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Digital pathology can efficiently assess immunohistochemistry (IHC) data on tissue microarrays (TMAs). Yet, it re-
mains important to evaluate the comparability of the data acquired by different software applications and validate
it against pathologist manual interpretation. In this study, we compared the IHC quantification of 5 clinical breast can-
cer biomarkers—estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor
2 (HER2), epidermal growth factor receptor (EGFR), and cytokeratin 5/6 (CK5/6)—across 3 software applications
(Definiens Tissue Studio, inForm, and QuPath) and benchmarked the results to pathologist manual scores.
IHC expression for each marker was evaluated across 4 TMAs consisting of 935 breast tumor tissue cores from 367
women within the Nurses’ Health Studies; each women contributing three 0.6-mm cores. The correlation and agree-
ment between manual and software-derived results were primarily assessed using Spearman’s ρ, percentage agree-
ment, and area under the curve (AUC).
At the TMA core-level, the correlations between manual and software-derived scores were the highest for HER2
(ρ ranging from 0.75 to 0.79), followed by ER (0.69–0.71), PR (0.67–0.72), CK5/6 (0.43–0.47), and EGFR (0.38–
0.45). At the case-level, there were good correlations between manual and software-derived scores for all 5 markers
(ρ ranging from 0.43 to 0.82), where QuPath had the highest correlations. Software-derived scores were highly com-
parable to each other (ρ ranging from 0.80 to 0.99). The average percentage agreements between manual and
software-derived scores were excellent for ER (90.8%–94.5%) and PR (78.2%–85.2%), moderate for HER2 (65.4%–
77.0%), highly variable for EGFR (48.2%–82.8%), and poor for CK5/6 (22.4%–45.0%). All AUCs across markers
and software applications were≥0.83.
The 3 software applicationswere highly comparable to each other and tomanual scores in quantifying these 5markers.
QuPath consistently produced the best performance, indicating this open-source software is an excellent alternative for
future use.
Introduction

Tissue microarrays (TMAs) have enabled researchers to investigate
tumormolecular characteristics in large study populations.1–4 For example,
within the Nurses’ Health Studies (NHS), we, the authors, constructed
TMAs of normal breast lobules to identify biomarkers associated with sub-
sequent breast cancer development.5–8 We also utilized TMAs of breast tu-
mors to study associations between: (1) breast cancer risk factors and tumor
molecular subtypes,9–13 and (2) tumor biomarkers and breast cancer
prognosis.14–17
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Pathologist manual interpretation of TMA immunohistochemistry
(IHC) expression is considered the current standard for epidemiological
studies. Manual scoring of TMAs is, however, time-consuming, expensive,
prone to subjectivity between pathologists, and semi-quantitative.18 The
development of digital pathology—whole slide scanners and image analy-
sis software applications—has enabled more quantitative and objective
scoring of TMA IHC expression. Since 2010, our approach in the NHS has
been to: (1) use the Definiens Tissue Studio® software to semi-automate
the quantification of a marker’s IHC expression on digitized TMAs; (2) ran-
domly select 1 TMA for manual scoring by a pathologist; and (3)
vard Medical School, 330 Brookline Ave, Boston, MA 02115, USA.
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benchmark the software-derived scores against manual scores for that TMA
to assess the reliability of the IHC quantification by Definiens.8,13,19

It is imperative to evaluatewhether IHC data acquired using newer image
analysis software applications are comparable to data acquired by existing/
older software applications. This is especially pertinent to prospective epide-
miological cohorts such as the NHS where TMA blocks are assembled with
newly diagnosed cancer cases every few years and different software applica-
tionsmaybe used tomeasure IHC expression in those newTMAblocks for on-
going biomarker studies. Thus, it is important to understand potential biases
in IHC data acquired using different software applications.

In this study, we compared the IHC quantification of 5 clinical breast
cancer biomarkers—estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor 2 (HER2), epidermal growth fac-
tor receptor (EGFR), and cytokeratin 5/6 (CK5/6)—across three software
applications (Definiens, inForm®,20 and QuPath21). We benchmarked
software-derived results to pathologist manual scores.

