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Abstract: The rapid emergence and spread of new variants of coronavirus type 2, as well as the
emergence of zoonotic viruses, highlights the need for methodologies that contribute to the search for
new pharmacological treatments. In the present work, we searched for new SARS-CoV-2 papain-like
protease inhibitors in the PubChem database, which has more than 100 million compounds. Based
on the ligand efficacy index obtained by molecular docking, 500 compounds with higher affinity
than another experimentally tested inhibitor were selected. Finally, the seven compounds with
ADME parameters within the acceptable range for such a drug were selected. Next, molecular
dynamics simulation studies at 200 ns, ∆G calculations using molecular mechanics with generalized
Born and surface solvation, and quantum mechanical calculations were performed with the selected
compounds. Using this in silico protocol, seven papain-like protease inhibitors are proposed: three
compounds with similar free energy (D28, D04, and D59) and three compounds with higher binding
free energy (D60, D99, and D06) than the experimentally tested inhibitor, plus one compound (D24)
that could bind to the ubiquitin-binding region and reduce the effect on the host immune system.
The proposed compounds could be used in in vitro assays, and the described protocol could be used
for smart drug design.

Keywords: papain-like protease of SARS-CoV-2; molecular dynamics simulation; binding free energy;
virtual screening

1. Introduction

Since the first outbreak in the city of Wuhan in 2019, the type 2 coronavirus (CoV-2)
that causes severe acute respiratory syndrome (SARS) has kept health systems on alert [1];
SARS-CoV-2 has caused ~500 billion infections and ~6 million deaths worldwide to date, in
addition to significant economic losses. The appearance of more contagious viral variants
with the ability to evade the immunity achieved by the vaccine has reinforced the necessity
to search for new treatments [2]. The spread of some dangerous variants of the virus is
alarming, such as δ, which was first detected in India and is currently present in more
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than 60 countries [3]. This variant presents mutations that decrease the effectiveness of the
antibodies, whether they are monoclonal, generated by a previous SARS-CoV-2 infection
or those obtained by the vaccine against the virus [4,5]. Faced with the rapid evolution of
the virus and the possibility of future outbreaks, it is necessary to develop new treatments.
For this reason, the search for antiviral compounds is essential to treat patients with the
most severe forms of the disease, those that do not tolerate vaccines or that were infected
with more dangerous variants of the virus.

Based on the molecular mechanisms determining the progression of the viral infection,
it is possible to propose enzyme inhibitors that could become effective pharmacological
therapies against SARS-CoV-2 [6]. After entry into the cell mediated by Angiotensin
Converting Enzyme 2 (ACE-2), SARS-CoV-2 loses its envelope and synthesizes polyproteins
1a and 1ab (PP1a and PP1ab) [7]. These polypeptides contain immature forms of the proteins
that will be part of the virion (structural), and that will participate in the maturation of
the viral particles (nonstructural) [8]. The action of viral proteases on PP1a and PP1ab
releases the mature structural and nonstructural proteins, which initiate the synthesis of
the components of the new viral progeny. This is one of the fundamental stages for the
replication of SARS-CoV-2 in such a way that its inhibition stops viral replication. Based on
this background, currently, the scientific and pharmaceutical community has devoted great
efforts to searching for drugs that block the protease activity of SARS-CoV-2 [6].

There are two viral proteases, the “major” 3-chymotrypsin-like protease (3CLpro
or Main protease) and the papain-like protease (PLpro) [7]. Main protease (Mpro) is a
cysteine protease with different cleavage sites than human proteases, making it an in-
teresting target for developing inhibitors [9,10]. PLpro, in addition to protease activity,
presents deubiquitinase and deISGylase (the ability to deconjugate interferon-stimulated
gene 15 protein, ISG15, from substrates), which affects the immune response during in-
fection [11,12]. Thus, molecules with the ability to inhibit PLpro could also inhibit viral
replication and reduce the impact of the virus on the host’s immune system.

