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Epidemic spreading on complex 
networks with community 
structures
Clara Stegehuis, Remco van der Hofstad & Johan S. H. van Leeuwaarden

Many real-world networks display a community structure. We study two random graph models that 
create a network with similar community structure as a given network. One model preserves the 
exact community structure of the original network, while the other model only preserves the set of 
communities and the vertex degrees. These models show that community structure is an important 
determinant of the behavior of percolation processes on networks, such as information diffusion or virus 
spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models 
further show that it is the mesoscopic set of communities that matters. The exact internal structures of 
communities barely influence the behavior of percolation processes across networks. This insensitivity 
is likely due to the relative denseness of the communities.

Many complex systems across the sciences can be modeled as networks of vertices joined in pairs by edges. 
Examples include the internet and the world-wide web, biological networks, food webs, the brain, neural net-
works, communication and transport networks, and social networks. This has spurred a tremendous interest in 
developing mathematical models that can capture universal network properties. Moreover, with network data 
describing network topologies, properties derived from models can be tested against real-world networks.

The behavior of dynamic processes such as percolation or epidemic models on those networks are of sig-
nificant interest, since for example they model the spreading of information or a virus across a network1–4. 
Understanding models for percolation may enhance insight in how an epidemic can be stopped by immunization, 
or how a message can go viral by choosing the right initial infectives. An important question is how the structure 
of the network affects the dynamics of the epidemic5. A vast amount of research focuses on scale-free networks 
that possess a power-law degree distribution6–10, so that the probability pk that a vertex has k neighbors scales with 
k as pk ~ ck−τ for some constant c and characteristic exponent τ > 1. The power-law distribution leads to scale-free 
behavior such as short distances due to the likely presence of hubs or high-degree vertices. The characteristic 
exponent τ was also found to play a central role in various percolation processes11–15. Other authors have focused 
on the influence of clustering on the spread of epidemics16–20.

Real-world networks, however, are not completely characterized by their microscopic and macroscopic prop-
erties. Many real-world networks display a community structure21, where groups of vertices are densely con-
nected, while edges between different groups are more scarce. Since communities are small compared to the 
entire network, but seem to scale with the network size, they are typically of mesoscopic scale22,23. The problem 
of detecting the community structure of a network has received a lot of attention22,24. The exact way in which 
communities influence the properties of a network is a different problem. For example, the community structure 
of a network influences the way a cooperation process behaves on real-world networks25, and using community 
structure improves the prediction of which messages will go viral across a network26. Several stylized random 
graph models with a community structure have shown that communities influence the process of an epidemic 
across a network27–34, but the extent to which community structure affects epidemics on real-world networks is 
largely unexplained. Our main goal is to enhance our understanding of the intricate relation between community 
structures and the spread of epidemics, and in particular to identify the properties of community structures that 
have the largest influence.

We study two random graph models that generate networks with a similar community structure as any given 
network. We find that these models capture the behavior of epidemics or percolation on real-world networks 
accurately, and that the mesoscopic community structure is vital for understanding epidemic spreading. We 
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find that the sets of communities are of crucial importance, while quite surprisingly, the precise structure of the 
intra-community connections hardly influences the percolation process. Furthermore, we find that community 
structure can both enforce as well as inhibit percolation.

Models
We now introduce two random graph models in detail. For a given real-world network, both models randomize 
the edges of the network, while keeping large parts of the community imprint. Suppose that we are given the set 
of communities of a particular real-world network. Then the first model, the hierarchical configuration model 
(HCM), keeps all edges inside the communities35,36, while rewiring the inter-community edges. Indeed, all 
inter-community edges are replaced by two half-edges, one at each end of an inter-community edge. Then, one 
by one, these half-edges are paired at random. Thus, in HCM, the precise community structure of the network 
is the same as in the original network, but the inter-community connections are random. The second model 
(HCM*), introduced as the modular random graph in ref. 37, replaces both the inter-community edges and the 
intra-community edges by pairs of half-edges. Then again, the half-edges are paired at random. An additional 
constraint is that all inter-community half-edges must be paired to one another, and all half-edges corresponding 
to the same community must be paired to one another (see Fig. 1 and Supplementary Note 3). Thus, a network 
generated by HCM* is completely random, except for the set of communities and the degree distributions inside 
and outside the communities.

