
Viruses 2015, 7, 352-377; doi:10.3390/v7010352 

 

viruses 

ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Article 

Epimedium koreanum Nakai Displays Broad Spectrum of 

Antiviral Activity in Vitro and in Vivo by Inducing Cellular 

Antiviral State 

Won-Kyung Cho 1,†, Prasanna Weeratunga 2,†, Byeong-Hoon Lee 2, Jun-Seol Park 2,  

Chul-Joong Kim 2, Jin Yeul Ma 1,* and Jong-Soo Lee 2,* 

1 Korean Medicine (KM) Based Herbal Drug Development Group, Korea Institute of Oriental 

Medicine, Deajeon 305-764, Korea; E-Mail: wkcho@kiom.re.kr (W.-K.C.)  
2 College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, 

Daejeon 305-764, Korea; E-Mails: prasannapdn05@gmail.com (P.W.);  

byeonghoon_2@naver.com (B.-H.L.); pjs123a@naver.com (J.-S.P.); cjkim@cnu.ac.kr (C.J.K.) 

† These authors contributed equally to this study. 

* Authors to whom correspondence should be addressed; E-Mails: jongsool@cnu.ac.kr (J.-S.L.); 

jyma@kiom.re.kr (J.Y.M.); Tel.: +82-42-821-6753; Fax: +82-42-821-8903. 

Academic Editor: Curt Hagedorn 

Received: 2 December 2014 / Accepted: 14 January 2015 / Published: 20 January 2015 

 

Abstract: Epimedium koreanum Nakai has been extensively used in traditional Korean and 

Chinese medicine to treat a variety of diseases. Despite the plant’s known immune 

modulatory potential and chemical make-up, scientific information on its antiviral properties 

and mode of action have not been completely investigated. In this study, the broad antiviral 

spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was 

evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes 

was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai 

markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus 

(VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and 

HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum 

Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the 

subsequent stimulation of the antiviral state in cells. Among various components present in 

the extract, quercetin was confirmed to have striking antiviral properties. The oral 

administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice 
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against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and 

H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles 

as immunomodulators in the innate immune response, and may be potential candidates for 

prophylactic or therapeutic treatments against diverse viruses in animal and humans. 

Keywords: Epimedium koreanum Nakai; herbal medicine; quercetin; antiviral effect;  

anti-influenza Effect 

 

1. Introduction 

Many viral infections pose a great danger to humans and livestock, often causing deaths and 

significant economic losses. For instance, influenza spreads around the world in seasonal epidemics, 

resulting in approximately three to five million yearly cases of severe illness and approximately 250,000 

to 500,000 yearly deaths [1]. During the previous century, deadly viruses have caused pandemics worldwide 

on a number of occasions [2]. Moreover, new and re-emerging infectious viral diseases will pose a rising 

global health threat, and the risk of spreading these viruses between continents and countries is even 

larger [3]. HIV/AIDS, Severe Acute Respiratory Syndrome (SARS), and the recent 2009 pandemic H1N1 

influenza are only a few of many examples of emerging infectious diseases in the modern world [4]. 

A number of preventative and therapeutic measures, including biosecurity, vaccination and antiviral 

drugs, are routinely used to prevent and treat viral diseases. Vaccines form the basis for the prevention 

of many viral infections, but there are substantial drawbacks [5]. For the influenza virus only, vaccination 

failures have been widely documented, and in the elderly population, in which most of the mortality 

occurs, vaccines are only approximately 50% effective [6]. Moreover, in the eventuality of a pandemic 

infection with a new strain, antiviral drugs represent the first line of defense [7]. Due to their metabolic 

properties, viruses are difficult to control, and there are relatively few drugs for the treatment of viral 

diseases. However, the side effects associated with the central nervous system and the gastrointestinal 

tract, as well as the rapid emergence of antiviral resistance during therapy, has limited the usefulness of 

these drugs [8,9]. Therefore, innovative strategies and responses are required to come across the 

economic and human health risks associated with viral diseases. 

Historically, natural herbal medicines have been used by many societies for the treatment of human 

diseases. Approximately 20,000 plant species used for medicinal purposes are reported by the WHO [10]. In 

particular, a lot of extracts or substances from medical herbs or plants have been reported to have antiviral 

effects against infectious viruses [11]. Therefore, extracts or natural products, as pure compounds or 

standardized plant extracts, provide unlimited opportunities for new antiviral drugs with high efficacy, 

low toxicity and minor side effects. 

Epimedium koreanum Nakai is an evergreen, perennial flowering plant that belongs to Family 

Berberidaceae, and the aerial parts of the plant have been widely used in traditional Korean and Chinese 

herbal medicine to treat infertility, impotence, neurasthenia, cardiovascular diseases, amnesia, lumbago, 

arthritis, various immune-modulatory problems, and also as an aphrodisiac, and anti-rheumatic, for 

thousands of years [12–14]. Additionally, recent pharmacological studies demonstrate that Epimedium 

koreanum Nakai contains anti-inflammatory, hypotensive, anti-oxidant and anti-tumor activities [15–18]. 
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Importantly, it has been shown that Epimedium koreanum Nakai enhances the immune function [19,20]. 

However, the antiviral effect of Epimedium koreanum Nakai has not been completely investigated. 

Moreover, despite having multiple biological properties, available scientific data on Epimedium 

koreanum Nakai’s immune-modulatory potential and responsible molecules have not been reported. 

In this study, we have evaluated the antiviral activities of total aqueous extracts from Epimedium 

koreanum Nakai against a wide array of viruses in vitro and in vivo. Additionally, we have confirmed 

the immune-modulatory potential that regulates the innate immune response of Epimedium koreanum 

Nakai. In addition, we tried to identify the active molecules present in the aqueous fraction. Finally, the 

prophylactic efficacies of Epimedium koreanum Nakai against divergent influenza A subtypes, including 

{A/Aquaticbird/Korea/W81/2005(H5N2)},{A/PR/8/34(H1N1)},{A/Aquaticbird/Korea/W44/2005(H7

N3)} and {A/Chicken/Korea/116/2004(H9N2)} were evaluated in a BALB/c murine infection model. 

2. Materials and Methods 

2.1. Plant Materials and extract Preparation 

A water-soluble herbal extract of Epimedium koreanum Nakai was prepared by the Herbal Medicine 

Improvement Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea. 

Medicinal herb, the dried bark of the plant, was obtained from Yeongcheon Oriental Herbal Market 

(Yeongcheon, Korea) and verified by Professor Ki Hwan Bae at the College of Pharmacy, Chungnam 

National University. In detail, 100 g of the dried bark was placed in 1 L of distilled water and extracted 

by heating for 2.5 h at 105 °C using a medical heating plate (Gyeongseo Extractor Cosmos-600, Incheon, 

Korea). After the extraction, Epimedium koreanum Nakai was filtered using a filter paper (0.45 μm) 

(Millex®, Darmstadt, Germany) and stored at 4 °C for 24 h. The extract was then centrifuged at 12,000 

rpm for 15 min. The supernatant was collected, and the pH was adjusted to 7.0. The total aqueous extract 

was then subjected to membrane syringe filtration (0.22 μm) (Millex®, Darmstadt, Germany) and 

lyophilized. The final yield of the water extract of Epimedium koreanum Nakai was adjusted to  

0.1 mg/mL with phosphate buffered saline (PBS) and stored at 4 °C until administration. 