PLpro has several domains with independent activity. In the N-terminus region,
it presents a Ubiquitin-like domain (Ubl2) whose activity could affect the sensitivity to
interferon (IFN), probably mediated by the deubiquitination of the nuclear factor Kappa-
light-chain-enhancer of B cell (NFk-b) [13]. The PLpro protease domain recognizes the
Lys-X-Gly-Gly sequence by cleaving the PP1a and PP1ab polyprotein to initiate virus matu-
ration [8]. Furthermore, as has been observed through in vitro studies, it has ubiquitinase
(Ub) and ubiquitin-like protease activity of gene 15 stimulated by interferon (ISG15), which
affects the innate immune response [12,13]. In addition, a Zn finger domain can be identi-
fied located between the domains with PLpro and Ubl2 activity, which could participate
in the interaction with the different substrates [14,15]. According to its multiple activities,
PLpro could be an excellent target for the design of antiviral compounds, as has already
been proven by in vitro experiments.

PLpro inhibitors have been developed by computational and experimental studies.
However, these compounds have shown weak inhibitory activity in the order of µM.
Among the proposed drugs, those designed by adding chemical groups to 5-Amino-2-
Methyl-N-[(1r)-1-Naphthalen-1-Ylethyl]benzamide (GRL0617) [16] stand out. Using this
strategy, it was possible to obtain a fluorinated molecule called C19, with an
IC50 of ~0.44 µM for protease and deubiquitinase activity [17]. Considering an analo-
gous strategy (Figure 1), the PubChem database was scanned for compounds structurally
similar to GRL0617 (Tanimoto index 80% [18]). By molecular docking with ~18,000 com-
pounds obtained in the search, 500 compounds with higher affinity than GRL0617 for
PLpro were selected. Finally, the seven compounds with the highest ligand efficacy index
and ADEM-Tox properties within acceptable ranges for drugs were selected. With these
selected compounds, molecular dynamics simulation studies were performed to calculate
the binding free energy (∆Gbind) by MMGBSA [19–21] and quantum mechanical calcula-
tions and chemically characterize the protein/ligand interaction. MMGBSA calculations
decompose ∆Gbind into a solvation term (∆Gsolv) and a gas-phase term (∆Ggas) [22]. ∆Ggas
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includes the van der Waals energies (∆Evdw) and the electrostatic contribution (∆Eele),
while ∆Gsolv includes the energies associated with the polar (∆EGB) and nonpolar (∆ESA)
terms. From these analyses, we identified compounds D28, D04, and D59 with ∆Gbind like
that calculated for PLpro/GRL0617, and molecules D60, D99, and D06 with ∆Gbind more
negative than that calculated for PLpro/GRL0617. Furthermore, as observed in molecular
dynamics simulation, compound D24 can bind to the ubiquitin-binding region and may
inhibit the ubiquitinase of the enzyme. The present study proposes PLpro inhibitors to
initiate experimental studies that could establish their inhibitory capacity for use in future
pharmacological treatments.

Figure 1. Diagram of the selection and evaluation of PLpro inhibitor compounds. Compound
selection and evaluation process (green background). * PLpro inhibitor, in vitro tested, designed by
chemical modification of GRL0617 [17].

2. Results and Discussion

GRL0617 has been reported to inhibit the protease activity of PLpro from SARS-
CoV-2, and crystallographic studies have determined the structural details supporting
its activity [11]. Considering this promising background, other researchers have stud-
ied the activity of other compounds with chemical or structural similarity to GRL0617,
obtaining candidates with higher affinity for PLpro [17]. However, groups of less than
500 thousand compounds have been explored, and the selection has been made mainly
based on physicochemical descriptors. In the present work, we performed a search for com-
pounds structurally similar (Tanimoto Index 85%) to GRL0617 in the PubChem database
containing ~109 million molecules.
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2.1. Molecular Docking

To evaluate PLpro/ligand binding, molecular docking was used, and the most stable
conformation and ∆Gbind of the protein in complex with 17,889 compounds obtained from
the first screening were determined. In addition, the same calculations were performed
for the PLpro/GRL0617 (−10.0 kcal mol−1) and PLpro/12C (−8.8 kcal mol−1) complexes,
two compounds with proven in vitro activity and whose crystal structures have been
published. GRL0617 is one of the first specific inhibitors of PLpro, and 12C was designed by
incorporating an N-phenylacetamide group into the amide group of GRL0617 [17]. Despite
the large conformational space accessible to the protein/ligand complexes, the most stable
conformations obtained by docking for PLpro/GRL0617 and PLpro/12C show a high
similarity to their crystallographic structures. The structure of the best PLpro/GRL0617
docking is similar to the published (7CMD) crystal (RMSD of 2.4 Å) (Figure S1B). In the
case of compound 12C, unlike what was observed with GRL0617, the PLpro/12C coupling
calculation generates a different structure (Figure S2C) than the published (7E35), but at
the same site and with a considerable ∆Gbind.

