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Predictable sensory stimuli do not evoke significant responses in a subset of cortical
excitatory neurons. Some of those neurons, however, change their activity upon mis-
matches between actual and predicted stimuli. Different variants of these prediction-
error neurons exist, and they differ in their responses to unexpected sensory stimuli.
However, it is unclear how these variants can develop and coexist in the same recurrent
network and how they are simultaneously shaped by the astonishing diversity of
inhibitory interneurons. Here, we study these questions in a computational network
model with three types of inhibitory interneurons. We find that balancing excitation
and inhibition in multiple pathways gives rise to heterogeneous prediction-error circuits.
Dependent on the network’s initial connectivity and distribution of actual and predicted
sensory inputs, these circuits can form different variants of prediction-error neurons that
are robust to network perturbations and generalize to stimuli not seen during learning.
These variants can be learned simultaneously via homeostatic inhibitory plasticity with
low baseline firing rates. Finally, we demonstrate that prediction-error neurons can
support biased perception, we illustrate a number of functional implications, and we
discuss testable predictions.
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sensory coding

The theory of predictive processing posits that neural networks strive to predict sensory
inputs and use prediction errors (PEs) to constantly refine an inner model of the world
(1–3). Neural hallmarks of PEs have been found widely. Dopaminergic neurons in the
basal ganglia and striatum encode reward PEs (4). Some neurons in layer 2/3 of the
rodent primary visual cortex (V1) (5, 6) or neurons in the telencephalic areas of adult
zebrafish (7) are driven by mismatches between actual and predicted visual consequences
of motor commands. Similarly, a subset of cortical neurons responds to auditory feedback
perturbations during vocalization (8, 9), and some excitatory cells in mouse barrel cortex
are sensitive to abrupt mismatches of tactile flow and the animal’s running speed (10).
However, those neurons are embedded in complex circuits that exhibit a rich diversity of
cell types interacting in many ways (11–15). It is mostly unresolved whether and how this
diversity collaboratively shapes, processes, and refines PEs.

Mismatches may occur in two variants; sensory inputs can be overpredicted (OP) or
underpredicted (UP), depending on whether the prediction is larger or smaller than the
sensory stimulus, respectively. While dopaminergic neurons signal mismatches bidirec-
tionally (4), this may be impossible for neurons with very low spontaneous firing rates
as, for instance, cortical neurons in layer 2/3 of V1 (16, 17) because negative deviations
would be bounded from below. Thus, it has been suggested that cortical PE neurons come
in two flavors (1, 3); negative prediction-error (nPE) neurons only increase their activity
relative to baseline (BL) when a sensory stimulus is smaller than predicted, while positive
prediction-error (pPE) neurons only increase activity when a sensory stimulus is larger
than predicted.

Computing PEs, no matter whether negative or positive mismatches, requires inhibi-
tion (3). Despite being outnumbered by excitatory neurons, inhibitory interneurons shape
cortical computations in many ways (11, 14, 18–22). This rich repertoire of interneuron
function is accompanied by great diversity in their morphology, physiology, connectivity
patterns, and synaptic properties (11, 14). In a computational model of layer 2/3 of rodent
V1, it has been shown that the presence of nPE neurons imposes constraints on the
interneuron network in the form of a balance of excitation and inhibition (E/I balance)
(23). However, it is not resolved whether the coexistence of nPE and pPE neurons imposes
further requirements on the interneuron circuit they are embedded in. Moreover, the
formation of mismatch neurons in layer 2/3 of V1 relies on normal visuomotor coupling
during development (6). This suggests that PE neurons are experience-dependent, raising
the question of how networks self-organize to give rise to them. While it has been shown
that separate nPE and pPE circuits can be learned by means of homoestatic inhibitory
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plasticity (23), it is not resolved if and how this generalizes to
networks with both nPE and pPE neurons.

To elucidate the circuit-level mechanisms that underlie the
parallel formation of both PE neuron types, we design a rate-
based computational model with excitatory neurons and three
types of inhibitory neurons. We first show that in a simplified
mean-field network, nPE and pPE neurons can coexist when
an E/I balance is established. Moreover, the interneuron circuit
must comprise two distinct sources of somatic inhibition. The
dendritic inhibition must be driven by feed-forward bottom-
up signals. We demonstrate that depending on the distribution
of actual and predicted sensory inputs onto the interneurons,
the mismatch response of PE neurons is either the result of an
excess of excitation at the dendrites or the suppression of somatic
inhibition. Once established, these PE neurons are robust to mod-
erate network perturbations. We then simulate a heterogeneous
network model and show that both nPE and pPE neurons can
be learned simultaneously by inhibitory homeostatic plasticity
when the network is exposed to predicted sensory stimuli and
the excitatory neurons exhibit low BL firing rates. When synaptic
plasticity establishes a balance of excitatory and inhibitory inputs,
the PE neurons are robust and generalize to stimuli not seen
during learning. Furthermore, we investigate how the ratio of nPE
and pPE neurons depends on the predictability of sensory stimuli
during learning, the distribution of actual and predicted sensory
inputs, and the initial connectivity between neurons. Finally, we
connect a heterogeneous PE circuit with an attractor network and
show that PE neurons can support biased perception (24–29). By
means of the example of a contraction bias, we illustrate a number
of functional implications for PE neurons. We show that they can
act as an internal cue switching the network between attractors,
may underpin generalization across distinct stimuli statistics, and
can support faster learning.

Results

Given that neural circuits contain an astonishing variety of neuron
types and cell type–specific connections (11, 13, 14), we won-
dered under which constraints both nPE and pPE neurons can
develop simultaneously in the same recurrent network. To address
this question, we studied a rate-based network model with excita-
tory pyramidal cells (PCs) and inhibitory parvalbumin-expressing
(PV), somatostatin-expressing (SOM), and vasoactive intestinal
peptide–expressing (VIP) interneurons (Fig. 1A). The relative
distribution of neuron types, their connection probabilities, and
strengths are motivated by electrophysiological studies (e.g., refs.
12, 13, and 30–35) (SI Appendix has details). While all inhibitory
neurons are modeled as point neurons (36), the excitatory neurons
are simulated as two coupled point compartments, representing
the soma and the dendrites, respectively.

All neurons receive an excitatory background input to ensure
reasonable BL firing rates in the absence of any sensory stimula-
tion (“BL phase”). In addition, we stimulated the neurons with
time-varying inputs that represent actual and predicted sensory
stimuli. It is known that excitatory neurons receive feed forward,
sensory inputs at their basal dendrites and perisomatic region
and feedback projections from higher-order cortical areas at their
apical dendrites (37, 38). These feedback projections are assumed
to carry information about expectations, beliefs, or predictions
(37, 39, 40) and mediate a broad range of functional roles (41,
42). While the distribution of feed-forward and feedback inputs
among the compartments of PCs is well studied, the distribution
among different types of cortical inhibitory interneurons is less
certain and likely diverse (14, 38, 43, 44). To account for different

input distributions and their effect on the formation of nPE and
pPE neurons, the inputs onto inhibitory interneurons are varied
in our simulations.