2.2. Cells and Viruses 

RAW264.7 (ATCC TIB-71), HEK293T (ATCC-11268), MDCK (ATCC CCL-34, NBL-2) and Vero 

(ATCC CCL-81) cells were grown in DulbeccoCC CCL-81) cells were grow (DMEM, Invitrogen, 

Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) 

and 1% antibiotic/antimycotic solution (Gibco, Grand Island, NY, USA) at 37 ° Grand Isla2 

concentration of 5%. Green Fluorescent Protein (GFP)-tagged Influenza A 

(A/PuertoRico/8/34(H1N1)(PR8-GFP), Newcastle Disease Virus (NDV-GFP) and challenge Influenza 

viruses [{A/Aquaticbird/Korea/W81/2005(H5N2)}, {A/PR/8/34(H1N1)}, {A/Aquaticbird/Korea/W44 

/2005(H7N3)}, and {A/Chicken/Korea/116/2004(H9N2)}] were propagated in the allantoic fluid of  

10-day-old chicken embryos, and Vesicular Stomatitis Virus (VSV-GFP) and Herpes Simplex Virus 

(HSV) were propagated on confluent Vero cells. The authors received the Green Fluorescence Protein 

(GFP)-tagged PR8, NDV, VSV and HSV viruses from Dr. Jae U. Jung, Department of Molecular 

Microbiology and Immunology, University of Southern California, USA. 
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2.3. Determination of Effective Concentration (EC50) of Epimedium koreanum Nakai in Vitro 

RAW264.7 and HEK293T cells were grown in 96-well plates (2.5 × 104 cells/well and 2 × 104 cells/well, 

respectively) and incubated at 37 °C in a 5% CO2 atmosphere. After 12 hours, the medium was replaced 

with two-fold serially diluted Epimedium koreanum Nakai (50 aL/well). At 12 hour post treatment (hpt), 

the cells were washed with PBS once and infected using DMEM containing 1% FBS. RAW264.7 cells 

were infected with PR8-GFP (MOI = 1.0), VSV-GFP (MOI = 1), NDV-GFP (MOI = 3.0) or HSV-HFP 

(MOI = 3.0), and HEK293T cells were infected with VSV-GFP (MOI = 0.005) or HSV-GFP  

(MOI = 2.0) viruses. At 2 hour post infection (hpi), the inocula were removed, washed with PBS once and 

replaced with DMEM containing 10% FBS. The experiments were performed in triplicate. GFP 

expression was measured 24 hpi with the Glomax multi-detection system (Promega, WI, USA), 

according to the manufacturer’s instructions. Graphs were developed for the different cell lines infected 

with individual viruses based on the dilutions and the GFP expression values. The EC50 values were then 

calculated as the extract concentration yielding 50% GFP expression. 

2.4. Determination of the Cytotoxic Concentration (CC50) of Epimedium koreanum Nakai in Vitro 

The CC50 was evaluated in a cell viability assay through the trypan blue exclusion test as described 

elsewhere [21]. The assay was performed using 72-well tissue culture plates. Increasing concentrations 

(1–160 µL/mL or 0.1–16 µg/mL) of the plant extract were added to confluent RAW264.7 and HEK293T 

cell monolayers. After 24 h, the cell viability was determined by trypan blue exclusion test. Clarified 

cells from each treatment group were mixed with 0.4% trypan blue stain (Invitrogen, USA) at a  

1:1 ratio. After staining, 10 µL of the mixture was applied to a hemocytometer to obtain the percentages 

of viable cells; the total number of viable/live cells per mL of aliquot was divided by the total number 

of cells/mL of aliquot multiplied by 100. Cell counting was done thrice. A graph of the concentrations 

of the extract as a function of cell viability was developed, and the CC50 was calculated as the concentration 

of the extract resulting in 50% cell viability. The experiment was performed in triplicate. 

2.5. Antiviral Assays in Epimedium koreanum-Treated RAW264.7 and HEK293T Cells 

A viral replication inhibition assay was performed according to Moon et al., [22], with some 

modifications. RAW264.7 cells were grown in 12-well tissue culture plates (8 × 105 cells/well) and 

incubated at 37 °C for 12 h. Simultaneously, HEK293T cells were cultured in six-well tissue culture 

plates (1 × 106 cells/well) under similar conditions. DMEM alone (untreated and virus-only groups), 

DMEM with 1000 U of recombinant mouse/human interferon (IFN)-β (positive control, Sigma, St. 

Louis, Missouri, USA) and DMEM with 1.0 μg/mL (10 μL/mL or 1%) of Epimedium koreanum Nakai were 

incubated in different wells for the pre-treatment assay. At 12 h post-treatment (hpt), all of the wells were 

gently washed with phosphate-buffered saline (PBS) before infection. RAW264.7 cells were infected 

with either VSV-GFP (MOI = 1.0), PR8-GFP (MOI = 1.0), NDV-GFP (MOI = 3.0) or HSV-GFP  

(MOI = 3.0), using DMEM supplemented with 1% FBS. Additionally, HEK293T cells were infected 

with VSV-GFP (MOI = 0.005) and HSV-GFP (MOI = 2.0) viruses. Two hours post-infection (hpi),  

the unattached viruses were aspirated out with the supernatant, and the wells were gently washed with 

PBS. Then, DMEM supplemented with 10% FBS and 1% antibiotic/antimycotic solution was added to 
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the wells. GFP expression, which reflects virus replication, was observed at 24 h post infection (hpi) at 

200× magnification. The virus titration and cell viability were determined at both 12 and 24 hpi. The 

cell viability was determined via trypan blue exclusion, and the cell counts were performed in triplicate. 

2.6. NDV-GFP mRNA Expression and Virus Titration in RAW 264.7 Cells 

The total mRNA from RAW264.7 cells was extracted and amplified to estimate the NDV-GFP 

mRNA expression level [23]. RAW264.7 cells were cultured in 12-well tissue culture plates  

(8 × 105 cells/well) and incubated for 12 h. The medium was replaced with DMEM alone (untreated and 

virus-only groups) or DMEM with 1.0 μg/mL (10 μL/mL or 1%) Epimedium koreanum Nakai. Twelve 

hours post-treatment, the cells were infected with NDV-GFP (MOI = 3) and harvested at 0, 6, 12, and 

24 hpi. The total mRNA was extracted using the RNeasy Mini Kit (Qiagen, Seoul, Korea) and then 

converted to cDNA, and PCR was then performed using specific primers. For the APMV-1 M gene, the 

forward primer was 5′- -TCGAGICTGTACAATCTTGC-3 and the reverse primer was  

5′- GTCCGAGCACATCACT GAGC-3′. For the GAPDH, the forward primer was 5′-TGACCACAG 

TCCATGCCATC-3′ and the reverse primer was 5′-GACGGACACATTGGG GGTAG-3′ [24]. Equal 

amounts of the PCR products were run on 1.5% ethidium bromide agarose gels and visualized using a 

GelDoc Imaging System (Bio-Rad, Seoul, Korea). Finally, the relative band intensity (RBI) of the matrix 

gene compared with that of GAPDH was determined using the GelDoc Imaging System Band 

Quantification Software (Bio-Rad). 

2.7. Virus Titration of Treated Cell Supernatants and Infected Cells 

The viral titers were measured by plaque assays using Vero cells [25]. Briefly, RAW264.7 and 

HEK293T cells were cultured in six-well tissue culture plates (1 × 106 cells/well and 8 × 105 cells/well, 

respectively) and incubated for 12 h. The medium was replaced with DMEM alone (untreated and  

virus-only groups), DMEM with 1000 U of recombinant mouse/human interferon (IFN)-MEM alone 

with 1.0 μg/mL (10 μL/mL or 1%) Epimedium koreanum Nakai. Twelve hours post-treatment, RAW264.7 

cells were infected with PR8-GFP (MOI = 1.0), VSV-GFP (MOI = 1.0), NDV-GFP  

(MOI = 3.0) or HSV-GFP (MOI = 3.0), and HEK293T cells were infected with VSV-GFP (MOI = 0.005) 

and HSV-GFP (MOI = 2.0) viruses. For the titration of VSV-GFP, supernatants from each group were 

collected at 12 and 24 hpi and serially diluted. Independently, VERO cells were cultured in 12-well 

plates, and when the cell confluency was approximately 75%–80%, the cells were infected with 500 μL 

of each dilution. Following 2 h incubation at 37°C, the inoculum was removed and replaced with agar 