The ∆Gbind energy of the PLpro/GRL0617 complex (−10.0 kcal mol−1) was used as
a threshold, and 500 compounds with a ∆Gbind between −11 and −14.1 kcal/mol were
selected (Figure S2). In addition, the crystal structures of PLpro/GRL0617 and PLpro/C12
were used as controls allowing us a comparative analysis for each stage of the selection,
mainly those associated with free energy calculations and MD simulation.

2.2. Physicochemical Descriptors and ADME Properties

The 500 compounds with structural similarity to GRL0617 and with the highest ∆Gbind
were sorted according to descending LE to select the 20 with the highest value of this
physicochemical descriptor. To assess the drug viability of each compound, six physico-
chemical properties were calculated: lipophilicity, size, polarity, solubility, flexibility, and
saturation. After discarding compounds that did not meet more than two pharmacological
criteria, the seven with the highest LE were selected. As shown in Figure 2, compounds
D24, D28, D04, D59, D60, D60, D99, D06, 12C, and GRL0617 show up to two parameters
out of range. Like GRL0617, which exceeds one ADEM-Tox property (unsaturation), three
selected compounds exceed one parameter: compound D06 exceeds the flexibility range
and compounds D99 and D60 exceed the flexibility and unsaturation parameters. As
shown in Figure S4, all compounds, including the controls GRL0617 and 12C, show a high
probability of gastrointestinal absorption, while the controls also show a high probability
of brain penetration. Looking at the chemical structures of these compounds (Figure S3), it
is identified that molecules D24, D28, D59, D60, D99, and D06 present a naphthyl group, as
do GRL0617 and 12C, while compound D04 presents a (9,10-dioxoanthracene-2-yl) amino]-
1-oxopropan-2-yl group. In this theoretical framework, the selected compounds could
be drug candidates. However, it is necessary to evaluate their affinity for PLpro using
a methodology with higher predictive power. In this aspect, MD simulation allows the
evaluation of the protein–ligand interaction with a temporal and spatial resolution that is
not possible to obtain so far through experimental studies.
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Figure 2. (A–I) Bioavailability radar of the selected compounds. The red area represents the op-
timal range for each property (lipophilicity: XLOGP3 between −0.7 and +5.0, size: MW between
150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S not greater than 6,
saturation: fraction of carbons in sp3 hybridization, not less than 0.25, and flexibility: no more than
9 rotatable bonds). Under each bioavailability radar, the 2D chemical structure of each compound
is observed.

2.3. Molecular Dynamics Simulation and Protein/Ligand Interactions

From the structures obtained by molecular docking, 200 ns MD simulations were
performed in a TIP3P explicit water-box model. These simulations show a stable (Figure S5)
PLpro/ligand interaction during the whole simulation time (Figure 3A,B,D–I), except for
the PLpro/D24 model that dissociates and binds to another region of the protein (Figure 3C).
The simulation time is sufficient to discriminate between ligands that can bind specifically
to the GRL0617 binding site and those that cannot (D24). However, for the case of D24, with
a 400 ns simulation, we could observe a binding site distinct from that of GRL0617, and that
was maintained for more than 200 ns. The stability shown could indicate a new binding
region that could be explored in future work. The protein–ligand interaction is visualized
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in Figure 4A–I, highlighting the residues that maintain proximity of less than 3 Å for more
than 80% of the simulation (red and orange). To identify residues that could participate in
ligand stabilization, amino acids that remained within 3 Å (close residues) of the ligand for
more than 80% of the simulation were identified (Figure 4D–I). For compounds GRL0617
(Figure 4A), 12C (Figure 4B), D28 (Figure 4D), D04 (Figure 4F), D60 (Figure 4G), D99
(Figure 4H), and D06 (Figure 4I), the nearby residues are Leu165, Asp167, Tyr267, and
Gln272. Compounds D04, D59, D60, GRL0617, and 12C present the same nearby residues,
which include Pro251, Tyr271, and Tyr276, in addition to those already mentioned. For the
case of D24, the interaction with the protein is weaker, maintaining interactions in less than
40% of the simulation.