To identify nPE and pPE neurons, we modeled their responses
to different combinations of actual and predicted sensory informa-
tion. When the sensory input is fully predicted (FP; that is, both
inputs are equal), the PE neurons remain at their BL. Mismatches
can come in two flavors; either the predicted sensory input is larger
than the actual sensory input (“overpredicted” in ref. 6; this phase
is referred to as the “mismatch phase”) or smaller than the actual
sensory input (“underpredicted” in ref. 6; this phase is referred
to as the “playback phase”). While nPE neurons only increase
their firing rate relative to BL when the sensory input is OP, pPE
neurons increase their activity when the sensory input is UP.

A Multipathway E/I Balance in nPE and pPE Neurons. To inves-
tigate the conditions under which both PE neuron types coexist,
we first made use of a simplified mean-field analysis of the full
neural network, for which the dynamics of each neuron type or
compartment are represented by a linear equation.

We found that in a network with inhibitory PV, SOM, and
VIP neurons, both nPE and pPE neurons can coexist when the
interneuron network establishes an E/I balance (ref. 23 discusses
homogeneous nPE circuits). An informative example of such a
balance is a network in which SOM neurons receive sensory inputs
and VIP neurons receive a prediction thereof (Fig. 1 B–E). Both
PE neurons types receive at their soma the same amount of exci-
tatory and inhibitory inputs when the network is stimulated with
FP sensory stimuli. For nPE neurons, this balance is preserved
for stimuli larger than predicted and temporarily broken in favor
of excitation for stimuli smaller than predicted. In contrast, for
pPE neurons, the E/I balance is preserved for stimuli smaller than
predicted and temporarily broken for stimuli larger than predicted
(Fig. 1B).

Importantly, our analysis shows that this E/I balance is a
balance in not only the total inputs onto PE neurons but
also, the pathways those inputs can take through the circuit
(SI Appendix, Fig. S1 and SI Text have details). To show this,
we computed the sum of all pathways that originate from a
particular neuron type/compartment and ended either at the
soma or at the dendrites of PE neurons. The contributions for
all neuron types/compartments, separated into net excitatory
and inhibitory pathways, reveal an E/I balance (Fig. 1C and
SI Appendix, Fig. S2B). As a consequence of the balanced
pathways, the ability of PE neurons to remain at their BL activity
is independent of the particular stimulus strength, provided the
neuronal input–output transfer functions are sufficiently linear.

A mean-field network with this compartment-specific E/I bal-
ance shows both nPE and pPE neurons (Fig. 1D). The activity
of PV, SOM, and VIP neurons varies between the different
phases, reflecting the underlying connectivity required to achieve
a multipathway E/I balance and the different inputs onto the
interneuron types. In line with mismatch neuron responses in
the V1 (6), the simulated mismatch responses increase with the
difference between actual and predicted sensory inputs (Fig. 1E).

Our analysis revealed that a circuit with only one source of
somatic inhibition was not sufficient to give rise to both nPE and
pPE neurons. This can be intuitively understood by the following
reasoning. The dendrites are balanced or inhibited for one of
the two mismatch phases (SI Appendix, Fig. S2) and hence, do
not contribute to the somatic activity. As a result, any change of
activity in PE neurons must be a consequence of changes in the
somatic inputs. The PE neuron type increasing the activity during
that mismatch phase requires the currents flowing through the
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Fig. 1. Multipathway E/I balance in nPE and pPE neurons. (A, Left) Network model with excitatory PCs and inhibitory PV, SOM, and VIP neurons. Connections
from PCs are not shown for the sake of clarity. In a PE circuit, PCs act as either nPE or pPE neurons. The somatic compartment of PCs and half of the PV neurons
(PVS) receive the actual sensory input, while the dendritic compartment of PCs and the remaining PV neurons (PVP) receive the predicted sensory input. SOM
and VIP neurons receive either actual or predicted sensory input. (A, Right) Sensory stimuli can be FP, OP, or UP. (B–E) Mean-field network derived from A with
the SOM neuron receiving the actual sensory input and the VIP neuron receiving the predicted sensory stimulus. (B) In a PE circuit, the excitatory (red) and
inhibitory (blue) inputs are balanced for FP sensory stimuli for both nPE and pPE neurons. This balance is preserved for UP stimuli (nPE neurons; Upper) or OP
stimuli (pPE neurons; Lower). Stimulus strength is 1 s−1. Shown are the inputs without the excitatory background input that defines the BL firing rate. (C) Both
nPE (Upper) and pPE (Lower) neurons exhibit balanced pathways onto both soma and dendrites. (D) Example activity of all neuron types for FP as well as OP and
UP stimuli for a network parameterized to establish an E/I balance in the pathways. The vertical black bar denotes 3 s−1; the horizontal black bar denotes 500
ms. (E) Mismatch responses for nPE (Upper) and pPE (Lower) neurons scale with the difference between actual and predicted sensory inputs.

interneuron circuit to be unbalanced. However, the PE neuron
type that remains at its BL during that mismatch phase requires
the currents flowing through the interneuron circuit to be bal-
anced (derivations are in SI Appendix). These two conditions
cannot be satisfied in an interneuron circuit in which the currents
are directed through one soma-targeting interneuron population
only. In our network, somatic inhibition is provided by PV
neurons. To create two types of somatic inhibition, we, therefore,
subdivided PV neurons into two groups, one receiving sensory
inputs and the other one receiving a prediction thereof. Given
the vast diversity of feed-forward and feedback inputs to PV
neurons reported experimentally (38, 43, 44), this assumption
is plausible for real biological systems. However, other than PV
neurons, other soma-targeting interneurons (11) can contribute
to establishing an E/I balance, so that the division of PV neurons
into subpopulations is not a strict requirement.

The results are robust to the input distributions onto SOM and
VIP neurons (SI Appendix, Fig. S2). Changing their inputs only
affects the pathway strengths that are required to achieve an E/I
balance. However, we find that for mismatch responses to develop,
SOM neurons, VIP neurons, or both must receive the actual
sensory input (SI Appendix, Fig. S2). The resulting PE circuits
differ not only in terms of the interneuron connectivity but also,
in the underlying mechanisms that give rise to the mismatch
responses in nPE and pPE neurons. The responses of nPE neurons
to OP stimuli and the responses of pPE neurons to UP stimuli are
either the result of an excess of excitation at the dendrites or a
withdrawal of somatic inhibition (SI Appendix, SI Text).

