phosphorylation increased SIRT1 expression in a dose-dependent
manner (Ota et al., 2008). A similar experiment was conducted by
Ota et al. to determine the mechanisms underlying the vascular
protective effects of statins. Statins prevent the endothelium
from aging by enhancing SIRT1 through the Akt pathway (Ota
et al., 2010). Hu et al. found that HDAC5 catalytic activity
inhibits cardiomyocyte oxidative stress via NRF2 stimulation.
The selective class IIa HDAC inhibitors, TMP195 or TMP269,
or shRNA-mediated knockdown of HDAC5 can lead to NRF2-
mediated transcription (Hu et al., 2019).

In the diabetic heart, the expression of p66shc increases, but
3-week intensive glycemic control cannot reverse it. Further
experiments, which silence the gene of p66shc in vivo, lead
to the inhibition of ROS and promotion of cardiac function.
Upregulation of miR-218 and miR-34a results in changes of
the DNMT3b/SIRT1 axis in the diabetic heart, which may be
a potential target to cure diabetic cardiomyopathy (Costantino
et al., 2018). Another study, conducted by Hussain et al.
(2020), found that JunD (a member of AP-1 transcript family)
mRNA and protein are shown to have decreased expression
in STZ-induced diabetes, which is relevant to oxidative stress,
and is regulated by DNA hypermethylation, post-translational
modification of histone markers, and translational inhibition by
miRNA. Xu et al. treated diabetic mice with HDAC3 inhibitor,
RGFP966, and found improved heart dysfunction, hypertrophy,
fibrosis, and diminished oxidative stress. Furthermore, increased

phosphorylated extracellular signal-regulated kinases (ERK) 1/2
and decreased dual specificity phosphatase 5 (DUSP5) were
observed, but RGFP966 can reverse this. Elevated histone H3
acetylation plays an important role DUSP5 gene promoter in
diabetic cardiomyopathy (Xu et al., 2017).

EPIGENETIC REGULATORS AS NOVEL
THERAPEUTICS

Over the past two decades, mounting efforts have been made to
uncover new ways for cardiac repair, such as drug development
(e.g., diuretics and ARNI), cardiac devices [e.g., pacemakers
and implantable cardiac defibrillators (ICD)], and operations
[e.g., electrical defibrillations and transcatheter aortic valve
replacement (TAVR)]. In addition, the prognosis of CVD is
not satisfied, and further investigation exploring fundamental
mechanisms of impaired cardiomyocytes is needed. Epigenetic
regulators provide a potential kind of therapy to treat CVDs,
which will lay the foundation for individualized medical care.

Iron metabolism homeostasis is strictly regulated by multiple
genes, including divalent metal transport-1 (DMT1), TFR1,
TFR2, ferroportin (FPN), hepcidin (HAMP), hemojuvelin (HJV),
and Ferritin H (Duan et al., 2020). Moreover, epigenetic
regulators, such as DNA methylation, histone acetylation, and
microRNA participate in iron metabolism homeostasis.

The therapies of CVDs targeting epigenetics are relatively
rare. As mentioned above, SIRT1 expression has positive
effects in many diseases, including cancer, CVDs, chronic
obstructive pulmonary disease (COPD), and type 2 diabetes
(Satoh et al., 2011). Resveratrol, a SIRT1 activator, has been
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suggested to improve heart function via vasodilation, antioxidant
activity, and platelet aggregation (Baur and Sinclair, 2006).
Resveratrol regulate the vasorelaxant activity through Ca2+-
activated K+ channels (Li et al., 2000) and NO signaling in
the endothelium (Orallo et al., 2002). Das et al. suggested
resveratrol upregulates both endothelial and inducible NO
synthase (eNOS and iNOS) (Das et al., 2005). Cilostazol protects
ECs from ischemic injury by increasing SIRT1-dependent eNOS
phosphorylation, producing substantial NO, and the inhibition
of SIRT1 leads to inactivation of cilostazol on premature
senescence (Ota et al., 2008). Currently, cilostazol is a common
clinical drug aiming at ameliorating damage from ischemic
injury. A novel SIRT activator, 1,4-dihydropyridine derivatives
(DHPs), shows enhanced mitochondrial activity involving PGC-
1α (Mai et al., 2009).

