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Background: Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity,
biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant
overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers
predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation.

Methods: Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists
who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error,
a core from a high- and a low-Gleason area from each patient sample was used to generate a ‘high’ and a ‘low’ tumour microarray,
respectively.

Results: Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate
cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas.
Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform
under circumstances of maximal sampling error.

Conclusions: Our results have important implications for cancer biomarker discovery in general and development of a sampling
error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.

Prostate cancer accounts for 27% of incident cancer diagnosed
in men in the USA. The American Cancer Society estimates that,
nationally, 233 000 new diagnoses of prostate cancer will be
made in 2014 (Siegel et al, 2014). Of all men newly diagnosed
with prostate cancer, only about one in seven will progress to
metastatic disease over a lifetime, whereas approximately half of

them will have localised disease that has a very low risk of
progression (Carter et al, 2012; Siegel et al, 2014). Despite this
low risk, as many as 90% of these low-risk prostate cancer
patients in the United States undergo radical treatment, usually
radical prostatectomy (RP) or ablative radiation therapy
(Cooperberg et al, 2010). Such treatments for low-risk patients
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may be excessive and often result in long-term adverse
events, including urinary incontinence and erectile and bowel
dysfunction (Wilt et al, 2008; Moyer and U.S. Preventative
Services Task Force, 2012; Loeb et al, 2014).

Current guidance and accepted standards of care for the diagnosis
and management of prostate cancer recommend the use of clinical
and pathological parameters to assess the disease grade and stage on
biopsy (NCCN, 2012a; NCCN, 2012b). Pathological evaluation of
tissue obtained by needle biopsy is essential both to confirm a
prostate cancer diagnosis and to grade the cancer. Tumour grade, as
determined by the biopsy Gleason score (GS) is the most important
predictor of outcome, and considered the most informative
parameter for guiding management decisions. The GS is comprised
of two Gleason patterns, with the more prevalent pattern specified
first. The two are summed to determine the GS. According to a 2005
consensus on Gleason scoring, only three patterns (3, 4, and 5) are
typically recognised on biopsy (Epstein et al, 2005). The accepted
prognostic categories of GS are 3þ 3¼ 6, 3þ 4¼ 7, 4þ 3¼ 7, 8,
and 9–10. Importantly, although 3þ 4¼ 7 and 4þ 3¼ 7 have
equivalent Gleason sums, the latter has significantly worse prognosis
based on a higher amount of pattern 4 (Goodman et al, 2012; Reese
et al, 2012). Approximately 80–85% of all prostate cancer biopsies
have a GS of 3þ 3¼ 6 or 3þ 4¼ 7, representing a spectrum of cases
with low to intermediate to high risk of progression (Epstein et al,
2012). Patients deemed to have indolent disease are candidates for
active surveillance (AS) (Mohler et al, 2012; NCCN, 2012a; NCCN,
2012b). However, current methods of biopsy evaluation are often
unable to place individual patients accurately along this spectrum
(Cooperberg et al, 2010; Epstein et al, 2012).

Two recognised factors affect the accuracy of biopsy-based
Gleason scoring: one is sampling variation (i.e., failing to sample
the area with the highest Gleason grade), and the second is
pathologist discordance in Gleason scoring (Porten et al, 2011;
Corcoran et al, 2012; Epstein et al, 2012). Despite the current
standard practice of multicore biopsy sampling, the most
aggressive area of the tumour is frequently under-represented or
over-represented (Corcoran et al, 2012; Bjurlin and Taneja, 2014).
Indeed, 25–50% of cases of prostate cancer need to be either
upgraded or downgraded from their initial biopsy score to a more
accurate surgical GS after analysis and grading of prostatectomy
tissue (Kvale et al, 2009; Davies et al, 2011; Epstein et al, 2012).
Discordance between pathologists in Gleason grading can be as
high as 30%, adding significantly to the difficulty of ensuring
uniform and accurate prognostication (McKenney et al, 2011;
Goodman et al, 2012).

Several clinical and pathological risk stratification systems have
been developed to improve prediction of prostate cancer aggres-
siveness, including the D’Amico classification system, the Cancer
of the Prostate Risk Assessment score, and the National
Comprehensive Cancer Network guidelines (Cooperberg et al,
2005; D’Amico et al, 1998; NCCN, 2012a; Vellekoop et al, 2014). In
addition, clinical nomogram systems such as the widely adopted
systems described by Kattan and Steyerberg have been developed
to predict indolent prostate cancer and prostate cancer out-
come(Steyerberg et al, 2007). All such systems recognise the biopsy
GS as the single most powerful variable in risk assessment.
Importantly, all of the risk stratification systems used to guide
clinical management depend on effective and consistent Gleason
scoring and are therefore vulnerable to sampling variation and
discordant scoring by pathologists.