In summary, our analysis shows that in a simplified mean-field
network, PE neurons with arbitrary BL activity require a multi-
pathway E/I balance. Mismatch responses are the consequence of a
temporary imbalance of excitation and inhibition caused either by
an excess of dendritic excitation or by the suppression of somatic
inhibition. Moreover, the coexistence of nPE and pPE neurons
requires at least two distinct sources of somatic inhibition, as well
as dendrite-targeting interneurons that are also driven by sensory
inputs.

PE Neurons Are Robust to Network Manipulations. Neurons are
constantly bombarded with nonstationary local and long-range
synaptic inputs and regulated by neuromodulators, like acetyl-
choline or dopamine. Moreover, the activity of both excitatory
and inhibitory neurons is modulated by behavioral states and
highly context dependent (45). This naturally leads to the question
of whether PE neurons are robust to network perturbations. If
nPE and pPE neurons were sensitive to small changes in the
background inputs, they would need to be reconfigured con-
stantly. To study the network’s ability to withstand perturbations,
we individually injected additional inputs to the neurons of our
PE circuits (Fig. 2A). In our analysis, we focused on moderate
perturbation strengths to ensure that none of the neuron types are
silenced.

A unifying hallmark of both nPE and pPE neurons is that they
remain at their BL for FP stimuli. Hence, the total input to PE
neurons for anticipated stimuli must be equal to the total input
in the absence of sensory stimuli. Both excitatory and inhibitory
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network perturbations change the inputs to PE neurons in the
BL phase (Fig. 2B and SI Appendix, Fig. S3). However, the total
inputs for FP sensory stimuli change to the same extent (Fig. 2B
and SI Appendix, Fig. S3), leading to no significant changes in
activity relative to BL.

In the next step, we wondered how PE neurons change their
responses to unexpected mismatches when these mismatches are
accompanied by neuron-specific perturbations. For each pertur-
bation target and strength, we plotted the total input for OP and
UP sensory stimuli. In this depiction, nPE neurons lie on the
positive part of the y axis, while pPE neurons lie on the positive
part of the x axis (Fig. 2C ). The second and fourth quadrants
denote the range of bidirectional PE neurons that either increase
activity for sensory inputs smaller than predicted and decrease
activity for sensory inputs larger than predicted or vice versa. We
quantify perturbation-induced changes of PE neuron activity by
the angle Θ in this input space (Θ= 90: nPE neurons, Θ= 0:
pPE neurons).

Perturbations that targeted the soma of nPE and pPE neurons,
either directly or indirectly through PV neurons, have no or only
comparatively small effects on the responses upon unexpected
mismatches (Fig. 2D). Perturbations that targeted the dendrites,
either directly or indirectly through SOM and VIP neurons, can
have salient effects for some of the perturbation strengths tested.
In those cases, unidirectional PE neurons mostly transition into
bidirectional PE neurons. However, when excitatory neurons have
very low (close to zero) BL activities, negative deviations from the
BL are bounded from below and hence, are undetectable.

Altogether, these perturbation experiments show that once an
E/I balance has been established and gives rise to nPE and pPE
neurons, these neurons are robust to moderate network manipu-
lations and hence, do not need to be reconfigured. Moreover, our
simulations indicate that perturbations of either the dendrites of
PCs or interneurons that target them can modulate the mismatch
responses of PE neurons.

nPE and pPE Neurons Develop through Inhibitory Plasticity with
a Low Homeostatic Target Rate. It has been shown that mis-
match neurons in the V1 are experience-dependent and require
visuomotor coupling to develop normally (6). This suggests that
PE neurons are formed through learning. In a model of rodent V1,
nPE and pPE neurons were learned separately by means of local,
homeostatic inhibitory plasticity (23). It is, however, not resolved
how this can be generalized to learning nPE and pPE neurons in
the same recurrent network simultaneously.

The homeostatic inhibitory plasticity used in ref. 23 establishes
a target rate in the PCs for all inputs the network is exposed to
during learning. A direct consequence is that nPE neurons may
form when the network is exposed to stimuli that are smaller than
or equal to the prediction. Likewise, pPE neurons may develop
when the network is exposed to sensory stimuli that are larger than
or equal to the prediction. The increase of activity in nPE neurons
for OP stimuli and in pPE neurons for UP stimuli is, hence, a
result of the network never experiencing the respective mismatch
during training. This clearly shows a dilemma; to learn nPE and
pPE neurons in the same network, it must be exposed to FP as

S PSOM VIPPerturbation

nPE

pPE
nPE PVP

PVS

SOM

VIP BL FP

A B

C

D

nPE pPE

Fig. 2. PE neurons are robust to moderate network perturbations. (A) Each neuron type/compartment of a mean-field network with nPE and pPE neurons
is perturbed with an additional inhibitory or excitatory input. The same circuit as in Fig. 1 B–E is shown. SOM neurons receive the actual sensory input, while
VIP neurons receive a prediction thereof. (B) Total input into PE neurons during the absence of sensory stimuli (BL) and for FP sensory stimuli (FP) for different
perturbation strengths and different perturbation targets (Left shows compartments of PCs, and Right shows inhibitory neurons). Total inputs in both phases
are almost equal as a result of the established E/I balance. Gray indicates no perturbation. (C) Illustration of nPE (square) and pPE (circle) neurons in the input
space. Input space is defined by the total input to PCs for OP and UP sensory stimuli. nPE neurons lie on the positive part of the y axis, while pPE neurons lie
on the positive part of the x axis. Beige areas denote bidirectional PE neurons. Θ defines the angle in the input space. (D) Θ for different perturbation strengths
(Upper: excitatory; Lower: inhibitory) and different perturbation targets (Left: compartments of PCs; Right: inhibitory neurons). Perturbations have minor effects
on nPE and pPE neurons, especially when BL firing rates of PCs are low.
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well as OP and UP stimuli. The plasticity rule, however, will keep
the excitatory neurons at a target rate throughout, so that neither
nPE nor pPE neurons could emerge (SI Appendix, Fig. S4A).

We found that a simple solution is to train the network only
with phases of FP sensory inputs and set the homeostatic target
rate of PCs to zero so that any excess of somatic inhibition is not
reflected in the firing rates because it is bounded from below. By
using FP sensory inputs only, we assume that initially, predictions
develop independently from and faster than PE neurons. Hence,
we do not consider early phases of development in which sensory
inputs most likely cannot be perfectly predicted. However, we will
later show that both nPE and pPE neurons can still develop in
the face of moderate noise, leading to OP and UP stimuli during
learning.