Noncoding RNAs are reportedly a potential target for
therapeutics in CVDs (Lucas et al., 2018). In acute myocardial
infarction, several families of miRNAs kick in, miR-34 can
promote telomere erosion, and can regulate the target gene
PNUTS (Bernardo et al., 2012; Boon et al., 2013), miR-
24 target sirtuin 1, and can regulate EC apoptosis (Fiedler
et al., 2011). Inhibition of miR-25 promotes heart function
pertaining to the calcium uptake pump, SERCA2a (sarco/ER
Ca2+-ATPase 2a) (Wahlquist et al., 2014). The related therapies
include antisense oligonucleotides, siRNAs, antagomiRNAs, and
antimiRNA application.

Yang K. C. et al. (2014) described the myocardial RNA
sequence, suggested that the expression profiles of lncRNAs,
but not mRNAs or miRNAs, can predict the different pathology
of failing heart, indicating the important role of lncRNAs
in CVDs. The lncRNA Mhrt (myosin heavy chain-associated
RNA transcript) was found repressed under pathological stress
condition such as pressure overload-induced hypertrophy and
showed cardioprotective effects when restore the physiological
concentration (Han et al., 2014). Piccoli et al. (2017) provided
evidence suggesting that Inhibition of lncRNA Meg3, which
is rich in cardiac fibroblasts, can prevent cardiac fibrosis
and diastolic dysfunction. Mutations of the lncRNA H19
have been found related to coronary artery disease (Gao
W. et al., 2015). The expression of H19 is highly reduced
in atherosclerotic plaques or vascular injury, indicating the
important role in cardiovascular system (Kim et al., 1994;
Han et al., 1996). LncRNA therapeutics are also promising,
in addition to inhibit lncRNA by antimiRs, the function
of lncRNA can be blocked by shRNAs including siRNAs,
modifed ASOs (antisense oligonucleotides), and gapmers
(Lucas et al., 2018).

A growing number of experiments show evidence suggesting
the involvement of epigenetics in cancer, CVDs, and metabolic
diseases, which provides new ideas on the therapy of refractory

diseases. Precision medicine and personalized therapy is the
trend, as the development of medicine, genomics, and epigenetics
will be the most important tools of the new generation of doctors.

CONCLUSION

Ferroptosis is a novel programmed cell death involving
inhibition of enzyme GPX4 and lipid hydroperoxides, which
was first widely studied in oncology. Oxidative stress-induced
ferroptosis have been found to be extensively involved in the
biogenesis and development of CVDs, and the inducers, the
inhibitors, and the pathways of ferroptosis have been widely
explored. Nowadays, the understanding of the role of epigenetics
in ferroptosis have greatly increased. However, epigenetic
mechanisms, such as lncRNAs, histone monoubiquitination, and
DNA methylation are showed to engage in the ferroptosis process
involved with CVDs.

Research on epigenetic drugs for CVDs has made great
achievements, such as resveratrol, cilostazol, and miRNA
family, which reveal the potential of epigenetic therapy for
CVDs. However, the current epigenetic molecular mechanism
of ferroptosis and the study of cardiac ferroptosis still need
to be studied in depth. Thorough research in both basic
research and clinical studies, are necessary to fully elucidate
the relationship between ferroptosis and epigenetics in CVDs.
Some biology approaches including total RNA-sequencing (RNA-
seq), single cell RNA-seq, chromatin-immunoprecipitation-
sequencing (ChIP-seq), and DNA methylation profiling can
help us to further explore the epigenetic regulation with
ferroptosis (Xu et al., 2018). And modern biotechnologies such
as CRISPR/Cas9, Cre-loxp, proteomics, metabolism omics can
comprehensively study the specific mechanisms of epigenetic
regulation of ferroptosis for different genes and different stages
of iron homeostasis. Hopefully, therapy against epigenetic targets
will be promising for treating CVDs in the future.
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