(0.45 g/ 20 ml DW). The plates were then incubated for another 46 h at 37 °C and examined for plaque 

formation at 200х magnification. The viral titers were calculated using the number of plaque-forming 

units and the dilution factor. In the case of PR8-GFP and HSV-GFP titration, instead of the cell 

supernatant, infected cells from each group were harvested at 12 and 24 hpi and subjected to five cycles 

of freezing at −70 °C and thawing at room temperature. The cells were then re-suspended with 500 µL 

of phosphate-buffered saline (PBS) and serially diluted before being used to infect Vero cells. 
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2.8. Detection of IFN-β and Pro-Inflammatory Cytokines in Epimedium koreanum Nakai-Treated 

RAW264.7 and HEK293T Cells by Enzyme-Linked Immunosorbent Assay (ELISA) 

The pro-inflammatory cytokine inducing effect of Epimedium koreanum Nakai in vitro was examined 

using commercial ELISA kits. In the case of RAW264.7 cells, murine interleukin (IL)-6 (BD Bioscience, 

USA), and IFN-β (PBL Interferon Source, USA) were measured, as previously described [26]. Briefly, 

RAW264.7 cells were cultured in 6-well tissue culture (TC) plates (1 × 106 cells/well). After 12 h, the 

cells were treated with 1000 units/mL recombinant murine IFN-β (Sigma-Aldrich) and 1.0 μg/mL  

(10 μl/mL or 1% v/v) Epimedium koreanum Nakai in DMEM containing 10% FBS or medium alone 

and then incubated at 37 °C with 5% CO2. Supernatants were harvested at 0, 12 and 24 hpt, clarified by 

centrifugation at 2500× g for 10 min at 4 °C and dispensed into murine IFN-β ELISA plates or murine 

IL-6 capture antibody-coated ELISA plates. In the case of HEK293T cells (cell count: (1 × 106 cells/well), 

recombinant human IFN-β (Sigma-Aldrich) was used as the positive control and the clarified supernatant 

was dispensed into commercial human IFN-β (TFB, Inc., Tokyo, Japan) and human IL-6 (Invitrogen, 

Carlsbad, California, USA) ELISA plates. Murine IFN-β, human IFN-β and human IL-6 ELISA were 

performed in duplicate, and murine IL-6 ELISA was performed in triplicate. 

2.9. Determination of the Level of mRNA Induction by Epimedium koreanum Nakai in Vitro by  

Real-Time PCR Analysis 

RAW264.7 and HEK293T cells were grown in six-well tissue culture (TC) plates (1 × 106 cells/well) 

and incubated at 37 °C; the cells were treated with DMEM + 10% FBS alone (negative control), DMEM 

with 1000 units/mL recombinant murine/human IFN-β), DMEM with 1.0 μg/mL (10 μl/mL or 1%)  

Epimedium koreanum Nakai, and the cells were harvested at 0, 3, 6, 12, and 24 hpt. The total RNA from 

the cells was isolated using the RNeasy Mini Kit (Qiagen, Seoul, Korea), and cDNA synthesis was 

performed using reverse transcriptase (Toyobo, Japan). The different levels of cDNA were quantified 

by real-time polymerase chain reaction (PCR) using a QuantiTect SYBR Green PCR kit (Qiagen, Seoul, 

Korea) on a Mygenie96 thermal block (Bioneer, Korea). The PCR primers are listed in Tables 2 and 3. 

2.10. Immunoblot Analysis to Determine the Effect of Epimedium koreanum Nakai on Type I  

IFN-Related Protein Phosphorylation in RAW264.7 Cells 

RAW264.7 cells were cultured in six-well tissue culture (TC) plates (1 × 106 cells/well) and incubated 

at 37 °C. After 12 hours the cells were treated with DMEM + 10% FBS alone (negative control), DMEM 

with 100 ng/mL LPS (positive control), or DMEM with 1.0 μ0/mL (10 μL/ml or 1%) Epimedium 

koreanum Nakai, and the cells were harvested at 0, 8, 12, and 24 hpt. The cell pellets were washed with 

phosphate-buffered saline (PBS) and subjected to immunoblot analysis. Briefly, the cell pellets were 

lysed in radio-immunoprecipitation assay (RIPA) lysis buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 

0.5% sodium deoxycholate, 1% IGEPAL, 1 mM NaF, 1 mM Na3VO4, and 1 ug/mL each of aprotinin 

and leupeptin). The samples were separated by SDS-PAGE and transferred onto a PVDF membrane 

(BioRad) in buffer containing 30 mM Tris, 200 mM glycine, and 20% methanol for 2 h. The membranes 

were blocked for 1 h in Tris-buffered saline containing 0.05% Tween 20 and 5% bovine serum albumin 

and were then probed with the target protein antibody in 5% FBS-TBST. These incubations were 
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performed at 4 °C overnight with anti-IRF3 (Abcam, #ab25950), anti-phopho-IRF3 (Ser 396), (Cell 

Signaling, #4947), anti-p65 (Cell Signaling, #4764S), anti-phopho-p65 (Cell Signaling, #3031S), anti-

STAT1 (Cell Signaling, #9175), anti-phospho-STAT1 (Cell Signaling, #9167), anti-TBK1 (Cell 

Signaling, #3504S), or anti-phospho-TBK1 (Cell Signaling, #5483S), anti-p38 (Cell Signaling, #9212), 

anti-phopho-p38 (Cell Signaling #4631S), anti-ERK (Cell Signaling, #9102), anti-phospho-ERK (Cell 

Signaling, #9102S), or anti-B-actin (Santa Cruz SC 47778) antibodies. After three 10-min washes with 

Tris-buffered saline containing 0.05% Tween 20, the membranes were incubated with a horseradish 

peroxidase-conjugated secondary antibody for 1 hour at room temperature. After three 10-min washes 

with PBST, the HRP reaction was visualized with the enhanced chemiluminescence detection system 

(ECL-GE Healthcare) using a Las-3000 mini Lumino Image Analyzer. 

2.11. Oral Inoculation of Epimedium koreanum Nakai and Viral Challenge in BALB/c Mice 

Fifty-two female, five-week-old BALB/c mice were divided into four experimental sets, with two 

groups per set. Of the four sets, one had two groups with 11 mice each (six for lung virus titration at 3 

and 5 days post-infection (dpi)). The remaining three sets had two groups containing five mice each. The 

mice were orally administered 0.1 mg/mL Epimedium koreanum Nakai at a total volume of 200 μL (20 

μg per head) 1, 3 and 5 days before infection. The mice in the control groups were orally administered 

200 μL of PBS.  

The mice were intra-nasally infected with five times the 50% mouse lethal dose (MLD50) of H1N1, 

H5N2, H7N3 or H9N2 in 20 μl of PBS per mouse. Treatment and challenge experiments were conducted 

in an approved BSL-2 + facility. The body weight and survival were recorded up to 13 dpi. Mice showing 

a more than 25% body weight loss were considered to have reached the experimental end point and were 

humanely killed. At 3 and 5 dpi, three mice from each of the two groups from the H1N1-challenged set 

were randomly sacrificed to measure the lung virus titers. 

The animal study was conducted under appropriate conditions with the approval of the Institutional 

Animal Care and Use Committee of the Bioleaders Corporation, Daejeon, South Korea, Protocol 

number: BSL-ABLS-13-004. They are in accordance with Institutional, National and International laws 

for Laboratory Animal Experimentation. 

2.12. Determination of Lung Viral Titer 

Lung tissues from euthanized mice were collected aseptically, and virus titers were determined by 

50% tissue culture infectious dose (TCID50), as described previously [27]. Briefly, lung tissues were 

homogenized in 500 mL of PBS containing antibiotics (penicillin, and streptomycin) and antimycotics 

(Fungizone) compounds (Gibco, Grand Island, NY, USA). Mechanically homogenized lung samples 

were centrifuged (15 min, 12,000× g and 4 °C) to remove the cellular debris before their storage at  

−80 °C. Madin-Darby Canine Kidney (MDCK) cells (75%–80% confluent) grown in 96-well microtiter 

plates were infected with 10-fold serial dilutions (in DMEM containing 1% FBS) of lung homogenate 

(50 μL/well) in quadruplicate and incubated at 37 °C in a humid atmosphere of 5% CO2 for an hour. 