To show that in this way, both nPE and pPE neurons can
develop, we made a subset of inhibitory synapses subject to
experience-dependent plasticity (Fig. 3A). While the synapses
onto PCs follow an inhibitory plasticity rule akin to ref. 46, the
inhibitory synapses onto PV neurons follow an approximation
of the backpropagation of error rule (47). This distinction was
necessary as all plastic synapses in the network must collectively
change to accommodate the objective function: that is, minimiz-
ing the deviations from a target of the PCs. While this information
is immediately available at synapses onto PCs, it must travel
to all other synapses. To avoid biologically questionable error
backpropagation through the connections from PV neurons onto
the PCs, we assume that the deviations are carried through the
connections from the PCs to the PV neurons. This rule can
be interpreted such that synapses onto PV neurons change in
proportion to the difference between the excitatory recurrent drive
onto them and a homeostatic target (SI Appendix and refs. 23 and
48 have more details).

Before learning, the network was randomly initialized with a
connectivity motivated by experimental studies (12, 13, 30–35),
leading to PCs that show deviations from BL in all phases (Fig. 3 B,
Left). The excitatory and inhibitory inputs at both soma and den-
drites of PCs are unbalanced for FP stimuli (Fig. 3 B, Right). Only
very few neurons could, therefore, be classified as PE neurons.
The total inputs to PCs for OP and UP stimuli were negatively
correlated and showed a near balance of top-down predictions and
bottom-up sensory inputs (49) (SI Appendix, Fig. S5A). During
learning, the inhibitory synapses collectively adjusted their effi-
cacy to keep the PCs at their target rate for perfectly predicted
sensory inputs (SI Appendix, Fig. S6A). At the end of learning,
the majority of PCs showed response patterns akin to nPE or
pPE neurons (Fig. 3 C, Left). The balance of top-down predic-
tions and bottom-up sensory inputs was preserved after learning
(SI Appendix, Fig. S5B). However, the excitatory and inhibitory
inputs at both soma and dendrites of PCs are not perfectly
balanced (Fig. 3 C, Right). That is a consequence of the target rate
being equal to the neurons’ rectification threshold. The objective
function (rPC = rtarget = 0) is already satisfied when the total
input to PCs is less than or equal to zero for all stimuli presented
during training. That is, the network does not necessarily strive
for an E/I balance. While this does not hamper the formation
of nPE and pPE neurons per se, it compromises some of the
properties of PE neurons that emerge from this balance. On the
one hand, the ability to generalize beyond the training stimuli does
not hold (Fig. 3D). On the other hand, the network is less robust
to perturbations (Fig. 3E), which means that PE neurons would
have to be relearned continuously.

We, therefore, modified our plasticity rules by introducing a
target for the total input to PCs, instead of a target for their
firing rate. This allows the synaptic weights to adjust to both

positive and negative deviations from the target and forces the
network to establish an E/I balance. After learning, excitatory and
inhibitory inputs to both soma and dendrites are balanced on a
stimulus by stimulus basis (Fig. 3 F, Right). As before, almost all
PCs developed into nPE or pPE neurons (Fig. 3 F, Left), and the
balance of top-down predictions and bottom-up sensory inputs
is preserved (SI Appendix, Fig. S5C ). In addition, nPE and pPE
neurons generalize beyond the training stimuli (Fig. 3G), and
PE neurons are more robust to moderate network perturbations
(Fig. 3H ).

While we used inhibitory homeostatic plasticity, other forms of
plasticity may be equally suited to learning nPE and pPE neurons.
However, we note that plasticity rules that do not establish a
homeostatic firing rate may not be sufficient. To show that, we
trained a network in which the synapses onto the PCs followed
a Hebbian plasticity rule as before, while the synapses onto the
PV neurons followed an anti-Hebbian plasticity rule. When the
network was trained with FP sensory inputs only, the PCs show
strong activation for predicted as well as unpredicted sensory
stimuli and hence, do not develop into nPE and pPE neurons
(SI Appendix, Fig. S4B).

In summary, our results show that networks with inhibitory
homeostatic plasticity can give rise to both nPE and pPE neurons
when the homeostatic target rate is zero. Moreover, when the
plasticity acts to establish a target for the total input to excitatory
neurons, the PE neurons’ ability to withstand network perturba-
tions and generalize is improved.

Mismatch Responses Are Determined by Initial Connectivity
and Inputs onto the Interneurons. Training a network solely
with FP sensory inputs (Fig. 3) does not constrain the neuron re-
sponses to mismatches. Theoretically, the PC responses to OP and
UP stimuli can be classified into four cases (SI Appendix, Fig. S7).
When PCs are silent in the absence of sensory inputs, these
neurons would be nPE neurons, pPE neurons, silent neurons, or
neurons that indicate mismatches independent of the valence. We,
therefore, wondered how network properties, like the connectivity
before learning or the distribution of inputs to the interneurons,
determine the ratio between nPE and pPE neurons.

A homogeneous mean-field analysis reveals that the initial
connectivity determines whether a PC develops into an nPE or
pPE neuron. The different PE neuron types take up distinct
parameter ranges in the weight space defining the interneuron
connectivity (SI Appendix, Fig. S7). The size of each area is an
approximation of the faction of cells that develop into nPE or pPE
neurons and changes with the parameterization of the network
(SI Appendix, Fig. S7). For a mean-field network in which SOM
neurons receive the actual sensory input and VIP neurons receive
a prediction thereof, nPE neurons require that PV neurons receive
stronger inhibition from VIP neurons than from SOM neurons.
This relationship is reversed for pPE neurons. The dependence on
the initial connectivity is confirmed in our network simulations.
When the initial connectivity is closer to the nPE manifold, PCs
tend to develop into nPE neurons (Fig. 4 A, Left). Likewise, when
the initial connectivity is closer to the pPE manifold, PCs tend to
develop into pPE neurons (Fig. 4 A, Center). Hence, for networks
to give rise to both types of PE neurons (Fig. 4 A, Right), the initial
connectivity should comprise sufficiently large parameter spaces
or regions close to both manifolds.