Materials and methods

Study population

The NHS, established in 1976, consists of 121,700 US female regis-
tered nurses (30–55 years). In 1989, 116,429 female nurses (25–42
years) were additionally recruited into the second cohort, NHSII. At
Fig. 1.Workflow for data acquisition and analyses for this study. Twenty tissuemicroarra
board-certified pathologist manually scored the TMA slides. Rationale and explanati
summarized to case-level (C).
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recruitment, NHS and NHSII participants provide baseline information
about their medical history and risk factors for breast cancer.22 They an-
swer biennial follow-up questionnaires, including reporting any new
breast cancer diagnosis. Breast cancer was self-reported by participants
(or next of kin for decedents) and was further confirmed by NHS/NHSII
medical personnel via medical records review. Participants provided
written consent to obtain breast cancer pathology records and tissue
specimens from the diagnosing hospital; breast cancer was additionally
confirmed by central pathology review. The study protocol was ap-
proved by the institutional review boards of the Brigham and Women’s
Hospital and Harvard T.H. Chan School of Public Health, and those of
participating registries as required.

TMA creation

The 4 TMAs included in this study were constructed with breast tu-
mors from 385 NHS/NHSII participants diagnosed with invasive carci-
noma between 2001 and 2008. In general, for each woman, 3 x 0.6mm
representative tissue cores were obtained from their primary tumors in
areas annotated by a board-certified breast pathologist (GMB) and as-
sembled into TMAs at the Specialized Histopathology Core, Dana-
Farber/Harvard Cancer Center (DF/HCC), Boston, MA. A small subset
of women were represented with >3 cores. These 4 TMAs consisted of
a total of 1197 cores.
y (TMA) slides were scanned by both scanners and by 3 software applications (A). A
on of the type of analysis to be conducted at core-level (B) and when data were
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Tissue markers and IHC

ER, PR, HER2, EGFR, and CK5/6 IHC assays were performed using 5 μm
TMA sections, standard protocols, and the appropriate positive and negative
controls, at the Specialized Histopathology Core, DF/HCC.19 The antibodies
used were: rabbit anti-ER clone SP at 1:40 dilution (Neomarkers #RM-
9101-S1, Thermo Fisher Scientific, Waltham, MA), mouse anti-PR clone
PgR 636 at 1:400 dilution (Dako #M3569, Agilent Technologies Inc, Santa
Clara, CA), rabbit anti-HER2 clone SP3 at 1:40 dilution (Neomarkers
#9103-SO-A), mouse anti-EGFR clone H11 at 1:200 dilution (Dako
#M3563), and mouse anti-CK5/6 clone D5/16/B4 at 1:200 dilution (Dako
#7237). The TMAs for each marker were stained in a single batch.

Pathologist manual scoring

A pathologist (GMB) at Beth Israel Deaconess Medical Center (BIDMC)
scored the immunoreactivity for each marker. For ER and PR, nuclei of
tumor cells were graded as negative (0%; complete absence of staining),
low positive (estimated 1–10% tumor cells staining positive), and positive
(>10% tumor cells staining positive). HER2 evaluation adhered to the
2018 American Society of Clinical Oncology/College of American Pathol-
ogy guideline: 0 (no tumor membrane staining observed), 1+ (incomplete
and faint membrane staining in estimated >10% of tumor cells), 2+ (weak
tomoderatemembrane staining in>10%of tumor cells, incompletemoder-
ate to intense membrane staining in >10% of tumor cells, or intense mem-
brane staining in ≤10% of tumor cells), and 3+ (complete and intense
membrane staining in >10% of tumor cells). For this study, HER2 scoring
was reclassified as negative (0 and 1+), low positive (2+), and positive
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(3+). EGFR and CK5/6 were evaluated for cytoplasmic and/or membra-
nous staining and graded as negative (0%; complete absence of staining),
low positive (estimated 1–10% tumor cells staining positive), and positive
(>10% tumor cells staining positive). The pathologist noted whether the
cores contained tumor cells (loss of tumor region can occur due to serial sec-
tioning); or were unevaluable (due to core loss during sectioning or stain-
ing, or tumor cells were obscured for evaluation because of staining
artifacts or tissue folding; see Supplementary 1).