Figure 3. Conformations of the PLpro/ligand complex obtained by MD simulation. Crystallographic
models of PLpro inhibitors GRL0617 and 12C (A and B, respectively) and seven new inhibitor
compounds (D24, D28, D04, D59, D60, D99, and D06) obtained by in the in silico search and molecular
docking (C–I) were used to perform 200 ns MD simulations (A,B,D–I). For compounds C12 (B), D24
(C), D28 (D), D04 (E), D59 (F), D60 (G), D99 (H), and D06 (I), an increase in the binding region of
each ligand is observed. The red sphere corresponds to the Zn2+ ion. The position of the compounds
is observed every ns (red 0 ns and blue 200 ns) of the simulation after superimposing the polypeptide
chains. For compound D24 (C), 400 ns of simulation are observed (red 0 ns and blue 400 ns). The
structural formula of each compound is shown in the Supplementary Materials (Figure S3).
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Figure 4. Residues of less than 3 Å (A–I) of the ligands and the perturbation they generate in the
protein structure (J) during MD simulation. Simulations of 200 ns of GRL0617, 12C, D28, D04, D59,
D60, D99, and D06 (A, B, D, E, F, G, and I, respectively) and 400 ns for D24 (C) were analyzed,
showing the percentage of the simulation in which each ligand (blue 20% to red 100%) was found
within 3 Å of the ligand. The perturbation of the protein structure (RMSF) was analyzed during
the last 150 ns of each simulation and compared to the protein without ligand or Apo (black dots).
In the figure, the region of greatest perturbation is marked (rectangle with a dotted line), and the
region affected by the perturbation (red) and the ligand binding site (green circle) are highlighted on
the protein.

The ligand generates a local perturbation in the protein that can be observed by
means of the root mean square fluctuation (RMSF). Figure 4I shows that compounds 12C
(green line) and D28 (yellow line) generate higher fluctuation of the polypeptide chain
compared to the protein without a ligand (black dashed line). There are four regions of
major perturbation in the protein, one near the N-terminus (residues 15 to 60), and two
near the binding site (135 to 175 and 180 to 240), which includes the Zinc finger domain
and the compound binding region (255 to 300). To identify amino acids that can interact
with the compounds, simulations were studied with the CPPTRAJ program Hbond, which
uses geometric criteria to determine hydrogen bonds (Figure 5). From the analysis, it is
observed that Asp 166 could act as a hydrogen acceptor for compounds D28 (Figure 5D),
D04 (Figure 5F), D60 (Figure 5G), D99 (Figure 5H), and D06 (Figure 5I), in addition to
the control GRL0617 (Figure 5A). Other residues of possible significance are: Tyr270 for
GRL0617 (Figure 5A); Gly165 and Gln271 for compound 12C (Figure 5B); Thr77 and His75
for D24 (Figure 5C); Tyr266, Tyr270, Gln271, and Tyr275 for D28 (Figure 5D); Tyr275 for D04
(Figure 5E); Tyr270 and Tyr275 for D59 (Figure 5F); Thr303 and Asp304 for D60 (Figure 5G);
and Asp304 for D06 (Figure 5I).



Pharmaceuticals 2022, 15, 986 8 of 16

Figure 5. Fraction of intermolecular hydrogen bonds for SARS-CoV-2 PLpro interacting with controls
(A,B) and selected ligands (C–I). The bar graph shows the most common hydrogen bonds formed
between the pocket residues and the studied molecules. Values obtained from the CPPTRAJ script
in AMBER.