The areas in the weight space defining the different PE neu-
ron types change with the distribution of actual and predicted
sensory inputs onto the interneurons (SI Appendix, Fig. S7). Our
simplified mean-field analysis shows that nPE neurons are more
likely to develop when SOM neurons receive the actual sensory
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Fig. 3. nPE and pPE neurons develop through inhibitory plasticity with a low homeostatic target rate. (A) Heterogeneous network model with excitatory PCs and
inhibitory PV, SOM, and VIP neurons. All PCs receive actual sensory input at the somatic compartment and a prediction thereof at the dendritic compartment;
50% of the PV neurons, 70% of the SOM neurons, and 30% of the VIP neurons receive the sensory stimuli. The remaining cells receive the prediction. Connections
marked with an asterisk undergo experience-dependent plasticity. Target rates for PCs are set to zero. (B) Responses of and inputs to PCs before learning.
(B, Left) Responses relative to BL of all PCs for FP, OP, and UP stimuli sorted by amplitude of mismatch response in OP. Almost none of the PCs are classified
as PE neurons summarized by the bar to the right (gray: no PE neuron; purple: nPE neuron; orange: pPE neuron). (B, Right) Mean input into both soma and
dendrites of PCs for FP stimuli. Inputs are not balanced. (C) Same as in B but after learning with an inhibitory plasticity rule that establishes a zero target rate in
PCs. (C, Left) Most of the PCs are either nPE (purple) or pPE (orange) neurons (indicated by the colored bar to the right). (C, Right) Mean inputs into both soma
and dendrites of PCs for FP stimuli are not balanced. (D) Median and SEM of PC responses for FP sensory stimuli. The gray area indicates the range of stimuli
used during learning. Sensory stimuli that are larger than the training stimuli evoke neuron responses. (E) Inhibitory (blue) and excitatory (red) perturbations
can cause the PE neurons to deviate from their BL activity. Light colors denote single neurons, and dark colors denote the population average. (F–H) Same as
C–E but with an inhibitory plasticity rule that establishes a target for the total input to PCs (target: zero). (F, Left) Most of the PCs are either nPE (purple) or pPE
(orange) neurons (indicated by the colored bar to the right). (F, Right) Mean inputs into both soma and dendrites of PCs for FP stimuli are balanced. (G) Sensory
stimuli that are larger than the training stimuli evoke only minor neuron responses. The PE neurons can generalize beyond the training stimuli. (H) PE neurons
are robust to inhibitory and excitatory perturbations after learning. Ctrl, control; Pert, perturbation.

input and VIP neurons receive a prediction thereof, while pPE
neurons are more likely to emerge when the inputs onto SOM
and VIP neurons are reversed. This is confirmed in our network
simulations by changing the distribution of actual and predicted
sensory inputs onto PV, SOM, and VIP neurons (Fig. 4B). When
the majority of PV or SOM neurons receive the actual sensory
input, PCs tend to develop into nPE neurons. Likewise, by
increasing the number of VIP neurons that receive a prediction of
the expected sensory input, most of the PCs become nPE neurons
after training. If these ratios are inverted, the PE circuit is biased
toward pPE neurons.

Finally, the predictability of sensory stimuli during training can
bias the formation of PE neurons. Given that neuronal networks

receive substantial noise due to, for instance, the random nature of
synaptic transmission, synapse failures, or channel noise (50), sen-
sory inputs and predictions thereof will rarely be perfectly equal.
As a consequence, networks are exposed not only to perfectly
predicted sensory stimuli but also, to small mismatches between
them. When the transmission of the predicted sensory input be-
comes less reliable, the number of pPE neurons strongly decreases
up to a point where no pPE neurons are formed during learning
(SI Appendix, Fig. S8A). Similarly, when the transmission of the
actual sensory input becomes less reliable, the number of nPE
neurons strongly decreases up to a point where no nPE neurons are
formed (SI Appendix, Fig. S8B). While both the numbers of nPE
and pPE neurons decrease equally when the network is exposed to
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A

B

Fig. 4. Initial connectivity and distribution of inputs onto interneurons de-
termine mismatch responses of PE neurons. (A) For three different initial
weight configurations, the network forms nPE neurons (Left), pPE neurons
(Center), or both (Right). Mean initial weights: (1 + wPP)/wEP = 0.6, wPS = 0.75,
and wPV = 2 (Left); (1 + wPP)/wEP = 0.4, wPS = 2, and wPV = 0.75 (Center);
(1 + wPP)/wEP = 0.4, wPS = 1.75, and wPV = 1.25 (Right). SOM neurons and
50% of the PV neurons receive the actual sensory input, while VIP neurons and
the remaining PV neurons receive a prediction thereof. wEP, weight from PV
neurons onto soma of PCs; wPP, recurrent inhibition between PV neurons; wPS,
weight from SOM neurons onto PV neurons; wPV, weight from VIP neurons
onto PV neurons. (B) The number of PV neurons (Left), SOM neurons (Center),
or VIP neurons (Right) that receive the actual sensory input is varied. The ratio
of nPE and pPE neurons changes with the distribution of actual and predicted
sensory inputs onto the interneurons. For the neuron types for which the
distribution of inputs was not varied, the fraction of neurons receiving the
actual sensory input was set to 0.5.

noisy stimuli, PE neurons can still form. This reflects the network’s
ability to tolerate positive and negative deviations between actual
and predicted sensory inputs when both phases are presented
equally (SI Appendix, Fig. S8C ).

Altogether, this shows that the initial connectivity, distribution
of actual and predicted sensory inputs onto interneurons, and
stimulus predictability during learning determine which PE neu-
rons emerge and that the formation of nPE and pPE neurons is
robust with respect to variations in these parameters.

PE Neurons Bias Unpredictable Percepts toward the Mean of
the Stimulus Statistic. Previous experiences shape perception
and behavior. A salient example of experience-dependent biased
perception is bias toward the mean (also known as contraction
bias). A stimulus drawn from a random distribution is perceived
larger when it is smaller than the mean of the stimulus distribution
and perceived smaller when it is larger than the mean. This well-
known phenomenon was described centuries ago (51, 52), has
been reproduced many times in tasks that involve the reproduc-
tion of a perceived variable (24–29), and has been attributed to
Bayesian computation in which a system integrates information
about prior stimulus statistics (25, 26). We speculated that PE
neurons can support biased perception.

To this end, we simulated two connected subnetworks, the
neurons of which are only responsive to a range of stimuli drawn
from one of two uniform distributions. The strength of sensory
stimuli ranges from 1/s to 5/s for the first distribution (associated
with the first subnetwork) and from 5/s to 9/s for the second
distribution (associated with the second subnetwork). Each sub-
network consists of a PE circuit as studied before connected with
a representation neuron and an attractor network (Fig. 5A). The