After absorption, the media was removed, and overlay medium containing L-1-tosylamido-2-phenylethyl 

chloromethyl ketone (TPCK) trypsin (Thermo Fisher Scientific, Rockford, USA) was added to the 

infected cells and incubated for 72 h. Viral cytopathic effects (CPE) were observed daily, and the titers 
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were determined by the hemagglutination assay (HA) test indicated as follows. Fifty microliter (50 μL) 

of 0.5% chicken red blood cells (RBC) was added to 50 μL of cell culture supernatant and incubated at 

room temperature for 30 min. Wells containing HA were scored as positive. The virus titer was 

calculated by the Reed and Muench method [28] and expressed as Log10 TCID50/mL of lung tissues. 

2.13. Anti-Influenza Effect and Induction of Cytokines by Quercetin on RAW264.7 Cells 

Quercetin was kindly provided by Dr. Jin Yeul Ma, Herbal Medicine Improvement Research Center, 

Korea Institute of Oriental Medicine, Daejeon, Republic of Korea. The main component profile of the 

water extract of Epimedium koreanum Nakai had been analyzed using high-performance liquid 

chromatography (HPLC) and quercetin had been successfully purified (14). Then, we tested the  

anti-influenza (PR8-GFP) effect of quercetin upon pre-treatment of the compound. Quercetin was treated 

at a concentration of 3.0 μg/mL, 12 h before infection with PR8-GFP (MOI = 1.0) and GFP expression 

was observed at 24 h post infection (hpi) at 200× magnification. Mouse interferon (IFN)-β was treated 

as the positive control (1000 units/mL). Further, virus titration, secretion of cytokines (IL-6, TNF-α and 

IFN-β) by quercetin (3.0 μg/mL) in RAW264.7 cells were determined by the methods described in 3.7 

and 3.8. 

2.14. Statistical Analysis 

Data are presented as the means ± standard deviations and are representative of at least three 

independent experiments. Differences between groups were analyzed by analysis of variance (ANOVA), 

and means were compared by Student’s t-test. p-values less than 0.05 were regarded as significant. 

Results for percent initial body weight were also compared by using Student’s t test. Comparison of 

survival was done by log-rank test using GraphPad Prism 6 version. 

2.15. Biodiversity Rights 

Authors have not violated any biodiversity rights during the handling and preparation of Epimedium 

koreanum Nakai and throughout the entire experimental period. 

3. Results and Discussion 

3.1. Determination of the Effective Concentration (EC50) and Cytotoxic Concentration (CC50) of 

Epimedium koreanum Nakai in Vitro 

The EC50 can be defined as the extract concentration at which 50% reduction in virus titre is observed, 

whereas the extract concentration that results in 50% cell viability is considered the CC50. To determine 

the EC50 values of Epimedium koreanum Nakai against divergent viruses in vitro, we developed a modified 

GFP assay using RAW264.7 and HEK293T cell lines [29,30]. For the reason that, we used only the 

GFP-tagged viruses, 50% reduction in GFP expression was considered equivalent to the 50% reduction 

in virus titre. 

As shown in Table 1, Epimedium koreanum Nakai can inhibit the replication of PR8-GFP (MOI = 1.0), 

VSV-GFP (MOI = 1.0), NDV-GFP (MOI = 3.0) and HSV-GFP (MOI = 3.0) by 50% at EC50 values of 
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0.94 ± 0.23 µg/mL, 0.82 ± 0.28 µg/mL, 0.49 ± 0.25 µg/mL and 0.62 ± 0.14 µg/mL, respectively. 

Moreover, extracts inhibited the replication of VSV-GFP (MOI = 0.005) and HSV-GFP (MOI = 2.0) by 

50% at EC50 values of 1.12 ± 0.31 µg/mL and 1.41 ± 0.41 µg/mL in HEK293T cells (Table 1). 

Considering these EC50 values, we selected 1.0 µg/mL as the optimum dosage of the extract for further 

in vitro antiviral assays based on its effectiveness and convenience during the experiments. 

Table 1. Determination of EC50 and CC50 of Epimedium koreanum Nakai in RAW264.7 and 

HEK293T cells. 

Cell line 

EC50 ± S.D.a (µg/mL) 

CC50 ± S.D.b (µg/mL) 

PR8-GFP VSV-GFP NDV-GFP HSV-GFP 

Raw264.7 0.94±0.23 0.82±0.28 0.49±0.25 0.62±0.14 14.6±1.68 

HEK293T - 1.12±0.31 - 1.41±0.41 8.4±1.96 

a Effective concentration for 50% reduction in GFP expression. b Cytotoxic concentration causing 50% cell 

death. The results are a mean of three independent experiments. 

 

The cytotoxicity of Epimedium koreanum Nakai was assessed based on a cell viability test following 

treatment with various concentrations. Epimedium koreanum Nakai had CC50 values of 14.6 ± 1.68 µg/mL 

and 8.4 ± 1.96 µg/mL in RAW264.7 and HEK293T cells, respectively (Table 1). The selection indexes 

of Epimedium koreanum Nakai (SI) for PR8, VSV, NDV and HSV on RAW264.7 cells were 15.5, 17.8, 

29.8 and 23.5, respectively and for VSV and HSV on HEK293T cells were 7.5 and 5.9, respectively, 

suggesting that the extract could be broadly useful as a prophylactic or therapeutic agent. 

3.2. Inhibitory Effects of Epimedium koreanum Nakai on Viruses in RAW264.7 Cells 

To evaluate the in vitro antiviral activity of Epimedium koreanum Nakai, we checked viral replication 

with divergent GFP-expressing viruses, including RNA and DNA viruses, in RAW264.7 cells. Viral 

replication was monitored with GFP-expressing level upon treatment with cytotoxic-free (data  

not shown) extracts. A total aqueous extract of Epimedium koreanum Nakai-treated RAW264.7 cells  

(1 μg/mL (1% v/v)) exhibited a marked reduction in GFP expression, whereas the untreated groups  

had high levels of GFP expression for VSV (Figure 1A), PR8 (Figure 1B), NDV (Figure 1C) and  

HSV (Figure 1D). When quantitated, extract-treated cells showed a significant reduction in GFP  

expression compared to the untreated group (data not shown). These results correlate with the viral titers 

of VSV-GFP in the cell supernatant and the viral titers of PR8-GFP and HSV-GFP in infected cells. 

Epimedium koreanum Nakai treatment reduced the viral titers by nearly 1.5-fold, 1.8-fold and 2-fold 

against VSV-GFP, PR8-GFP and HSV-GFP at 24 hpi, respectively (Figure 1A–C). Importantly, 

Epimedium koreanum Nakai-treated cells displayed a significant reduction in cell death following 

infection with all tested viruses compared with the untreated cells (Figure 1A–D). In the case of NDV, 

we measured the mRNA expression of the NDV M gene via RT-PCR to estimate the replication (Figure 

1C right panels) of NDV-GFP. As expected, the expression of the Matrix gene mRNA in the extract-

treated cells was decreased in a time-dependent manner compared with the untreated group at 6–24 hpi. 



Viruses 2015, 7 361 

 

 

These results clearly show evidence that the total aqueous extract of Epimedium koreanum Nakai is able 

to reduce the replication of the VSV, PR8, NDV and HSV viruses in RAW264.7 cells. 

3.3. Inhibitory Effects of Epimedium koreanum Nakai on Viruses in HEK293T Cells 

We then determined the antiviral activity of Epimedium koreanum Nakai in Human Embryonic Kidney 

(HEK293T) cells. Similarly; anti-viral activity was observed with GFP-tagged VSV and HSV viruses 

upon pre-treatment with the extract. As shown in Figure 2A,B; extract-treated HEK293T cells exhibited 

markedly reduced GFP expression and virus titers compared with the untreated groups; which presented 

high levels of GFP expression and virus replication. Moreover, extract-treated HEK293T cells showed 

a significant reduction in cell death following infection with all tested viruses compared with the 

untreated cells. These results clearly indicate that the total aqueous extract of Epimedium koreanum Nakai 

also reduce the replication of RNA or DNA viruses in epithelial cells. 