HCM and HCM* are extensions of the configuration model (CM), a random graph with a given degree distri-
bution. The CM has received enormous attention in the network literature, due to the combination of its simplic-
ity and its flexibility in choosing an appropriate degree structure38,39. CM only preserves the microscopic degree 
distribution of the real-world networks, while HCM* also preserves the mesoscopic community structure. HCM 
instead, preserves the entire community structure. Supplementary Table 3 shows that indeed most of the commu-
nity structures of the original networks and the networks generated by HCM and HCM* are similar. Therefore, 
if we sort the random graph models in decreasing randomness, we first have CM, then HCM*, and then HCM. 
When comparing the behavior of an epidemic process on these random graphs to the original network, we see 
how much of the behavior of epidemics on real-world networks can be explained by its degree distribution (CM), 
its rough community structure (HCM*), and by the exact community shapes (HCM). The aim of this paper is to 
investigate to which extent microscopic and mesoscopic network properties determine the spread of epidemics.

The fixed community shapes combined with the randomized inter-community connections make HCM ana-
lytically tractable35. However, keeping all intra-community edges fixed makes HCM prone to overfitting. HCM* 
does not have this problem and is more suitable to generate a random network with a community structure, since 
all edges within communities are randomized. Randomizing the intra-community edges makes HCM* harder to 
analyze analytically than HCM. Some analytical results of HCM, however, can be extended to results of HCM* 
(Supplementary Note 3).

Results
We analyze six different real-world networks: the internet on the Autonomous Systems level40, an email network 
of the company Enron40,41, the PGP web of trust42, a collaboration network in High energy physics, extracted 
from the arXiv40, a Facebook friendship network43 and an interaction network between proteins in yeast44. Table 1 
shows several statistics of these data sets and their community structures. We extract the communities of these 
networks with the Infomap community detection algorithm45, and use these communities as input for the HCM 
and HCM* model, to create networks with a similar community structure as the original networks. Table 1 shows 
that the communities are of mesoscopic size: while the communities are small compared to the entire network, 
and have a small expected size, all networks still contain a few large communities.

An important property of a network is its connectedness, expressed by the fraction of vertices in the largest 
component. For HCM, the size of the largest component can be derived analytically (Supplementary Note 3). 
This size is independent of the precise community shapes, and therefore is the same for HCM and HCM*, as long 
as the communities of HCM* remain connected. Supplementary Note 3.3 shows that most HCM* communities 
indeed remain connected. The size of the largest component of real-world networks can be well predicted using 
the analytical estimates of HCM, which only uses the joint distribution of community sizes and the number of 

Figure 1.  HCM and HCM* illustrated. (a) A network with 3 communities. (b) HCM randomizes the edges 
between different communities. (c) HCM* also randomizes the edges inside the communities.



www.nature.com/scientificreports/

3Scientific Reports | 6:29748 | DOI: 10.1038/srep29748

edges going out of the communities (Table 2). These estimates yield a considerable improvement compared to 
CM, which is generally a few percent off.

The long-term properties of an epidemic outbreak can be mapped into a suitable bond percolation problem. In 
this framework, the probability p that a link exists is related to the probability of transmission of the disease from 
an infected vertex to a connected susceptible vertex. The latter corresponds to removing edges in a network with 
probability 1 − p and keeping the edges with probability p independently across edges (other types of epidemics 
are discussed in Supplementary Note 4). A quantity of interest is the size of the largest component as a function 
of p, which can be described analytically for HCM35. However, this size depends on the community shapes, and 
therefore bond percolation on HCM does not necessarily give the same results as percolation on HCM*. Inspired 
by the insensitivity of the giant component to the exact community shapes, we establish whether the community 
shapes significantly influence the size of the giant percolating cluster by simulation, by showing how bond perco-
lation affects the connectivity of the original networks, compared to CM, HCM and HCM* (Fig. 2).