2.4. Non-Covalent Interactions

To obtain a representative conformation of the ligand/protein complex, a cluster
analysis of 200 ns of the simulation was performed with the DBSCAN algorithm. From the
analysis, structures representing 84% of the simulation for the PLpro/12C complex and
more than 91% of the simulation for the other complexes were obtained (Figure S6). These
representative structures show the most relevant interactions for the stabilization of the
PLpro/ligand complex. To characterize these interactions, NCI calculations were performed
(Figure 6), showing by means of an electron density profile, repulsive interactions in red,
weak interactions in green, and hydrogen bonds (HB) in blue. As can be seen, the NCI
calculations show that weak (van der Waals) interactions between ligand and protein
prevail, although some well localized stronger interactions can be identified. As seen in
Figure 6A, D–I, ligands can interact with the protein via HB. The nitrogen attached to the
benzyl group of GRL6017 can form an HB with hydrogen from the amide group of Gln272,
and the carbonyl oxygen of this ligand can act as an acceptor for the hydroxyl proton of
the side chain of Tyr267 (Figure 6A). Two carbonyl oxygens of compound D28 can act as a
hydrogen acceptor of the peptide bond of residue Glu164 (Figure 6D). Asp167 can act as a
proton acceptor forming an HB with an NH close to the cycloheptane of compound D04
(Figure 6E). An HB can be established between the hydrogen of the peptide bond of residue
Gln272 and carbonyl oxygen of compound D59 (Figure 6F). Residues Asp167, Tyr276, and
Thr304 can act as proton acceptors to form HB with amino groups of compounds D60; in
addition, the peptide bond of residue Gln272 can act as a proton donor to form an HB with
the carbonyl oxygen of this compound. The side chains of residues Asp167 and Tyr276 can
form an HB of compound D99 acting as proton acceptors. An amino group of compound
D06 can act as a proton donor to form an HB with the side chain of residue Asp167 and a
carboxyl group as a proton acceptor to form an HB with the peptide bond of Gln272.
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Figure 6. Non-covalent interactions in the representative conformation of the PLpro/ligand com-
plex obtained by cluster analysis. The amino acids surrounding with controls GRL0617 and 12C
(A and B, respectively) and selected ligands D24, D28, D04, D59, D60, D99, and D06
(C, D, E, F, G, H, and I, respectively) in the PLpro binding pocket are highlighted (upper figures),
and in the two-dimensional PLpro/ligand interaction map (lower figures) the NCIPLOT isosurface
gradient (0.5 au) is highlighted. Dashed lines indicate possible interactions between amino acids and
adjacent ligands.

2.5. Free Energy of Binding by MMGBSA

It has been reported in vitro that compounds GRL0617 and 12C effectively inhibit
PLpro protease (IC50 ~7 µM) and ubiquitinase (IC50 ~2 µM) activities. Based on this back-
ground, we performed MMGBSA calculations to estimate the ∆Gbind of the PLpro/ligand
complex for each selected compound and of the PLpro/GRL0617 and PLpro/12C com-
plexes (Table 1). The ∆Gbind allows the estimation of the affinity of a compound for a target
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protein; at more negative values, the compounds are more affine for the protein. As seen in
Figure 7, the control compounds GRL0617 and 12C have similar affinity for PLpro, which
correlates with the inhibitory activity measured in vitro. Compound D24 has less affinity
for PLpro than the control compounds (GRL0617 and 12C), and compounds D28, D04, and
D59 have a similar affinity as the controls. Compound D60 has a ∆Gbind ~6 kcal/mol lower
than controls; in contrast, D99 and D06 have a ∆Gbind ~10 kcal/mol lower than controls.
The calculations of ∆Gbind performed using MMGBSA have smaller errors (Table S1) than
the differences between compounds, supporting the observations. These differences are
less evident in the ∆Gbin calculation performed using molecular docking (Figure 7). For the
complexes analyzed, van der Waals interactions (∆Evdw) generate the largest contribution
to the total binding free energy (∆Gbind), whereas the electrostatic interaction (∆Eele) is
counterbalanced by the polar desolvation energy (∆GGB) (Table 1).

Figure 7. Free energy of binding (∆Gbind) of controls (GRL0617 and 12C) and selected compounds
(D24, D28, D04, D59, D60, D99, and D06) to SARS-CoV-2 PLpro. ∆Gbind was calculated by molecular
docking (black bar) and MMGBSA (gray bar) for each compound. MMGBSA calculations were
performed from selected structures every 10 ns over the last 100 ns of the simulation. For each
ligand, its chemical structure is highlighted, and for the controls, the IC50 is reported in the literature.
* IC50 obtained from [17].
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Table 1. Predicted binding free energies (kcal/mol) and individual energy terms calculated from
molecular dynamics simulation following the MM-GBSA protocol for PLpro complexes.