Digitization and semi-automated IHC quantification

Twenty TMA sections (5 markers x 4 TMA slides) were simulta-
neously digitized at 20× by 2 whole-slide scanners—Pannoramic Scan
P150 (3DHISTECH Ltd, Budapest, Hungary; 0.33 μm per pixel) and
PhenoImager HT (formerly Vectra Polaris, Akoya Biosciences,
Marlborough, MA; 0.50 μm per pixel). Since 2010, our established
workflow in the NHS/NHSII involves digitizing the TMAs using
the Pannoramic Scan and analyzing the images using Definiens Tissue
Studio® (version 4.4.2; Definiens AG, Munich, Germany; Heng
lab).8,13,19 In 2021, the Spatial Transcriptomics Unit at BIDMC acquired
the PhenoImager HT scanner and its companion image analysis soft-
ware, inForm® (version 2.5). The older Pannoramic Scan’s .mrxs file
format was incompatible with inForm while the newer PhenoImager
HT .qptiff files were incompatible with Definiens version 4.4.2. Both
.mrxs and .qptiff were compatible with QuPath, an open source
software.21 Hence QuPath version 0.3.0 was employed for comparison
and evaluated whether images acquired from different scanners may af-
fect IHC quantification (see Fig. 1A). Definiens, inForm, and QuPath
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Table 1
Characteristics of the Nurses’ Health Study (NHS) and NHSII participants in this
study.

NHS NHSII

n 192 175
Age at breast cancer diagnosis, mean (SD) 72 (6.7) 52 (4.4)
Calendar year of breast cancer diagnosis,
median (IQR)

2008
(2007-2009)

2006 (2005
-2007)

Tumor grade, n (%)
Well-differentiated 47 (24.9) 27 (15.4)

Moderately differentiated 72 (37.5) 58 (33.1)
Poorly/undifferentiated 38 (19.8) 35 (20.0)

Unknown 35 (18.2) 55 (31.4)

Tumor size, n (%)
≤1.0 cm 52 (27.1) 31 (17.7)
1–2 cm 81 (42.2) 52 (29.7)
2–4 cm 32 (16.7) 31 (17.7)
>4 cm 5 (2.6) 8 (4.6)

Missing 22 (11.5) 53 (30.3)

Node status, n (%)
0 155 (80.7) 130 (74.3)

1–3 29 (15.1) 36 (20.6)
4–9 4 (2.1) 5 (2.9)
10+ 4 (2.1) 3 (1.7)

Metastatic at diagnosis 0 (0.0) 1 (0.6)

Stage, n (%)
0 (In situ) 0 (0.0) 0 (0.0)

1 105 (54.7) 62 (35.4)
2 47 (24.5) 46 (26.3)
3 9 (4.7) 12 (6.9)
4 0 (0.0) 1 (0.5)

Missing 31 (16.2) 54 (30.9)

Molecular subtype status, n (%)
ER+/PR+/HER2- or ER+/PR-/HER2- 141 (73.4) 94 (53.7)

ER+/PR+/HER2+ or ER+/PR-/HER2+ 0 (0.0) 2 (1.1)
ER-/PR-/HER2+ 9 (4.7) 8 (4.6)
ER-/PR-/HER2- 16 (8.3) 13 (7.4)

Missing 26 (13.5) 58 (33.1)
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produced 0–100% continuous estimate of immunoreactive cells for all 5
markers.

To eliminate inter-operator subjectivity, a single operator (VCB) per-
formed all the software analyses. For each marker, we randomly selected
12 tissue cores on 1 of the 4 TMAs manually scored as negative (n=4),
low positive (n=4), and positive (n=4; see Supplementary 2). These 12
cores were used across the software applications to: (1) train tissue segmen-
tation into epithelium (i.e., tumor), stroma, and background; and (2) set the
optimized IHC thresholding level (i.e., minimum intensity to score a cell as
immunoreactive; see Supplementary 3). Fig. 2 is an overview of the
workflow for each software.

We used the default tissue segmentation classifier models in Definiens
(unspecified) and inForm (trainable tissue segmentation with a large-
scale pattern of segmentation). The best performing object classifier in
QuPath was random trees. For cell detection, we used the in-built method
in Definiens (unspecified) and inForm (adaptive cell segmentation). For
QuPath, we used the “positive cell detection” command where we opti-
mized the intensity thresholds for hematoxylin, nucleus/cytoplasm (mean
optical density; see Supplementary 3) and used the default values for all
other parameters.