We see that the behavior of the real-world networks under bond percolation is captured accurately by both 
HCM and HCM*, in contrast to CM. In Supplementary Figs 1–5, we see that HCM and HCM* also perform 
well for other types of percolation processes and an SIR epidemic. These results reveal and confirm the key role 
of the mesoscopic community structure in percolation processes. Furthermore, the fact that the predictions of 
HCM and HCM* are both close to the behavior of the original network under percolation indicates that the 
shapes of the communities only have minor influence on the percolation process. The surprising finding that the 
exact internal community structure barely influences the epidemic processes may be explained by the denseness 
of the communities. Table 1 shows that the communities are very dense compared to the entire network. Since 
community detection algorithms look for dense subsets in large complex networks, applying HCM or HCM* 
to real-world networks typically yields sets of dense communities. The Autonomous Systems network has com-
munities that are much less dense than in most other networks46, but even in that network the communities are 
much denser than the entire network. Therefore, in the case of bond percolation for example, the communities 
of mesoscopic size are supercritical, and the communities will be almost connected after percolation. Thus, an 
epidemic entering a community of mesoscopic size will reach most other community members. It is more diffi-
cult for the epidemic to reach other communities, which makes the inter-community edges the important factor 
for the spread of an epidemic. When generating a HCM* network, the communities stay of the same denseness, 
and therefore it is still relatively easy for the epidemic to spread inside the communities, regardless of their exact 
shapes.

The only process where HCM and HCM* are not always close to the process on the original graph, is a tar-
geted attack (Supplementary Fig. 2), even though both models still outperform CM. Furthermore, some net-
works show a difference between the predictions of HCM and HCM*. Therefore, the exact community structures 
may have some influence on a targeted attack on a real-world network. Another interesting observation is that 
where most networks are highly sensitive to a targeted attack, the Facebook network has a community structure 
that makes it more resistant against a targeted attack than a configuration model. This particular feature of the 
Facebook network can be explained by the fact that in the Facebook network, most vertices of high degree are in 

N 〈s〉 smax δnetw δcom δ wcom

AS 11,174 21 910 3.75 · 10−4 0.38 0.10

Enron 36,692 15 1,722 2.73 · 10−4 0.73 0.22

HEP 9,877 10 181 5.33 · 10−4 0.59 0.32

PGP 10,680 12 160 4.26 · 10−4 0.41 0.24

FB 63,731 29 2,247 4.02 · 10−4 0.41 0.14

yeast 2,361 9 97 2.57 · 10−3 0.55 0.25

Table 1.   Statistics of the data sets. N is the number of vertices in the network, 〈s〉 the average community size, 
smax the maximal community size. The denseness of the network δnetw is defined as the number of edges divided 
by the number of edges in a complete graph of the same size. δcom equals the average denseness of the 
communities, and δw

com the average denseness of the communities weighted by their sizes (See Supplementary 
Note 1 for more information about these statistics).

S (data) S (HCM) S (HCM*) S (CM)

AS 1.000 1.000 1.000 0.960

Enron 0.918 0.918 0.918 0.990

HEP 0.875 0.875 0.875 0.990

PGP 1.000 1.000 1.000 0.960

FB 0.995 0.995 0.995 0.999

yeast 0.941 0.941 0.941 0.948

Table 2.   The size S of the giant component in the data sets compared to the analytical estimates of HCM 
and CM.
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the same community. Therefore, deleting high degree vertices has a smaller effect than in a corresponding CM 
model.

The results of the yeast network show that in some situations CM performs equally well as HCM or HCM*. 
Thus, in some cases the mesoscopic properties of a network do not influence percolation processes. In the case 
of the yeast network, this can be explained by its almost tree-like structure; there is no noticeable community 
structure. Thus, by adding the community structure in HCM or HCM*, no structural information is added. This 
suggests that CM, HCM and HCM* combined can also show whether the community structure given by a com-
munity detection algorithm is meaningful. When the behavior of various processes on CM, HCM and HCM* are 
similar, this may imply that there is no real community structure in the network.