Calculated Free Energy of Decomposition (kcal/mol)

∆Gbind ∆EvdW ∆Eelect ∆Ggas ∆Gsolv

GRL0617 −32.6 −37.9 −21.6 −59.52 26.9
12C −32.8 −38.9 −22.1 −61.0 28.2
D24 −13.6 −22.2 −10.3 −32.5 18.9
D28 −30.2 −38.2 −31.9 −70.1 39.8
D04 −34.2 −42.4 −37,1 −79.5 45.3
D59 −30.5 −42.2 −25.5 −67.7 37.2
D06 −36.8 −40.3 −36.9 −77.2 40.5
D60 −42.0 −44.7 −42.2 −86.9 44.9
D99 −42.3 −44.8 −42.6 −87.4 45.1

3. Materials and Methods

Compound GRL0617 is a promising candidate PLpro inhibitor that has been evaluated
by antiviral, structural, and mechanistic studies. Following this analysis, a structural
similarity search (Tanimoto Index of 85%) was performed in the PubChem database with
millions of molecules (Figure 1). Thanks to the restrictions imposed, 17,889 compounds
were selected and studied by molecular docking to evaluate their affinity for the GRL0617
binding site in PLpro.

3.1. Molecular Docking

The selected 17,889 compounds were docked into the binding cavity (rigid docking)
of GRL0617 to PLpro using AutodockGPU suite. To evaluate the potential of the selected
compounds, compounds with in vitro antiviral activity (GRL0617 and C12) were included
in the docking. For docking, protein coordinates (PDB: 7CMD) with a resolution of 2.59 Å
were used and were modified with Schrödinger’s protein preparation wizard to complete
the structure (residues 220 to 231). Hydrogen atoms were added, charges were assigned,
and the GRL0617 binding region was delimited by restricting it to a 20 Å cube centered
at the center of mass of GRL0617 bound to PLpro. Overall, grid maps were calculated
using the AutoGrid 4.0 option and the volume chosen for the grid maps was composed
of 60 × 60 × 60 points, with a grid point spacing of 0.375 Å. To define the rotary bond in
the ligand, the default option in the software was used. In the Lamarck genetic algorithm
(LGA) couplings, an initial population of random individuals with a population size of
150 individuals, a maximum number of energy evaluations of 2.5 × 107, a maximum gener-
ation number of 27,000, a mutation rate of 0.02, and a crossover rate of 0.80 were employed.
Each complex was constructed using the lowest coupled energy binding positions. van
der Waals interactions were calculated using a smoothed 12–6 Lennard Jones potential,
while hydrogen bonding interactions were evaluated using a 12–10 function incorporating
a directionality term. That is, interactions deviating from ideal hydrogen bond geometries
were progressively reduced.

The partial charges of each ligand were determined with the semi-empirical PM6-
D3H4 method [23,24] implemented in MOPAC2016 software [25]. PM6-D3H4 introduces
scattering and hydrogen bonding corrections to the PM6 method. The 3D representations
of the docking results were analyzed using the VMD molecular graphics system.

From the molecular docking study, 500 molecules with binding energies between
−14.1 and −11 kcal/mol were selected. The binding free energy obtained from the cou-
plings was used to calculate the ligand efficiency and binding constant of each compound
to PLpro.

To select compounds with possible inhibitory activity against PLpro and with potential
to be used as a drug, the following computational estimates were considered: ligand
efficiency (LE), physicochemical descriptors (molecular hydrogen bond acceptor, hydrogen



Pharmaceuticals 2022, 15, 986 12 of 16

bond donor, weight, topological polar surface area, rotational bond count, octanol/water
partition coefficient, and molar refractivity) and estimates of drug properties (absorption,
distribution, metabolism, excretion, and toxicological properties) [26]. Compounds with
the highest ligand efficiency were selected, with a binding efficiency index (BEI) between
20 and 27 and a lipophilic ligand efficiency (LLE) between 5 and 7 [27].

3.2. Ligand Efficiency (LE)
LE allows the estimation of the binding affinity of a ligand to a target protein, weighted

by the size of the molecule. LE (Equation (1)) is calculated from the dissociation constant
(Kd) and the number of atoms other than H (HAC). Kd is obtained by Equation (2), where
∆G0 corresponds to the binding energy (kcal·mol−1) obtained from docking experiments,
R the Renault constant (1.987207 cal·mol−1K−1), and T the temperature (298.15 K).