attractor network consists of two types of neurons termed the
“memory neuron” and the “prediction neuron.” The memory
neurons, modeled as perfect integrators (that is, line attractors),
project onto the prediction neuron of their corresponding sub-
network. The prediction neurons are mutually connected via
inhibitory synapses (53), hence forming two fixed points. In
each trial, they receive a cue signal that indicates the distribution
from which the stimulus is drawn. The attractor network thus
dynamically generates the prediction that is forwarded to one of
the two subnetworks. Neurons of the attractor network receive
inputs from both nPE and pPE neurons. While nPE neurons
inhibit the attractor neurons (for instance, through inhibitory
interneurons not explicitly modeled here), pPE neurons excite
them (motivated by ref. 3). The representation neurons, whose
activity represents the perceived stimulus, not only receive the
sensory stimulus itself but are also connected to both nPE and
pPE neurons of their respective subnetwork, with reversed con-
nectivity (Fig. 5A). For simplicity, we assume that during the
presentation of random stimuli, the PE circuits are not updated
significantly: for instance, because the learning rate is small com-
pared with the changes in activity or simply because the effect of
positive and negative mismatch phases is balanced (SI Appendix,
Fig. S8C ).
Contraction bias for unpredictable and predictable stimuli. In
each trial, only one of the two prediction neurons is active. This
is a consequence of the mutual inhibition between them and a
cue signal that inhibits the prediction neuron that is not selective
for the stimulus shown. The activity of the prediction neuron is
determined by the activity of the memory neuron and the PE
neurons of their respective subnetwork. Because in our model,
the memory neurons perfectly integrate the inputs from nPE
neurons that inhibit them and from pPE neurons that excite
them, the activity of the memory neuron approaches the mean of
the distribution the subnetwork is exposed to. Hence, the active
prediction neuron also approximately represents the mean of the
past stimuli. When the sensory input is smaller than the activity
of the prediction neuron, nPE neurons are active. Because nPE
neurons excite the representation neuron, the perceived stimulus
is larger than the received stimulus. In contrast, when the sensory
input is larger than the activity of the prediction neuron, pPE
neurons are active. Because we assume that the net effect of
pPE neurons on representation neurons is negative, the perceived
stimulus is smaller than the received stimulus. This effect is partic-
ularly pronounced for the stimulus present in both distributions
(i.e., 5 s−1).

The preceding results suggest that the bias is a consequence
of the unpredictability of the stimulus. Hence, when the sensory
input becomes predictable, the bias should eventually vanish.
To test this, after some trials with random stimuli, we always
presented the same sensory input. The activity of the PE neurons
slowly changes the memory neuron until it represents the actual
stimulus. As a result, over time, the prediction neuron itself
represents the sensory input, a consequence being that the PE
neurons become silent. Hence, the bias vanishes, and the perceived
stimulus equals the received stimulus (Fig. 5C ).
PE neurons may act as an internal cue. While the distribution
from which the stimulus is drawn had been cued to the network
so far, very often changes in the environment or underlying tasks
occur spontaneously without clues. We figured that PE neurons
may act as internal cues that support a switch between attractors
when stimuli are suddenly drawn from the other distribution.
Immediately after the network experiences an unexpected switch,
the prediction neuron that had been active in the previous trials
remains active. However, after some time, the PE neurons of that
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Fig. 5. The role of PE neurons in biased perception. (A, Left) Attractor–
memory network with PE neurons. The network consists of two subnetworks,
the neurons of which are only responsive to a subset of stimuli. Each subnet-
work comprises a representation neuron (R) and a PE circuit. Both R and PE
neurons receive sensory stimuli of either of two uniform distributions. The
PE circuit is connected to both the R and an attractor network that comprises
memory neurons (M) and prediction neurons (P). The two prediction neurons
are mutually connected via inhibitory synapses and receive excitatory input
from the memory neuron of their respective subnetwork. (A, Right) nPE and
pPE neurons connect to M, P, and R neurons with opposing sign. (B) The
PE neurons establish a contraction bias for both distributions. A stimulus
that is smaller than the distribution mean is perceived stronger, while a
stimulus that is larger than the distribution mean is perceived weaker.
(C) The response of the representation neuron becomes unbiased after
the transition (dotted vertical line) from a uniform distribution to a binary
distribution because the stimulus becomes predictable. (D) The network does
not receive a cue signal indicating the distribution from which the stimuli are
drawn. After an uncued switch from one distribution to another, the former
inactive prediction neuron becomes active, and the former active prediction
neuron becomes inactive (network switching is denoted by a triangle). This
is the result of the PE neurons and the mutual inhibition between both
prediction neurons. Stimulus present in both distributions does not evoke
a switch (denoted by x). Shaded areas denote the distributions from which
the stimuli are drawn. (E) Both distributions equally change from uniform
to binary (to maximal values of former uniform distributions). A network in
which the PE neurons are equally coupled to both memory neurons (solid
line) shows the same performance error for both distributions independent
of the training set composition. A network in which the PE neurons are only
coupled to the memory neuron of their respective subnetwork (dashed line)
shows a larger error for the distribution that is underrepresented during
training. (F) Speed of learning (defined as the averaged change of activity
in the first 50 ms; the gray area in Inset) is increased when PE neuron
activity modulates the learning rate based on the degree of the stimulus’
unpredictability compared with a fixed learning rate (solid vs. dashed lines
in Inset).

subnetwork suppress the activity of the prediction neuron. At
the same time, the PE neurons of the other subnetwork excite
the corresponding prediction neuron. Together with the mutual
inhibition between prediction neurons, the wrong expectation is
eventually corrected successfully (Fig. 5D). Importantly, stimuli
that are present in both distributions are not sufficient to cause a
switch (Fig. 5D, stimuli denoted by x). Altogether, this shows that
PE neuron activity may underlie fast adaptation to unexpected
situations by forcing the attractor network to switch between fixed
points.
Generalization through prior knowledge. PE neurons might also
support generalization across environments or tasks by making
use of prior knowledge encoded in the connectivity between the
PE circuit and the attractor network. To illustrate this, let us

assume that any change of one distribution will equally affect
the other distribution. In our network, this can be implemented
by cross-coupling the PE neurons of one subnetwork with the
memory neuron of the other subnetwork. As a result, any changes
in input statistics will equally affect both memory neurons, even
when the network is only exposed to samples of one distribution.
To confirm this, we changed both distributions from uniform to
binary. We then trained the network briefly with the new input
statistics. While networks without cross-coupling show larger
performance errors for the distribution that was underrepresented
during training, networks with cross-coupling show the same test
error for both distributions independent of the training set com-
position (Fig. 5E). Hence, PE neurons can support generalization
by modulating memory neurons of all subnetworks.
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Faster learning through modulation of learning rates. Finally, PE
neurons could also facilitate learning by adjusting learning rates
based on the degree of predictability of sensory stimuli. In such
a scenario, unexpected stimuli would increase the learning rate,
leading to faster adaptation of synaptic connections. On the neu-
ronal level, this could be achieved by bottom-up sensory inputs
arriving at the proximal locations of the basal dendrites, while PE
neurons target the distal locations of basal dendrites. The distal
synapses may then only elicit NMDA (N -methyl-D-aspartate)
spikes that cause the proximal synapses to strengthen (54). To
illustrate this, we repeatedly stimulate subnetwork 1 with the same
stimulus and update the synaptic weight connecting the stimulus
with the representation neuron. Over time, the activity of the
representation neuron will approach the stimulus. However, this
process is faster when PE neurons increase the learning rate. To
quantify the speedup in learning, we compute the rate of change
in the activity of the representation neuron at the beginning of
training for both a learning rate that is fixed and one that is
modulated by the activity of PE neurons (Fig. 5F ). As expected,
the speedup is larger for stimuli that deviate more from the
distribution mean. This illustrates that modulating learning rates
by the degree of unpredictability (or surprise) of an event can
underpin fast learning.