Statistical analysis

We first compared the number of cells detected as tumor or stromal be-
tween the software applications for each core (Fig. 1B). This comparison
was to verify that downstream IHC expression results were minimally af-
fected by differences in the number of detected cells albeit potential mis-
classification by each software application. As tissue composition for each
core was expected to be slightly different between serial 5 μm TMA sec-
tions, this part of the analysis was conducted on cores across 20 TMAs.
We used Spearman’s ρ to correlate the number of cells detected as tumor
or stromal between software. We used the intraclass correlation coefficient
(ICC) to test the inter-rater reliability (ICC (C, κ); i.e., between software).
ICC (A, κ) was used to test the intra-rater reliability (i.e., within each soft-
ware) of the number of tumor or stromal cells detected across 2–15 cores
(5 markers x 3 cores) belonging to each woman. Spearman’s ρ or ICC
score of 1 indicates perfect correlation or similarity.

Next, we compared core-levelIHC expression. Since the 5 IHC markers
were predominantly expressed by tumor cells, we evaluated IHC expression
in regions classified as tumor/epithelium by the algorithms. For eachmarker,
we compared the %positive score per core between manual and software
(Spearman’s ρ). To evaluate the reproducibility of a marker’s IHC expression
score across 2 or 3 cores pertaining to a woman, we used Fleiss’ κ for manual
scores and ICC (A, κ) for software-derived scores.

For case-level comparisons, we summarized the marker’s manual and
continuous scores across each woman’s cores. For manual assessment, the
highest manual score was assigned to each case—the case was classified
as negative if all cores were negative, low positive if at least 1 core was
scored as low positive and others were negative, and positive if at least
1 core was scored as positive. For software-derived scores, the weighted
average %positive was computed for each woman, i.e., the total number
of positive cells/nuclei across a woman’s cores divided by the total number
of tumor cells/nuclei present across the woman’s cores, and multiplied by
100. The weighted average %positive approach allows us to better capture
tumor heterogeneity across a woman’s cores sampled from various areas of
the tumor. As an added stringent measure, womenwith <100 total number
of tumor cells across their cores were excluded at this stage.

For analyses at the case level, we correlated each marker’s IHC ex-
pression between manual and software results using Spearman’s ρ.
Next, we categorized software-derived weighted average %positive
scores into negative (<1%), low positive (1–10%), or positive (>10%)
to evaluate the agreement between manual and software using %agree-
ment and ICC (A, κ). Lastly, we created the receiver-operator character-
istic (ROC) curves and utilized the area under the curve (AUC) values to
determine the sensitivity and specificity of software-derived weighted
average %positive scores benchmarked against binarized manual score
4

(negative versus low positive/positive). Fig. 1C summarizes the analy-
ses performed at the case level.

Results

IHC expression for each marker was evaluated on an average of 935
cores pertaining to 367 women. For each marker, an average of 12.3%
cores had no tumor while an average of 9.6% cores were missing or not
evaluable across 4 TMAs (Supplementary 1). The majority of these 367
women had Stage I disease (45.5%; Table 1). Their tumors were alsomostly
ER+/HER2- (64.0%) and moderately differentiated (35.4%).

Tumor and stromal cell counts: Core-level comparison

The number of detected tumor cells was highly comparable while the
number of detected stromal cells was more variable between the software
applications. The inter-rater reliability among software to detect the num-
ber of cells as tumor is ICC 0.92 (95% confidence interval (CI) 0.91–0.92)
and stromal is 0.67 (95% CI of 0.66–0.69).

There were varying strengths of pair-wise correlations between soft-
ware applications, most likely due to the variability in the classification al-
gorithms employed by each software, notwithstanding the fact that each
overall analysis algorithm was built by the same personnel. The ρ for
the number of tumor cells detected ranged from 0.74 between QuPath
(.mrxs) and inForm to 0.87 between Definiens and QuPath (.qptiff; all
p<0.001; Supplementary 4A). There were lower pair-wise correlations for
the number of stromal cell detected, ranging from ρ=0.43 (between Defin-
iens and inForm) to ρ=0.80 (betweenQuPath (.mrxs) and QuPath (.qptiff);
all p<0.001; Supplementary 4B). The correlation within the same file
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formats was moderate (.mrxs: ρ=0.78 for tumor and ρ=0.56 for stromal
cells; .qptiff: ρ=0.81 for tumor and ρ=0.69 for stromal cells; Supplemen-
tary 4). Scanners had minimal effect on cell counts as correlation was
very good when using QuPath to analyze both file formats (ρ=0.83 for
tumor and ρ=0.80 for stromal cells; Supplementary 4).