 

Figure 1. Antiviral activities of Epimedium koreanum Nakai in RAW264.7 cells. 

RAW264.7 cells treated with media alone, 1.0 µg/mL Epimedium koreanum Nakai (EKN), 

or 1000 unit/mL recombinant mouse IFN-β, 12 h prior to infection with (A) VSV-GFP;  

or (B) PR8-GFP; or (C) NDV-GFP; or (D) HSV-GFP at an MOI of 1.0. Images were 
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obtained 24 hpi (200× magnification). Cell viabilities were determined by trypan blue 

exclusion and presented as a percentage of the control (cells without treatment). Viruses 

were titrated from the supernatant for VSV-GFP and from the infected cells for PR8-GFP 

and HSV-GFP, respectively. In the case of NDV-GFP, expression of NDV M-mRNA over 

time in each treatment group was confirmed by specific PCR primers, which are shown in 

Table 2. All samples were normalized using GAPDH. Equal amounts of PCR products were 

run on 1.5% ethidium bromide agarose gels and visualized using the GelDoc Imaging 

System (bottom panel). The relative band intensity (RBI) of M-mRNA expression from the 

same experiment is shown (top panel). RBI was determined (gene/GAPDH) using the 

GelDoc Imaging System Band Quantification Software. Error bars indicate the range of 

values obtained from two independent experiments. Cell viabilities are expressed as mean ± 

SD. Error bars indicate the range of values obtained from counting in triplicate in three 

independent experiments. (* p < 0.05 indicates a significant difference between groups 

compared by Student’s t-test). 

 

Figure 2. Antiviral activities of Epimedium koreanum Nakai in HEK293T cells. HEK293T 

cells treated with media alone, 1.0 µg/mL Epimedium koreanum Nakai (EKN), or 1000 unit/mL 

recombinant human IFN-β, 12 h prior to infection with (A) VSV-GFP; or (B) HSV-GFP at 

an MOI of 1.0 and 3.0, respectively. Images were obtained at 24 hpi (200 × magnification). 

Viruses were titrated from the cultured supernatant and from the infected cells for VSV-GFP 

and HSV-GFP, respectively. Virus titrations are expressed as mean ± SD. Error bars indicate 

the range of values obtained from two independent experiments. Cell viabilities were 

determined by trypan blue exclusion and presented as a percentage of the control (cells 

without treatment). Cell viabilities are expressed as mean ± SD. Error bars indicate the range 

of values obtained from counting in triplicate in three independent experiments (* p < 0.05 

indicates a significant difference between groups compared by Student’s t-test). 

3.4. Detection of IFN-β and Pro-Inflammatory Cytokines by Epimedium koreanum Nakai in Vitro 

To elucidate the possible mechanism of the antiviral activities of Epimedium koreanum Nakai,  

we measured the levels of interferon-β (IFN-β) and the pro-inflammatory cytokine that is secreted from 
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the extract-treated supernatant, on RAW264.7 and HEK293T cells (Figure 3). As shown in Figure 3A, 

Epimedium koreanum Nakai induced high levels of secreted IL-6 at both 12 hpt and 24 hpt compared 

with IFN-β-treated cells in a concentration-dependent manner and also secreted significantly higher 

levels of IFN-β, although the secreted level was not as high as the levels obtained from the IFN-β-treated 

cells. Moreover, Epimedium koreanum Nakai induced the secretion of IFN-β and IL-6 in HEK293T cells 

(Figure 3B) and the secreted amount was significantly high, and in line with human IFN-β-treated 

positive controls. These results suggest that Epimedium koreanum Nakai can stimulate immune cells and 

epithelial cells and induce the secretion of IFNs and pro-inflammatory cytokines that may mediate the 

antiviral state in cells. 

 

Figure 3. Induction of cytokines and the phosphorylation of the signal molecules by 

Epimedium koreanum Nakai in vitro. (A) RAW264.7; and (B) HEK293T cells were treated 

with DMEM containing 10% FBS alone, with 1000 unit/mL recombinant mouse or human 

IFN-β, or with 1.0 μg/mL Epimedium koreanum Nakai (EKN) and incubated at 37 °C with 

5% CO2. Supernatant from each group was harvested at 0, 12 and 24 hpt and clarified by 

centrifugation at 2500× g for 10 min at 4 °C. Clarified supernatants were dispensed into the 

murine IFN-β and IL-6, and human IL-6 and IFN-β capture antibody-coated ELISA plate to 

measure cytokine secretion. The test was performed in duplicate for IFN-β, human IL-6  

and in triplicate for other cytokines. The data shows representative means ± SD of each  

murine cytokine measured over time. (C) For the determination of Type I IFN-related or  

NF-κB related protein phosphorylation, cells were harvested at 0, 8, 12, and 24 hpt with LPS 

or Epimedium koreanum Nakai (EKN) and washed with phosphate-buffered saline (PBS) 

and subjected to immunoblot analysis. The samples were separated by SDS-PAGE, 

transferred onto a PVDF membranes and were probed with the target protein antibodies 

(anti-IRF3/anti-phopho-IRF3, anti-p65/anti-phopho-p65, anti-STAT1/anti-phopho-STAT1, 

anti-TBK1/anti-phopho-TBK1, anti-p38/anti-phopho-p38, anti-ERK/anti-phopho-ERK, 

anti-β-actin) before visualizing with the enhanced chemiluminescence detection system 

(ECL-GE healthcare) using a Las-3000 mini lumino-image analyzer. 
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3.5. Epimedium koreanum Nakai Induces the Activation of Signal Molecules in the Type I IFN 

Signaling Pathway 

The antiviral response of Epimedium koreanum Nakai may relate to the innate immune response 

through the expression of cytokines, such as IL-6 and IFN-β. To correlate these observations with the 

IFN-inducing signaling pathway, we examined the phosphorylation of interferon related signal molecules 

and p65 phosphorylation related to NF-kB activation. For this, immunoblot analyses were performed 

using whole cell lysates of extract-treated RAW264.7 cells. As shown in Figure 3C, Epimedium koreanum 

Nakai significantly upregulated the phosphorylation of IRF-3, STAT1, TBK1, p65, p38 and ERK, which 

are key signaling molecules belonging to the type I interferons (IFNs) and NF-κB pathways. The 

phosphorylation of IRF3 is a key indicator of interferon signal transduction. Upon virus infection, the 

phosphorylated IRF3 translocated into the nucleus and initiated the transcription of type I interferons 

(IFNs). Consequently, the produced type I interferons (IFNs) binds to the JAK-STAT pathway, leading 

to the phosphorylation of STAT1 and the transcriptional activation of Interferon-stimulated gene (ISGs). 

These activated ISGs are then involved in controlling viral infection. Our results clearly demonstrate 

that treatment with the Epimedium koreanum Nakai extract can induce potent IRF3 phosphorylation at 

8 hpt, the effect of which markedly increases with time. Furthermore, this increased STAT1 

phosphorylation indicates the active functions of the ISGs. In addition to the activation of type I 

interferons (IFNs), the extract-treated RAW264.7 cells were able to elicit obvious activation of NF-κB 

(P65), leading to strong secretion of pro-inflammatory cytokines. The phosphorylation of these 

molecules induced by extracts is comparable to that obtained with LPS treatment, which is a known 

potent stimulator of TLR4. 