LE = −2.303RT
HAC

log log (Kd) (1)

Kd = 10
∆G0

2.303RT (2)

3.3. BEI and LLE
These metrics are calculated based on the Kd obtained from molecular docking. BEI allows

the estimation of the binding capacity weighted by the molar mass (Equation (3)), whereas LLE
(Equation (4)) estimates the binding capacity with respect to its lipophilicity (clogP obtained from
SwissADME webserver) [28,29].

BEI =
−log(Kd)

MW
(3)

LLE = −log(Kd)− clogP (4)

3.4. ADME-Tox Properties
The ADMET properties were calculated to estimate the drug viability of the 7 selected com-

pounds. ADME-Tox profiles, which provide a preliminary prediction of the in vivo pharmacological
behavior of the compounds, were obtained by this calculation. In addition, physicochemical proper-
ties such as molecular hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), weight (MW),
topological polar surface area (TPSA), rotational bond count (RB), octanol/water partition coefficient
(LogP), and molar refractivity (MR) were calculated using the web server SwissADME [29]. The
toxicological properties of the compounds were analyzed considering the toxicity rules of Lipinski,
Ghose, Veber, and Pfizer [30].

3.5. Molecular Dynamics (MD) Simulation
MD simulations were performed with the seven selected couplings and two control compounds

(GRL0617 and C12). Each model was constructed from the PLpro/ligand complex obtained from
the molecular docking calculation in an explicit water-box model TIP3P. The protonation states of
the ionizable residues at pH 7.0 were established with the H++ web interface based on calculations
of the pK values of the ionizable groups [31]. The protein was parameterized with the ff19SB force
field [32]. The domain that binds the Zn atom to PLpro (Cysteine residues 191, 194, 226, and 228)
was parameterized with the ZAFF force field that is specific for proteins with metallic scepters
of this atom [33]. The 7 selected molecules were parameterized with GAFF Force Field using the
Antechamber module of AmberTools18, and the RESP charges were recalculated with a B3LYP/6-31G*
level of theory in the TeraChem-GPU program [34].

MD simulations were performed with AMBER20-GPU using the following MD protocol [19,35]:
(i) minimization and structural relaxation of water molecules with 2000 minimization steps and
MD simulation with an NPT assembly (300 K) for 1000 ps using harmonic constraints of 10 kcal
molÅ−2 for proteins and ligands; (ii) full structure minimization considering 6500 steps of conjugate
gradient minimization; (iii) the minimized systems were progressively heated up to 300 K, with
harmonic constraints of 10 kcal molÅ−2 for carbonate skeleton and ligand for 0.5 ns; (iv) the system
was then equilibrated for 0.5 ns maintaining the constraints and then for 5 ns without constraints at
300 K in a canonical assembly (NVT); (v) finally, the total simulation duration was 200 ns for each
system. During the MD simulations, the equations of motion were integrated with a time step of
2 fs in the NPT assembly at a pressure of 1 atm. The SHAKE algorithm was applied to all hydrogen
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atoms, and the van der Waals limit was set to 12 Å. The temperature was maintained at 300 K,
employing the Langevin thermostat method with a relaxation time of 1 ps. The Berendsen barostat
was used to control the pressure at 1 atm. Long-range electrostatic forces were accounted for using
the particle-mesh Ewald (PME) approach. Data were collected every 1 ps during the MD tests [36].
Molecular visualization of the systems and MD trajectory analysis were carried out with the VMD
software package.

3.6. Cluster Analysis
This statistical methodology separates the data points into several groups that exhibit similar

properties and differ from the other groups. To perform the clustering, the density-based spatial
method of applications with noise (DBSCAN) implemented in the CPPTRAJ tool was used [37].
This algorithm performs the separation by considering a cluster in the data space as a contiguous
region of high point density, separated from other similar clusters by contiguous regions of low point
density. Each analysis was performed with a cutoff distance of 1.5 Å based on the Root-Mean-Square
Deviation (RMSD) of the ligand’s distinct hydrogen atoms and 5 points as a minimum for each
cluster. According to this calculation, the representative structures of each simulation were obtained
in relation to the position of the ligand in the protein.