The intra-rater reliability of the software applications to detect the number
of tumor cells across cores belonging to each woman ranged from ICC 0.91
(QuPath .qptiff) to 0.94 (QuPath .mrxs; Supplementary 5). The ICC for the
number of detected stromal cells ranged from 0.79 (inForm) to 0.94 (QuPath
.mrxs; Supplementary 5). These excellent ICC scores reflect the high degree of
similarity in tissue composition among the cores representing each woman.
Fig. 3. Correlation of tumor immunohistochemistry expression between manual (ordi
(%positivity) per core. Estrogen receptor, ER; progesterone receptor, PR; human epi
cytokeratin 5/6, CK5/6.

5

IHC quantification: Core-level comparison

Fig. 3 displays boxplots correlating each marker’s manual scores with
software-derived scores per core. The correlations were the highest for
HER2 (ρ ranging from 0.75 to 0.79), followed by ER (0.69–0.71), PR
(0.67–0.72), CK5/6 (0.43–0.47), and EGFR (0.38–0.45; p<0.001 for all
markers).

Across a woman’s cores, there was perfect agreement for EGFR (κ=
1.00) and CK5/6 (κ=1.00), and moderate agreement for ER (κ=0.58),
PR (κ=0.54), and HER2 (κ=0.50), when assessed manually (Table 2).
ICC scores for each marker were similar across the software applications
nal categories of negative, low positive, and positive) and software-derived scores
dermal growth factor receptor 2, HER2; epithelial growth factor receptor, EGFR;



Table 2
Reproducibility of each marker’s immunohistochemistry expression when manually assessed (core-level) or quantified using the software across each woman’s cores
(maximum of 3).

ER PR HER2 EGFR CK5/6

Manual
Positive, n (%) 683 (77.1) 493 (55.7) 169 (19.2) 54 (5.6) 87 (9.3)

Low positive, n (%) 28 (3.2) 64 (7.2) 143 (16.3) 36 (3.8) 102 (10.9)
Negative, n (%) 175 (19.7) 328 (37.1) 568 (64.5) 867 (90.1) 747 (79.8)

Fleiss’ κ (SE) 0.58 (0.01) 0.54 (0.01) 0.50 (0.01) 1.00 (0.02) 1.00 (0.01)

Definiens (.mrxs)
n 766 790 783 802 778

% positive, mean (SD) 47.9 (34.4) 33.6 (31.1) 11.8 (21.6) 3.0 (7.5) 13.7 (18.5)
ICC (95%CI) 0.81 (0.77, 0.84) 0.48 (0.41, 0.56) 0.85 (0.82, 0.87) 0.66 (0.60, 0.71) 0.62 (0.56, 0.68)

QuPath (.mrxs)
n 837 838 829 899 854

% positive, mean (SD) 59.6 (38.9) 48.0 (39.7) 13.0 (24.9) 2.7 (10.6) 17.5 (20.9)
ICC (95%CI) 0.88 (0.86, 0.90) 0.56 (0.49, 0.62) 0.90 (0.88, 0.92) 0.76 (0.72, 0.80) 0.61 (0.54, 0.66)

Inform (.qptiff)
n 836 856 851 895 862

% positive, mean (SD) 51.9 (34.9) 36.2 (35.2) 11.0 (23.4) 2.5 (9.3) 9.7 (15.6)
ICC (95%CI) 0.86 (0.84, 0.89) 0.48 (0.41, 0.54) 0.91 (0.89, 0.92) 0.78 (0.74, 0.82) 0.55 (0.49, 0.62)

QuPath (.qptiff)
n 865 865 845 898 861

% positive, mean (SD) 46.6 (35.4) 35.7 (35.7) 9.9 (22.7) 8.0 (15.1) 11.2 (16.8)
ICC (95%CI) 0.85 (0.82, 0.87) 0.50 (0.43, 0.57) 0.91 (0.89, 0.93) 0.75 (0.71, 0.79) 0.61 (0.55, 0.66)

Estrogen receptor, ER; progesterone receptor, PR; human epidermal growth factor receptor 2, HER2; epithelial growth factor receptor, EGFR; cytokeratin 5/6, CK5/6;
intraclass correlation coefficient, ICC; standard error, SE; standard deviation, SD.
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(Table 2). This indicates that heterogeneity in tumormarker expressionwas
driving the variability of %positive scores between a woman’s cores
(Table 2).