3.6. Epimedium koreanum Nakai Induces Antiviral Gene Expression in the Type I IFN  

Signaling Pathway 

We further evaluated the induction of different antiviral and interferon-stimulatory genes at the 

transcription level in response to Epimedium koreanum Nakai treatment in RAW264.7 and HEK293T 

cells. Cells were treated with Epimedium koreanum Nakai at a concentration of 1.0 μg/mL (10 μL/mL 

or 1%). As confirmed by real-time PCR, the mRNA expression levels of various antiviral and interferon 

stimulatory genes were up-regulated to levels similar to those found with the IFN-β-treated positive controls 

(Figure 4). Initially, to determine the transcription levels of various antiviral genes in Epimedium 

koreanum Nakai-treated RAW264.7 cells from 0 hpt to 24 hpt, an IFN-β real-time PCR assay was 

performed to monitor the time-dependent mRNA changes. After normalization to GAPDH, the extract-

treated cells displayed a seven-fold increase in the level of IFN-β mRNA at 8 hpt and a nine-fold 

induction level at 12 hpt compared with untreated cells, respectively (Figure 4A). 

Therefore, we performed a PCR assay for other genes of interest at 0, 8 and 12 hpt using specific 

primers (Tables 2 and 3) in both RAW264.7 and HEK293T cells. We found that the transcriptional levels 

of various antiviral genes were up-regulated by Epimedium koreanum Nakai at 12 hpt, including Mx1, 

GBP-1 and PML to levels that were 5.6-fold, 28-fold and 15-fold higher, respectively, than those of the 

control in RAW264.7 cells. Moreover, at 8hpt, the IL-6 and OAS-16 transcriptional levels were observed 

to be up-regulated by 15-fold and 8-fold, respectively. In addition to the elevated levels of IFN-β, the 
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extract induced the transcription of interferon-stimulatory genes (ISGs), such as ISG-15 and ISG-56  

(14-fold and 5-fold), respectively at 8 hpt in RAW264.7 cells. The observed elevated transcriptional 

patterns for some of the antiviral genes were similar to the pattern of the IFN-β-treated positive controls. 

Furthermore, similar transcriptional activation patterns were observed in extract treated HEK293T cells. 

Interestingly, the highest fold inductions of cellular transcriptional levels were observed at 12 hpt for all 

the primers. Transcriptional levels of extract-treated HEK293T cells for IFN-β, GBP-1, IL-6, IL-8,  

ISG-15, Mx-1 and TNF-α were up-regulated by 8-fold, 5-fold, 30-fold, 2-fold, 5-fold and 2-fold, 

respectively. Importantly, highest transcriptional induction levels of 90-fold and 60-fold were observed 

for ISG-20 and ISG-56, respectively. All these transcriptional patterns were similar to the pattern of 

human IFN-β-treated positive control. The overall results suggest that Epimedium koreanum Nakai has 

the capacity to up-regulate the transcription levels of IFN-β, interferon-stimulating genes (ISGs) and 

various antiviral genes. This molecular-level activation may have a direct relationship with the extract’s 

antiviral abilities, which were observed in both RAW264.7 and HEK293T cells. 

 

  

Figure 4. Induction of IFN-β, IFN-related gene and ISG’s transcripts by Epimedium koreanum 

Nakai in vitro. RAW264.7 and HEK293T cells were treated with DMEM + 10% FBS alone, 

Epimedium koreanum Nakai (EKN) (1.0 μg/mL), or 1000 units/mL of recombinant murine 

or human IFN-β. The time-dependent changes in mRNA expression after treatment in (A) 

RAW264.7; and (B) HEK293T cells were confirmed by real-time PCR using the primers 

shown in Tables 2 and 3. Real-time PCR was carried out with the use of a QuantiTect SYBR 

Green PCR kit (Qiagen) on a Mygenie96 thermal block (Bioneer). Error bars indicate the 
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range of values obtained from two independent experiments. (C) Epimedium koreanum Nakai 

was tested for residual endotoxin contamination using a limulus amebocyte lysate (LAL) 

assay and was found to not be contaminated with endotoxin. (Cell viabilities were determined 

by trypan blue exclusion and are expressed as mean ± SD). 

Table 2. Mouse primer sets used to confirm mRNA expression. 

Gene 
Primers 

Forward Reverse 

IFN-β 5’-TCCAAGAAAGGACGAACATTCG-3’ 5’-TGCGGACATCTCCCACGTCAA-3’ 

Mx1 5’-ACAAGCACAGGAAACCGTATCAG-3’ 5’-AGGCAGTTTGGACCATCTTAGTG-3’ 

IRF-3 5'-GTGCCTCTCCTGACACCAAT-3' 5'-CCAAGATCAGGCCATCAAAT-3' 

IRF-7 5'-AAGCTGGAGCCATGGGTATG-3' 5'-GACCCAGGTCCATGAGGAAG-3' 

P-56 5'-CCCACGCTATACCATCTACC-3' 5'-CTGAGGCTGCTGCTATCC-3' 

GBP-1 5'-AAAAACTTCGGGGACAGCTT-3' 5'-CTGAGTCACCTCATAAGCCAAA-3' 

PML 5'-CCTGCGCTGACTGACATCTACT-3' 5'-TGCAACACAGAGGCTGGC-3' 

ADAR-1 5'-CCAAAGACACTTCCTCTC-3' 5'-CAGTGTGGTGGTTGTACT-3' 

PKR 5'-GCCAGATGCACGGAGTAGCC-3' 5'-GAAAACTTGGCCAAATCCACC-3' 

OAS-16 5'-GAGGCGGTTGGCTGAAGAGG-3' 5'-GAGGAAGGCTGGCTGTGATTGG-3' 

ISG-15 5’-CAATGGCCTGGGACCTAAA-3’ 5’-CTTCTTCAGTTCTGACACCGTCAT-3’ 

ISG-20 5'-AGAGATCACGGACTACAGAA-3' 5'-TCTGTGGACGTGTCATAGAT-3' 

ISG-56 5’-AGAGAACAGCTACCACCTTT-3’ 5’-TGGACCTGCTCTGAGATTCT-3’ 

IFN-a 5'-ATAACCTCAGGAACAACAG-3' 5'-TCATTGCAGAATGAGTCTAGGAG-3' 

TNF-α 5’-AGCAAACCACCAAGTGGAGGA-3’ 5’-GCTGGCACCACTAGTTGGTTGT-3’ 

IL-6 5'-TCCATCCAGTTGCCTTCTTGG-3' 5'-CCACGATTTCCCAGAGAACATG-3' 

GAPDH 5’-TGACCACAGTCCATGCCATC-3’ 5’-GACGGACACATTGGGGGTAG-3’ 

Table 3. Human primer sets used to confirm mRNA expression. 

Gene 

Primers 

Forward Reverse 

IFN-β 5’-CATCAACTATAAGCAGCTCCA-3’ 5’-TTCAAGTGGAGAGCAGTTGAG-3’ 

MX-1 5'-CCAAAGACACTTCCTCTC-3' 5'-CAGTGTGGTGGTTGTACT-3' 

GBP-1 5'-AGAGATCACGGACTACAGAA-3' 5'-TCTGTGGACGTGTCATAGAT-3' 

ISG-15 5'- GAG AGG CAG CGA ACT CAT CT -3' 5'- CTT CAG CTC TGA CAC CGA CA -3' 

ISG-20 5′-CTCCTGCACAAGAGCATCCA-3′ 5′-CGTTGCCCTCGCATCTTC-3′ 

ISG-56 5′-AAGGCAGGCTGTCCGCTTA-3′ 5′-TCCTGTCCTTCATCCTGAAGCT-3′ 

IL-8 5'-CTCTCTTGGCAGCCTTCCTGATT-3' 5'-AACTTCTCCACAACCCTCTGCAC-3' 

IL-6 5'-CCACACAGACAGCCACTCACC-3' 5'-CTACATTTGCCGAAGAGCCCTC-3' 

TNF-α 5' -ATGAGCACTGAAAGCAT-3' 5'-TCGACGGGGAGTCGAACT-3' 

β-actin 5'-CCAACCGCGAGAAGATGACC-3' 5'-GATCTTCATGAGGTAGTCAGT-3' 
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3.7. Protection Against Diverse Influenza A Virus Infection by Oral Administration of Epimedium 

koreanum Nakai in Balb/c Mice 

To confirm the prophylactic effects of Epimedium koreanum Nakai against diverse influenza A viral 

infection, after oral inoculation of extracts, groups of BALB/c mice were infected with 5 times of 50% 

mouse lethal dose (MLD50) of the A/PR/8/34(H1N1), A/Aquaticbird/Korea/W81/2005(H5N2), 

A/Aquatic bird/Korea/W44/2005(H7N3) or A/Chicken/Korea/116/2004(H9N2) influenza A subtypes. 