3.7. Free Energy Calculation
The free energy of binding of each ligand in the last 100 ns of molecular dynamics simulations

was estimated using “generalized Born and surface area continuum solvation molecular dynamics”
MM-GBSA [38]. The analysis was performed on three subsets: the protein, the ligand, and the
complex (protein–ligand). For each of these subsets, the total free energy (∆Gtot) was calculated
as follows:

∆Gtot = EMM + Gsolv − T∆Sconf (5)

where EMM is the bonded (bond, angle, and dihedral) and unbonded (electrostatic and Lenard-
Jones) terms; Gsolv is the polar contribution of the solvation energy and the nonpolar contribution
to the solvation energy; T is the temperature; and ∆Sconf corresponds to the conformational entropy.
Both EMM and Gsolv were calculated using AMBER20-GPU software with the generalized Born
implicit solvent model. ∆Gtot was calculated as a linear function of the solvent-accessible surface
area, which was calculated with a probe radius of 1.4 Å. The binding free energy of SARS-CoV-2
PLpro and ligand complexes (∆Gbind) were calculated by the difference where the Gtot values are the
simulation averages.

∆Gbind = Gtot(complex)−Gtot(protein)−Gtot(ligand) (6)

3.8. Non-Covalent Interactions
The non-covalent interaction index (NCI) was calculated for each representative conformation

(200 ns simulation) obtained from the cluster analysis. Non-covalent interactions, such as hydrogen
bonds, steric repulsion, and van der Waals interactions, were identified and mapped using pro-
molecular densities (ρpro), calculated as the sum of all atomic contributions. The NCI is based on
the electron density (ρ), its derivatives and the reduced density gradients (s). The reduced density
gradient is given by:

s =
1

2(3π2)1/3
∇ρ

ρ4/3 (7)

These interactions are local and manifest in real space as low-gradient isosurfaces with low
densities that are interpreted and colored according to the corresponding values of the sign (λ2)ρ.
The surfaces are colored on a blue-green-red scale according to the strength and type of interaction.
Blue indicates strong, attractive interactions, green indicates weak van der Waals interactions, and red
indicates strong unbound superposition. All calculations were performed with NCIPlot software [39].

4. Conclusions
A massive search for compounds structurally similar to GRL0617 was performed in the Pub-

Chem database. The affinity for the GRL0617 binding site of the ~18,000 compounds with a Tanimoto
index of 85% was calculated by molecular docking, obtaining 500 with a higher affinity than GRL0617.
Then, according to the physicochemical descriptors and ADME-Tox properties, the highest affin-
ity compounds with feasibility to be used as drugs were selected. Using this methodology, out
of ~109 million compounds from the PubChem database, 7 compounds were chosen as candidate
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PLpro inhibitors of SARS-CoV-2. The binding of each compound to the GRL0617 binding site to
PLpro was evaluated by MD simulation and the protein–ligand interaction by NCI calculations. The
constructed models were structurally stable with respect to protein structure, PLpro/ligand complex
formation, and ∆Gbind calculated by MMGBSA. According to the ∆Gbind, the controls, GRL0617 and
12C, may have similar binding affinities, which is consistent with experimental data. The affinity
∆Gbind by MMGBSA discriminates between the selected compounds and the controls. Although
D24 shows a lower binding affinity than the controls, this compound binds to another region of
the protein. Compounds D28, D04, and D59 could show a similar affinity for the binding site of
GRL0617 to PLpro as the controls. Compounds D60, D99, and D06 present the highest affinity for
PLpro, showing strong interactions with residues present in the GRL0617 binding site. Despite
performing a comparative analysis with empirically tested molecules, being an in silico study, it is
necessary to test the compounds by experimental assays. Considering this limitation and based on the
analyses performed, we propose the seven compounds selected for in vitro studies to evaluate their
inhibitory capacity.
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position in reference to the lipophilicity descriptor (WLOGP) versus topological polar surface (TPSA);
Figure S4: Chemical structures of inhibitors (GRL0617 and C12) and compounds selected by virtual
screening; Figure S5: Root mean square deviation (RMSD) of the polypeptide chain (apoPLpro and
PLpro/ligand) and ligand carbon skeleton (red broken line); Figure S6: Variation of ligand position
in the complex with PLpro during 200 ns molecular dynamics simulation.
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