IHC quantification: Case-level comparison

There were good correlations between manual scores (each case was
represented by the highest ordinal category across its cores, i.e., negative,
low positive, and positive) and continuous software-derived scores
(weighted average %positive) for all 5 markers. PR had the best correla-
tions betweenmanual and software (ρ ranging from0.79 to 0.82)while cor-
relations for EGFR and CK5/6were lower than for ER, PR, andHER2 (0.43–
0.49 for EGFR and 0.47–0.52 for CK5/6; p<0.001 for all markers; Supple-
mentary 6). QuPath (.mrxs) had the highest ρ with manual scores for
HER2, and EGFR; QuPath (.qptiff) for PR; and Definiens for ER and CK5/
6. Software applications were highly comparable to each other, as demon-
strated by ρ ranging from 0.80 to 0.99 across the 5 markers (Supplemen-
tary 6).

Next, we used the weighted average %positive scores approach to com-
pare the agreement between manual and each software applications.
Weighted average %positive scores were grouped into negative (<1%),
low positive (1–10%), or positive (>10%) to evaluate average %agreement
between manual and each software application. The average %agreements
were excellent for ER (ranging from 90.8% to 94.5%) and PR (78.2%–
85.2%), and moderate for HER2 (65.4%–77.0%; Fig. 4). Percentage agree-
ments were highly variable for EGFR (48.2%–82.8%) and poor for CK5/6
(22.4%–45.0%). QuPath (.qptiff) had the highest%agreement withmanual
scores for PR and HER2; QuPath (.mrxs) for EGFR; and inForm for ER
and CK5/6. The average %agreement between software applications
were almost always better than when each software was benchmarked
against manual scores (Fig. 4). ER had the highest reproducibility of
the category assigned to each case across the 5 methods with an ICC
score of 0.94, (95% CI 0.92–0.94), followed by PR (0.85 (0.83–0.87)),
HER2 (0.81 (0.78–0.83)), EGFR (0.53 (0.48–0.58), and CK5/6 (0.49
(0.44–0.54)).

The lower %agreements and ICC scores for EGFR and CK5/6 indicated
that different cut-offs were needed to group their software-derived contin-
uous scores to comparewithmanual scores.We dichotomized theweighted
6

average %positive scores for EGFR and CK5/6 into ≤10% or >10%23 and
compared it to dichotomized manual scores (negative/low positive versus
positive). Average %agreement improved to 84.3%–97.8% for EGFR and
57.1%–75.3% for CK5/6 (Supplementary 7). InForm had the best %agree-
ment with manual scores for both markers using dichotomized groups.

In Fig. 5, all AUCs were≥0.83, indicating the software-derived scores
were highly sensitive and specific when benchmarked against binarized
manual scores (negative versus low positive/positive). Lastly, software ap-
plications were ranked based on the highest ρ or %agreement when
benchmarked against manual scores. QuPath was the top-ranking software
in 3 out of the 4 assessments (Supplementary 8).
Discussion

This study compared the IHC quantification of 5 breast cancer markers
between 3 software applications and benchmarked their results to the cur-
rent standard of pathology manually assessed scores. We showed that
whilst our TMAs were well constructed—excellent ICC sores indicating
highly similar tissue composition among a woman’s cores—the cores
displayed heterogeneous tumor marker expression. All 3 software applica-
tions were highly comparable to each other and when compared to manual
scores, especially in the quantification of ER, PR, and HER2 expression.
QuPath was the overall top performing software in terms of providing the
best %agreement with our manual scores, and the requiring the least time
to set up and apply. Therefore, for our future work in the NHS/NHSII,
QuPath is an excellent alternative software to assess tumor biomarker ex-
pression on new TMA blocks consisting of newly diagnosed breast cancer
cases, and new data assessed by QuPath would be very comparable to our
existing data quantified using Definiens.

CK5/6 and EGFR IHC staining are clinically used to further classify
triple-negative breast cancers as basal subtypes.10,14,24 Since this study pop-
ulation only had 7.9% triple-negative cases, the lower ρ values for CK5/6
and EGFR comparing software-derived and manual cores at core-level,
and perfect agreements across a woman’s cores when assessed manually,
were driven by the high number of negative cores. As for ER, PR, and
HER2, work by us19 and others25–27 have generally demonstrated agree-
ment between pathologist and software-derived scores. This current study
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Fig. 5. Area under the receiver-operator characteristic curves (AUCs) to assess the specificity and sensitivity of software-derived weighted average%positivity benchmarked
against manual assessment (negative versus low positive/positive). Estrogen receptor, ER; progesterone receptor, PR; human epidermal growth factor receptor 2, HER2;
epithelial growth factor receptor, EGFR; cytokeratin 5/6, CK5/6.
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further adds to the knowledge that IHC quantification of these 5 markers is
highly reproducible across Definiens, inForm, and QuPath.