The ENRON, High energy physics and PGP networks have communities that inhibit percolation or an SIR 
epidemic compared to a configuration model with the same degree distribution. This is similar to the observation 
that communities can act as traps for an epidemic process across a network47. In contrast, the communities in the 
Autonomous Systems graph enforce the percolation process, which may be attributed to its star-like community 
structure. Since HCM* preserves the degrees of the vertices inside their own community, HCM* creates a graph 

Figure 2.  HCM, HCM* and CM under bond percolation compared to real-world networks. (a) Autonomous 
Systems network (b) Enron email network (c) Collaboration network in High energy physics (d) PGP network 
(e) Facebook friendship network (f) yeast network. Independently, each edge is deleted with probability 1 − p. 
The size of the largest component after deleting the edges is the average of 500 generated graphs.
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that captures this star-like structure. An important conclusion is that these findings confirm that both HCM and 
HCM* are realistic models for real-world networks.

Where ref. 48 creates a reshuffling of a given network using several microscopic properties of every vertex, 
HCM and HCM* use mesoscopic properties instead. An advantage of using HCM or HCM* is that both mod-
els are easy to generate. Since HCM* is more random than HCM, it is a better choice for generating a random 
network. Note that in HCM*, the rewiring of intra-community edges makes the community structure a uniform 
simple graph with the prescribed degrees. Specifically, if the interest is to generate a random graph such that 
percolation on that graph behaves in a similar way as in the original network, then our results show that HCM* 
is a suitable choice. However, HCM* does not capture the microscopic properties of the original network as 
effectively as HCM. HCM*, for example, does not generate networks with similar clustering as in the original 
network37. Therefore, when the goal is to create a network with similar clustering as the original network, using 
HCM* may be less suitable. Indeed Table 3 shows that in most cases HCM generates a network with a clustering 
coefficient that is closer to the value of the original network. An exception is the Autonomous Systems network, 
where HCM* is closer to the real value of the clustering. An explanation for this is that the communities in the 
Autonomous Systems network have virtually no clustering; all clustering is between different communities. HCM 
also has no clustering inside the communities, but the pairing between different communities destroys the clus-
tering between different communities, and therefore HCM creates a network with a lower clustering coefficient. 
HCM* also destroys the clustering between different communities, but by rewiring the edges inside communities, 
creates some clustering inside the communities. Therefore, the value of the clustering of HCM* is closer to the 
value of the original network than the one of HCM.

The fact that HCM* does not capture the clustering coefficient and the assortativity (See Supplementary Notes 3.1)  
well, but does capture the spread of an epidemic across a network, again confirms that the mesoscopic properties 
are of vital importance for the spread of an epidemic across a network. Even though microscopic features such 
as clustering are destroyed in HCM*, the mesoscopic properties are sufficient to know how an epidemic spreads, 
making HCM* a suitable random graph model when considering the mesoscopic structure of networks.

Conclusion
Community structures in real-world networks have a profound impact on percolation or epidemic spreading, 
which is central to our understanding of dynamical processes in complex networks. The theoretical analysis of 
epidemic spreading in heterogeneous networks with community structure requires the development of novel ana-
lytical frameworks. We have introduced the hierarchical configuration model (HCM) to describe such networks. 
Both HCM and its randomized counterpart HCM* turn out be highly suitable to capture epidemic spreading on 
real-world networks. We have shown this by mapping the models to various real-world networks, and by inves-
tigating a range of epidemic processes including bond percolation, bootstrap percolation and an SIR epidemic. 
Our experiments show that while it is essential to take the community structure into account, the precise internal 
structure of communities is far less important for describing an epidemic outbreak. This insensitivity is likely due 
to the relative denseness of the communities. When communities are sparse, their internal structures are expected 
to have a more decisive effect on epidemic spreading. The HCM and HCM* models can easily be extended to 
include overlapping communities, by considering an auxiliary graph. It would be interesting to see whether 
including overlapping communities further improves the description of percolation across complex networks.
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