Discussion

We showed that both nPE and pPE neurons require an E/I
balance for FP sensory inputs. This balance is not only a balance
in the inputs to the PCs but also a balance of pathways that
the actual and predicted sensory inputs can take through the
recurrent network. Moreover, when PCs exhibit an arbitrary BL
firing rate, the E/I balance at the soma must be preserved for
UP stimuli in nPE neurons and for OP stimuli in pPE neurons
(Fig. 1 and SI Appendix, Figs. S1 and S2). While this has been
shown in separate nPE and pPE circuits in which SOM and VIP
neurons receive fixed inputs (23), we corroborate these findings in
networks in which both PE neuron types coexist, and the inputs
onto SOM and VIP neurons are flexible.

Importantly, nEP and pPE neurons can act in parallel in the
same recurrent network without the need for segregated subcir-
cuits. Based on our mathematical analysis, we showed that for
both PE neurons to coexist, somatic inhibition must come in two
distinct variants (SI Appendix). Moreover, we demonstrated that
in such networks, SOM and VIP neurons can receive both actual
and predicted sensory input, as long as at least one of them is
driven by the actual sensory input (SI Appendix, Fig. S2). The re-
sulting PE circuits differ in terms of the interneuron connectivity
and the underlying mechanisms that give rise to the mismatch
responses in nPE and pPE neurons. Their mismatch responses are
either the result of an excess of excitation at the dendrites that are
forwarded to the soma or the suppression of somatic inhibition
(SI Appendix, SI Text).

While in the present study, we have focused on a canonical
interneuron circuit with PV, SOM, and VIP interneurons (for
instance, refs. 12, 13, and 32), our mathematical analysis can be
straightforwardly extended to an arbitrary number of interneu-
rons. In this motif, somatic inhibition is provided by PV neurons,
while dendritic inhibition is provided by the SOM–VIP circuit.
nPE and pPE neurons can also emerge without VIP neurons
(discussion and appendix in ref. 23). However, VIP neurons in
our network 1) contribute to amplifying mismatch responses (6,
22) and 2) allow SOM neurons to receive both the actual and
the predicted sensory inputs, respectively (SI Appendix, Fig. S2),
which is in line with studies showing that interneurons receive
both feed-forward and feedback inputs (38, 43, 44).

We showed that PE neurons formed through an E/I bal-
ance are robust to moderate network perturbations (Fig. 2 and
SI Appendix, Fig. S3). This is a desirable feature because it ensures
that PE circuits do not need to be reconfigured constantly. In some
cases, when the dendrites were perturbed directly or indirectly
through SOM or VIP neurons, the former unidirectional PE
neurons could transition into bidirectional PE neurons. This effect
is a consequence of the dendrites not being in an E/I balance
during the mismatch phases. To establish such a balance for
OP or UP stimuli, more dendrite-targeting interneurons would
be required. For example, neuron derived neurotrophic factor-
expressing neurons that are mainly located in layer 1 have been
shown to inhibit the apical dendrites located in the superficial
layers (55) and are, hence, a promising candidate in establishing a
target activity in the dendrites and shaping dendritic PEs.

While it has been shown that separate nPE and pPE neurons
can be learned via inhibitory homeostatic plasticity (23), here
we demonstrated that nPE and pPE neurons can simultaneously
develop in the same recurrent network (Figs. 3 and 4) when
additional assumptions are met. On the one hand, the network
should mainly experience FP sensory inputs. Hence, we assumed
that predictions have already been developed and that mismatches
are rare. This is in line with an experimental study performed in
layer 2/3 of rodent V1 (6) showing that the formation of nPE
neurons relies on normal visuomotor coupling during develop-
ment. On the other hand, the homeostatic firing rate of PCs must
be close to zero. This assumption is in line with studies showing
an astonishingly low spontaneous firing rate for neurons in some
regions of the cortex (for instance, refs. 16 and 17). In fact, the
existence of unidirectional PE neurons has been attributed to low
BL firing rates (1, 3). If the PCs have a BL firing rate significantly
larger than zero, nPE and pPE neurons in our network would be
bidirectional. We speculate that learning nPE and pPE neurons
with nonzero BL firing rates require different forms of plasticity
(taking into account the type of PE neuron a PC should develop
to) or gating signals that guide or restrict learning to a subset
of input phases. For instance, it has been hypothesized that
neuromodulators that are active during self-motion may support
the formation of PE circuits (3).

Because we used a target firing rate equal to the neuron’s recti-
fication threshold, the resulting PE neurons did not necessarily
exhibit an E/I balance. We, therefore, modified the plasticity
rule such that it establishes a target for the total input to PCs
instead of a target rate. We showed that with this plasticity rule,
the PE neurons generalize beyond the range of sensory stimuli
seen during learning and are robust to network perturbations
(Fig. 3). A similar result could theoretically be achieved by simply
increasing the target rate slightly. However, we speculate that
learning an E/I balance in such systems would be comparatively
slow as negative deviations are still bounded from below. While
we have employed a homeostatic plasticity rule that establishes a
target for the total input, we assume that plasticity rules processing
deviations from a target membrane potential (56, 57) can be
equally used. While we did not investigate all forms of plasticity,
we note that plasticity rules that do not establish a homeostatic
firing rate in PCs may be inappropriate to learning nPE and pPE
neurons (SI Appendix, Fig. S4B).

Furthermore, we showed that the ratio of nPE and pPE neurons
is determined by the initial connectivity and the distribution of
actual and predicted sensory inputs onto SOM and VIP neurons
(Fig. 4 and SI Appendix, Fig. S7). While in networks in which
SOM neurons receive the actual sensory input and VIP neurons
receive a prediction thereof, PCs are more likely to develop into
nPE neurons, PCs are more likely to develop into pPE neurons

PNAS 2022 Vol. 119 No. 13 e2115699119 https://doi.org/10.1073/pnas.2115699119 9 of 12

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2115699119/-/DCSupplemental
https://doi.org/10.1073/pnas.2115699119


when the inputs onto the interneurons are reversed. However,
both PE neuron types can develop for both input configurations as
long as the initial connectivity covers sufficiently large parameter
spaces or regions close to both nPE and pPE manifolds.