For IHC quantification, QuPath has previously been compared to HALO
(Indica Labs) and QuantCenter (3DHISTECH) in the evaluation of Ki67;28

ImmunoRatio (ImageJ plug-in) and Visiopharm (Visiopharm) for Ki67,
cleaved Poly (ADP-ribose) polymerase, and pan-cytokeratin;29 and WEKA
(ImageJ plug-in) for TP53 IHC expression.30 Our study is the first to syste-
matically compare QuPath with Definiens and inForm. One unique feature
of QuPath is that it allows users to set deconvolution stains to optimize the
hematoxylin, DAB (3,3'-diaminobenzidine), and residual stain vectors
using red, green, and blue color channels. This allows for more specific con-
trol when definingwhat is and is not stained prior to detecting and classifying
cells31. This additional capability allows the QuPath classifier to be better re-
fined compared to Definiens and inForm whereby color thresholding cannot
be more specifically adjusted. That, and the different classification method
used in QuPath, may partly explain why the mean %positivity scores were
always higher using QuPath than Definiens or inForm.

Our operator (VCB) had 2 years of experience using Definiens prior to
using inForm and QuPath. VCB’s experience with Definiens allowed her
to pick up inForm and QuPath relatively quickly. The usability of each of
the software applications depends on the needs of the operator. Definiens
and inForm are recommended for novices as the applications have fixed
workflows to guide algorithm construction and data analysis. InForm
8

(version 2.5) is more user friendly than Definiens (version 4.4.2). We
were unable to update our version of Definiens as Definiens is now a pri-
vately owned software. In contrast, QuPath has many capabilities to cus-
tomize the algorithms, and is geared towards advanced users. The main
limitation for all 3 software applications was the detection and aligning of
the cores during the TMA de-array process; and all 3 software applications
required operator input to locate, edit, and label the tissue cores. For a user
with TMA de-array experience, QuPath was the fastest to execute
(~45 min), followed by inForm (~1 h), and Definiens (~2 h). To set
thresholding, Definiens’ graphical user interface (GUI) for this task was
the most straightforward. inForm GUI enables easy visualization but re-
quires some coding experience to apply the thresholding to all tissue com-
ponents. Lastly, QuPath allows for a lot of customization which can be
overwhelming for a novice but welcomed by advanced users.

The strengths of our study include using a population-based, prospec-
tive collection of tumor tissue samples, analyzing a large number of cores
andwomen acrossmultiple TMAs, and evaluating the 5 clinically important
breast cancer markers. Additional strengths of this study include our pa-
thologist providing manual scores for every core, and having the same op-
erator build and execute the software algorithms. The consistent ρ values
and high AUCs for software-derived and manual scores indicated that IHC
thresholding had been optimized for each software and reiterated the im-
portance of using pathologists’ scores for IHC thresholding. We showed
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that despite potential cell misclassification by each software application,
the number of detected tumor cells were very comparable across the
software applications. This allowed us to interpret the variability in IHC ex-
pression as related to the different software’s classifier models and tumor
heterogeneity, and not due to the number of cells detected. One limitation
of our study was that we only evaluated tumor markers, hence the reliabil-
ity and/or reproducibility of these software applications in evaluating stro-
mal markers compared to manual assessment remains unknown. We
previously reported that the correlations between manual and Definiens
scores for some stromal markers—CD4, CD8, CD20, CD163, and
glutamyl-prolyl-tRNA synthetase—ranged from ρ=0.10 for CD163 to ρ=
0.72 for CD8 for 132 cases on 1 TMA19. Futureworkwill evaluate the repro-
ducibility of these software applications in the IHC quantification of stro-
mal markers.

In conclusion, Definiens, inForm, and QuPath were highly comparable
to each other andwere reliablewhen benchmarked against pathologyman-
ual scores in quantifying the IHC expression of ER, PR, HER2, EGFR, and
CK5/6. QuPath had the highest correlation and %agreement with manual
scores and is a reliable open-source tool to automate IHC expression quan-
tification.
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