The mice were orally treated with Epimedium koreanum Nakai at 20 µg per head in a total volume of 

200 µL before infection with lethal doses of influenza A subtypes. A minimum effective dose of 20 µg 

per head was chosen based on our previous in vivo experimental experiences with various herbal extracts 

(data not shown). After the challenge, the untreated (PBS) groups were observed to have severe illnesses 

and the body weights were found to decrease progressively. Moreover, the control group succumbed to 

death by 9 days post infection (dpi), regardless of the virus used for the infection. In contrast, the 

Epimedium koreanum Nakai-treated mice showed a ≤20% body weight loss between 5 and 7 dpi and 

had begun to recover their lost weight by 8 dpi, returning to their normal state by 13 dpi (Figure 5). 

Furthermore, all the groups that were orally inoculated with the herbal extract pre-infection had similar 

protection levels: 80% for all of the influenza A subtypes tested (Figure 5). 

 

Figure 5. Oral administration of Epimedium koreanum Nakai provides protection against 

lethal infection with divergent influenza A subtype in BALB/c mice. 5-week-old female 

BALB/c mice were orally administered with 0.1 mg/mL Epimedium koreanum Nakai (EKN) 

in a total volume of 200 µL (20 µg/head) at 1, 3 and 5 days before infection with 5 MLD50 

(A) H1N1; (B) H5N2; (C) H7N3; and (D) H9N2 Influenza A sub types. Control groups were 

orally administered with 200 µL of PBS. Percentage variation of weight, and percentage 

survival after challenge were recorded until 13 dpi. (E) Virus titers in lung tissues of the 
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H1N1 infected mice were measured by TCID50 at 3 and 5 dpi. (* p < 0.05 indicates a 

significant difference between groups compared by Student’s t-test). 

The ability of Epimedium koreanum Nakai to inhibit viral replication in the lung tissues of infected 

mice was evaluated in an H1N1-infected experimental set. Three mice from each group were sacrificed, 

and their lungs were collected 3 and 5 days post-infection for viral titration. Overall, the oral inoculation 

of Epimedium koreanum Nakai reduced the viral titers in the lungs of the infected mice in the extract-treated 

groups compared with the untreated controls, which had lung viral titers of 5.13 log TCID50/mL and 

5.35 log TCID50/mL on 3 dpi and 5 dpi, respectively. Interestingly, the extract-treated groups had 

significantly reduced viral titers 2.1 log TCID50/mL and 1.5 log TCID50/mL, at 3 dpi and 5 dpi, respectively 

(Figure 5E). 

Taken together, these results indicate that Epimedium koreanum Nakai induced the antiviral state, 

which is sufficiently strong to inhibit viral replication and promoted the survival of mice against lethal 

infections of diverse influenza A viruses. 

3.8. Inhibitory Effect of Quercetin on Influenza Virus (PR8-GFP) and Induction of IFN-β or  

Pro-Inflammatory Cytokines in RAW264.7 Cells 

Epimedium koreanum Nakai is a natural product and contains many effective components. For a 

detailed understanding of the main component profile of the water extract of Epimedium koreanum 

Nakai, a high-performance liquid chromatography (HPLC) system was employed. Among marker 

compounds of Epimedium koreanum Nakai, quercetin and icariin have been representatively identified 

at 270 nm based on comparison to the standard compounds (14). Based on this, we tested the anti-influenza 

(PR8-GFP) effect of quercetin upon pre-treatment of the compound (5.0 μg/mL). Minimum effective 

dose of 5.0 μg/mL was chosen based on our preliminary experiments on the efficacy of quercetin (data 

not shown). Interestingly, treatment with quercetin markedly inhibited virus replication (Figure 6A). The 

quercetin-treated group displayed reduced GFP expression compared to untreated groups, which had 

high levels of GFP expression. The observed GFP data correlated with the viral titers where, quercetin 

treatment reduced the viral titers by nearly 3.5-fold against PR8-GFP at 24 hpi (Figure 6B). Furthermore, 

treatment of quercetin (5.0 μg/mL) had marked increase in cytokine secretion in RAW264.7 cells (Figure 

6B). These data strongly suggest that quercetin, a major constituent of Epimedium koreanum Nakai, 

might be able to induce the antiviral state in cells and subsequent inhibition of virus replication. 

 

Figure 6. Cont. 
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Figure 6. Anti-influenza (PR8-GFP) effect of Quercetin and induction of IFN-β and  

pro-inflammatory cytokines in RAW264.7 cells. (A) RAW264.7 cells treated with media 

alone, 5.0 µg/mL Quercetin, or 1000 unit/mL recombinant mouse IFN-β, 12 h prior to infection 

with PR8-GFP at an MOI of 1.0 The GFP expression images were obtained at 24 hpi (200× 

magnification); (B). Viruses were titrated from the infected cells for PR8-GFP. Cell 

viabilities were determined by trypan blue exclusion and are expressed as mean ± SD.  

(C). Supernatant from RAW264.7 cells treated with media alone, with varying concentrations 

of Quercetin or with 1000 unit/mL recombinant mouse IFN-β were harvested at 24 hpt and 

tested for secreted murine IFN-β, IL-6 and TNF-α using capture antibody-coated ELISA 

plates. The test was performed in duplicate for IFN-β and triplicate for other cytokines.  

The data show the representative means ± SD of each murine cytokine measured over time. 

3.9. Discussion 

Because of concerns related with the side effects, higher costs and lack of efficacy of conventional 

medicines, the use of natural products as alternatives to conventional treatment in the healing and 

treatment of various diseases has been increasing in the last few decades [31]. Among natural products, 

medicinal plants serve as viable alternatives, safer choices, or in some cases, as the only effective treatment. 

Moreover, the use of plants as medicines dates to the earliest years of man’s evolution [31–33], and 

therefore poses less safety-related concerns. A larger number of these plants and their isolated constituents 

have shown beneficial preventive and therapeutic effects, including anti-oxidant, anti-inflammatory, 

anti-cancer, anti-bacterial, and immune-modulatory properties [34–38]. 

Moreover, as substitutes for chemosynthesis drugs and vaccines, medicinal plants show potential 

against a wide range of viruses, such as vaccinia, vesicular stomatis virus, and Sendai virus etc. [39–41]. 

In particular, the anti-influenza virus effects of several herbal extracts have been reported [42–44]. 
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Among the promising medicinal plants, Epimedium koreanum Nakai is an herb with a rich historical 

background and can mainly be found wild in mainland China and Korea [45]. 

In this study, we demonstrated that Epimedium koreanum Nakai contains broad spectrum antiviral 

activity in vitro and against divergent subtypes of influenza A virus in BALB/c mice. In the cytotoxicity 

of antiviral reagents, Epimedium koreanum Nakai has been used for human consumption for a long time, 

and side effects after a dose have rarely been reported. Importantly, Epimedium koreanum Nakai did not 

have any significant cytotoxic effect on the tested cell lines. Moreover, the cell cytotoxic concentration 

(CC50) of Epimedium koreanum Nakai was several magnitudes higher than the effective concentrations 

(EC50) and the selection indexes (SI) of Epimedium koreanum Nakai for various viruses indicate the 

higher safety margin of the extract for therapeutic and/or prophylactic purposes. First, we found that the 

total aqueous extract of Epimedium koreanum Nakai inhibited the replication of influenza (Figure 1B), 

VSV (Figures 1A and 2A), NDV (Figure 1C), and HSV (Figures 1D and 2B) viruses in immune cells 

(RAW264.7) and epithelial cells (HEK293T). Moreover, oral administration of Epimedium koreanum 

Nakai increased the survival rate of mice subjected to lethal challenges with different influenza A virus 

subtypes, including H1N1, H5N2, H7N3 and H9N2 (Figure 5). Although Epimedium koreanum  

Nakai-inoculated mice initially displayed little weight reduction, the majority of them did not lose more 

than 25% of their body weight. In contrast, all of the mice in the control groups displayed more than 

25% losses within 9 dpi and were humanely killed. Influenza virus causes a rapid reduction in the body 

weight of infected mice. Therefore, 25% body weight loss is considered the humane end point for 

sacrificing influenza virus-infected mice [46]. These results suggest that Epimedium koreanum Nakai is 

sufficiently strong to inhibit viral replication and promoted the survival of mice against lethal infections 

of diverse influenza A viruses. 