In our model, the connections onto the soma and the dendrite
of PCs as well as the inhibitory connections from SOM and VIP
neurons onto PV neurons underwent inhibitory plasticity. This
choice was motivated by the observation that in layer 2/3 of V1,
the excitatory neurons and PV neurons, but not SOM and VIP
neurons, show experience-dependent activity (6). However, we do
not expect the learning of PE neurons to be compromised when
all inhibitory synapses are plastic. Recently, it has been shown
that NMDA receptor–dependent plasticity in early development
is crucial for the responses to unpredictable and predictable stimuli
in V1 (58). This suggests that excitatory plasticity plays a pivotal
role in the formation of PE neurons. While we kept all excitatory
connections fixed during learning, we expect that in our network,
PE neurons can develop with excitatory homeostatic plasticity,
inhibitory homeostatic plasticity, or both.

Predictive processing requires at least two types of neurons:
neurons that signal the mismatch between bottom-up and top-
down inputs and neurons that encode predictions (3). On top
of this, other functionally distinct neuron types may exist: for
instance, neurons that only increase their activity when sensory
inputs are FP. While a thorough investigation of the circuit-level
mechanisms that give rise to these distinct neurons is beyond the
scope of this work, it is intriguing to speculate on how they may
develop simultaneously in the same recurrent network. In our net-
works, only PE neurons could develop. This suggests that for other
neuron types to emerge, additional cellular mechanisms and/or
plasticity rules are necessary. A mechanism that has long been as-
sociated with combining feed-forward and feedback information
is BAC firing (backpropagation–activated calcium spike firing). In
BAC firing, a back-propagating action potential from the soma—
when coinciding with input at the distal dendrites—can cause
calcium spikes that trigger a burst of action potentials (37, 59).
It is conceivable that burst-dependent plasticity (60) acting on
the synapses from top-down and bottom-up inputs onto PCs
equipped with BAC firing, in combination with local inhibitory
homeostatic plasticity mechanisms considered here, supports a
richer diversity of neuron types. The type of PC responses to
predicted and unpredicted stimuli after learning might then be
a consequence of differences in cellular properties, the sensitivity
to gating signals (e.g., neuromodulators), or the learning rates of
the plasticity rules present in the same network.

Finally, we showed that an attractor–memory network with a
PE circuit can reproduce the contraction bias for unpredictable
stimuli (Fig. 5). We demonstrated, by means of the example of
biased perception, that PE neurons can act as an internal cue
that indicates unannounced switches between stimulus distribu-
tions. Moreover, we illustrated that PE neurons may underpin
generalization across stimulus statistics and can support faster
learning (Fig. 5). Other than the role of prior expectations in
perceptual inference (for instance, refs. 1, 42, and 61), PEs may
govern learning. In the rodent visual cortex, neuron responses
to predicted and unpredicted sensory stimuli show systematic
changes across days (62). Recently, it has been demonstrated that
there is a close link between predictive coding and supervised
learning, in which nonbiological weight changes by the backprop-
agation algorithm can be replaced with local Hebbian plasticity of
connections in predictive coding networks (63–66). Furthermore,
it has been shown that biologically plausible learning schemes can
ease the temporal and structural credit assignment problem (67,
68). Moreover, the model in ref. 67 has recently received support

from experimental data showing that PE neurons in anterior
frontal–striatal networks could serve as feature-specific eligibility
traces (69).

Our work makes a number of predictions that could be tested
experimentally. 1) PE neurons arising from balanced pathways are
robust to network perturbations: that is, they remain at BL for
FP sensory inputs. 2) If PE neurons change upon perturbation,
it mainly affects their responses to unpredicted stimuli. Those
changes primarily occur for direct or indirect (through SOM
and VIP neurons) perturbations of the dendrites and usually lead
the former unidirectional PE neurons to act as bidirectional PE
neurons. These predictions can be tested by optogenetically or
pharmacogenetically manipulating neuron types/compartments.
3) Both nPE and pPE neurons are hidden bidirectional PE
neurons because of their low BL firing rate. This can be directly
tested by elevating their BL activity through external excitatory
stimulation because additional input should not affect the PE
neurons’ ability to remain at their BL activity for FP sensory
stimuli (see above). 4) PE neurons generalize beyond the stimuli
used during learning. By carefully designing experiments that
restrict learning to a subset of stimuli, the developing PE neurons
can be tested for their ability to generalize. 5) PE neurons underlie
contraction bias. It means the observed bias should vanish for
targeted silencing of PE neurons. Moreover, if only one of the two
PE neuron types is silenced, the bias would only occur for one
side of the stimulus distribution. Although still challenging, by
employing recent technological advances [for instance, multipho-
ton holographic optogenetics (70) and neuron tagging based on
activity-dependent promoters (71, 72)], targeted manipulation of
nPE and pPE neurons may be in reach soon.

Expected sensory stimuli are recognized more swiftly (73, 74),
giving an evolutionary advantage in a world where seconds can
make the difference between life and death. Hence, continu-
ous detection of deviations between expected and actual sensory
inputs and the subsequent refinement of predictions may be a
central task for neural networks. Our work sheds light on the
formation and refinement of PE neurons in cortical circuits, an
important step toward a better understanding of the brain’s ability
to predict sensory stimuli.

Materials and Methods

Excitatory neurons in the PE circuit are simulated as two coupled point compart-
ments, representing the soma and the dendrites. All other neurons are modeled
as point neurons. The activity of each neuron/compartment ri is represented by a
rectified, linear differential equation (36):

τi
dhi

dt
=−hi + w · r + Ii, [1]

ri = [hi]+, [2]

where τi denotes the time constant, the vector w contains the connection
strengths, and Ii is the overall input comprising external background and actual
or predicted sensory inputs.

In plastic PE circuits, a number of connections between neurons are subject
to experience-dependent changes. The connections from PV and SOM neurons
onto the soma and the apical dendrites, respectively, obey an inhibitory Hebbian
plasticity rule (46). The connections from both SOM and VIP neurons onto PV
neurons implement a local approximation of a backpropagation of error rule that
relies on information forwarded to the PV neurons from the PCs (23, 48).

We define PCs as nPE neurons when their activity in BL and for FP, OP, and UP
stimuli satisfies the following equations:

rFP
nE = rUP

nE = rBL
nE, [3]

rOP
nE > rBL

nE. [4]
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Similarly, we define PCs as pPE neurons when

rFP
pE = rOP

pE = rBL
pE, [5]

rUP
pE > rBL

pE. [6]

In practice, we tolerate small deviations in phases in which the PE neurons are
supposed to remain at BL as long as these deviations are smaller than 10% of the
neuron’s maximal response.

Detailed methods and supporting analyses as well as values for
neuron, network, plasticity, and simulation parameters can be found in
SI Appendix.

Data Availability. Source code to reproduce the simulations, analyses,
and figures are available in GitHub (https://github.com/lhertaeg/SourceCode
Hertaeg2021). All other data are included in the manuscript and/or SI Appendix.
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