After viral infection, the host initially recognizes the infection and rapidly evokes the induction of 

type I interferons and pro-inflammatory cytokines, generating an anti-viral innate immune response [47]. 

Induction of the antiviral state at an early point of virus infection is critical to control the spread and 

pathogenesis of viruses [48]. Likewise, we hypothesized that Epimedium koreanum Nakai induces an 

antiviral state via the induction of type I interferons and pro-inflammatory cytokines and we determined 

the induction of antiviral, IFN-stimulated genes (ISGs) (Figure 4) and secretion of IFN-β and IL-6 

(Figure 3) by Epimedium koreanum Nakai in vitro. 

In fact, interferon and pro-inflammatory cytokine production can have both beneficial and harmful 

effects depending on the amount, timing and duration of cytokine release. For instance, during pathogenic 

influenza virus infection, robust cytokine production (cytokine storm), excessive inflammatory 

infiltrates, and virus-induced tissue destruction all contribute to morbidity and mortality [49]. However, 

an induced antiviral state by tight regulation will be a very important defense mechanism against virus 

infection [50]. Interestingly, upon challenge with viruses, a notable pattern of cytokine regulation and 

secretion was observed in Epimedium koreanum Nakai-treated cells, correlating with the observations 

found in the cell viability assay in this study (Figures 1 and 2). 

For a detailed understanding of Epimedium koreanum Nakai on the activation of antiviral signaling, 

we examined the effect of Epimedium koreanum Nakai on the phosphorylation of IRF-3, p65, TBK1, 

STAT1, ERK and p38 which are key signaling molecules present in the type I IFN and NF-κB signaling 

pathways. Upon stimulation of the PRRs (Pattern Recognition Receptors) or unknown receptors of the 

host cell by foreign materials containing pathogens, downstream signal transduction activities, including 
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activation of adaptor signal molecules or transcriptional factors, can initiate the induction of type I 

interferon and pro-inflammatory cytokines to up-regulate the antiviral status of the host cell [51,52]. In 

this study, we found that Epimedium koreanum Nakai treatment can induce the phosphorylation of  

IRF-3, STAT1 and TBK1 in a time-dependent manner, providing evidence of the downstream signal 

transduction in the type I IFN signaling pathway (Figure 3C). Additionally, the activation of NF-κB 

(p65, pERK, p38), which leads to a strong secretion of pro-inflammatory cytokines, could also be 

observed. This phosphorylation can lead to the rapid production of type I IFNs and various inflammatory 

cytokines that play a pivotal role in stimulating the antiviral state and subsequent clearance of viruses [53]. 

Actually, endotoxin (LPS) is a known immunomodulator and is often a contaminant in biological 

preparations. Thus, one of the principal concerns in the field is that the macrophage-stimulating properties 

of the herbal extracts may be due to contamination from bacterial endotoxin (LPS or lipid A-associated 

protein) [54,55]. Therefore, Epimedium koreanum Nakai was tested for endotoxin contamination using 

a Limulus Amebocyte Lysate (LAL assay) assay and was found to be contaminated with only trace 

amounts of endotoxin (Figure 4C). 

RAW264.7 cells (mouse macrophages) are versatile immune system cells that play indispensable 

roles in both the innate and adaptive immune responses [56]. They exhibit various immune responses to 

pathogenic challenge, such as phagocytosis, cytokine secretion, antigen presentation, and adherence [57]. 

Because of their wide range of functions, macrophages have been extensively studied for their significant 

role in the immune system, particularly in antiviral response [58]. Moreover, the immune-stimulating 

effects of different substances have been well established in murine macrophage cells [23,59–61] and 

previous studies have elucidated the capacity of murine macrophages to achieve the antiviral state upon 

successful stimulation [22,62,63]. Consequently, we decided to use murine macrophages to evaluate the 

antiviral effect of the water-soluble herbal extract from Epimedium koreanum Nakai against divergent 

viruses. In contrast, human embryonic kidney (HEK293T) cells are epithelial cells which are less known 

for their relationship with the immune system. It is known that HEK293T cells have less prominent 

pattern recognition receptors (PRRs), especially Toll-like receptors (TLRs) [64]. This suggests that for 

activating the HEK293T cells, an active compound/s must penetrate the cell membrane and activate the 

receptors present in the cytoplasm. Therefore, it is clear that aqueous extract of Epimedium koreanum Nakai 

contains the components which can stimulate both the cell surface PRRs and cytoplasmic PRRs. Therefore, 

Epimedium koreanum Nakai which has the ability to modulate both RAW264.7 and HEK293T cells in 

a beneficial manner indicates its broad antiviral potential. 

It has been reported that Epimedium koreanum Nakai contains various active components, including 

flavonoids, flavonol glycosides, alkaloids, polysaccharides and microelements [65,66]. Flavonoids of 

Epimedium koreanum Nakai mainly contain Icariin, Qercetin, Icariside II, Epimedin, Epimedosides, 

Hyperoside, and Chlorogenic acid. In our previous study, we identified the main component of 

Epimedium koreanum Nakai as quercetin and icariin using HPLC [14]. Quercetin, the major active 

component of Epimedium koreanum Nakai, has been shown to inhibit porcine epidemic diarrhea  

virus [67,68]. Based on this lead, we tested quercetin for its antiviral activity and immune-modulatory 

properties. Quercetin displayed striking antiviral properties and induced cytokine secretion (Figure 6) 

confirming its importance to the observed biological properties. Therefore, the observed antiviral effects 

of Epimedium koreanum Nakai must be due to the presence of quercetin and other active compounds in 

http://en.wikipedia.org/wiki/Icariin
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Epimedium koreanum Nakai, and the relationship between mechanisms of antiviral effects and active 

compounds containing quercetin must be studied further. 

In the present study, we noticed that treatment with the total aqueous extract of Epimedium koreanum 

Nakai displayed a striking anti-viral effect both in vitro, and in in vivo animal models. As the underlying 

mechanism, valuable components of Epimedium koreanum Nakai including quercetin could induce the 

secretion of type I IFN and pro-inflammatory cytokines, stimulating an antiviral state in the host cell and 

can be a promising prophylactic agent to inhibit viral infections through its activation. However, the 

optimum dosage of Epimedium koreanum Nakai for practical application and the longevity of the effect 

within the host should be examined to obtain a better protection against viral infections. 

4. Conclusions 

The present study strongly suggests that the total aqueous extract of Epimedium koreanum Nakai  

has anti-viral effects against VSV-GFP, PR8-GFP, NDV-GFP and HSV-GFP in vitro and against 

divergent influenza A subtypes, such as H1N1, H5N2, H7N3 and H9N2, in the in vivo mouse model. 

Moreover, our study indicates that extracts of Epimedium koreanum Nakai, which contain quercetin and 

other active components, can induce the secretion of type I IFN and pro-inflammatory cytokines and the 

subsequent stimulation of the antiviral state in host cells as a possible mechanism. Thus, the use of 

Epimedium koreanum Nakai as an orally antiviral agent has the potential to be an effective herbal remedy 

for prophylaxis and therapeutic applications in both humans and livestock. 
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