Enhanced biopsy strategies have been proposed as one means to
overcome sampling variation and errors. Among these, increasing
the number or density of sampled cores might ensure more
representative capture of tumour tissue. However, this could
potentially increase the risk of adverse events from oversampling,
and there is little evidence that it improves pathological
classification (Eichler et al, 2006; Delongchamps et al, 2009).

There has also been interest in novel forms of image-guided biopsy.
Currently, MRI-guided biopsy appears to improve detection of
aggressive cancers, but long-term studies will be needed to
determine whether it can improve patient selection for AS
(Robertson et al, 2013).

Using a quantitative multiplex proteomics in situ imaging
system, which enables accurate biomarker measurements from the
intact tumour epithelium (Shipitsin et al, 2014), we here report the
identification and evaluation of 12 biomarkers that are able to
predict prostate cancer aggressiveness and lethal outcome.
Importantly, the markers were specifically selected to be robust
to sampling error. The study was designed to simulate biased
biopsy-sampling error based on coring from areas of high and low
GS on prostatectomy tissue from each patient to generate ‘high’
(H) and ‘low’ (L) tissue microarrays (TMAs), respectively.
Biomarkers were then selected based on their ability to reflect
true prostate pathology and lethal outcome, regardless of whether
they were measured on cores with high or low GS. This
performance-based approach not only identified novel biomarkers,
but also confirmed known biomarkers predictive of prostate cancer
aggressiveness and lethal outcome.

MATERIALS AND METHODS

Reagents and antibodies. All antibodies and reagents used in this
study were procured from commercially available sources
as described in Supplementary Table S4. Anti-fluorescein
isothiocyanate MAb–Alexa 568, anti-CK8–Alexa 488, anti-
CK18–Alexa 488, anti-CK5–Alexa 555, and anti-Trim29–Alexa
555 were conjugated with Alexa dyes using the appropriate protein
conjugation kits (Life Technologies, Grand Island, NY, USA).

Slide processing and staining protocol. From TMA blocks, 5-mm
sections were cut, placed on Histogrip (Life Technologies)-coated
slides, and processed as described previously (Supplementary
Materials). Briefly, after deparaffinisation, antigen retrieval was
performed in 0.05% citraconic anhydride solution for 45 min at
95 1C using a Lab Vision PT module (Thermo Scientific, Waltham,
MA, USA). Staining was performed either manually or in automated
fashion with an Autostainer 360 or 720 (Thermo Scientific).

The quantitative multiplex immunofluorescence (QMIF) stain-
ing procedure that combined two anti-biomarker antibodies with
region-of-interest markers was performed as previously described
(see Supplementary Materials and Methods).

Acquisition, processing, quality control, and annotation of
FFPE prostate cancer tissue blocks. A set of FFPE human
prostate cancer tissue blocks with clinical annotations and long-
term patient outcome information was acquired from Folio
Biosciences (Powell, OH, USA). Information about prostate
cancer-specific deaths was obtained from either patient records
or death certificates. Samples had been collected with appropriate
institutional review board approval and all patient records were de-
identified. For evaluation of candidate biomarker antibodies, FFPE
human prostate cancer tissue blocks with limited clinical annota-
tion were acquired from other commercial sources.

A series of 5-mm sections was cut from each FFPE block. For
annotation, a 5-mm section that was the last to be cut from each
FFPE block was stained with haematoxylin and eosin and scanned
using a ScanScope XT system (Aperio, Buffalo Grove, IL, USA).
The scanned images were remotely reviewed and annotated for GS
in a blinded manner by expert clinical board-certified anatomical
pathologists. Circles corresponding to 1-mm diameter cores were
placed over four areas of highest and two areas of lowest Gleason
patterns (see Figure 1, top).
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Generation of TMA blocks. TMA blocks were prepared using
a modified agarose block procedure (Yan et al, 2007). See
Supplementary Materials for further details.

Biomarker selection. To identify biomarkers for prostate cancer
aggressiveness, we developed a selection and evaluation process
that could be broadly applicable across diseases and conditions.
The process, shown in Figure 2, had biological, technical,
performance, and validation stages. See Supplementary Methods
for further details.

Image acquisition. Two Vectra Intelligent Slide Analysis Systems
(PerkinElmer, Waltham, MA, USA) were used for automated
image acquisition as described (Supplementary Materials and
Methods). Multispectral images were processed into images for
each separate fluorophore signal and sent for analysis with
Definiens Developer script (Definiens AG, München, Germany).

Definiens automated image analysis. We developed an auto-
mated image analysis algorithm using Definiens Developer XD for
tumour identification and biomarker quantification as described in
Supplementary Materials.

Data stratification and end points in the analysis. Expression of
39 biomarkers was examined for correlation with tumour
aggressiveness and lethality using the H and L TMAs. Disease
aggressiveness was defined based on prostate pathology (aggressive
disease¼ surgical Gleason X3þ 4 or T3b, Nþ , or Mþ ). For
aggressiveness analyses, we examined marker correlation based on
measurements in both L TMA samples with core Gleason p3þ 4
and the corresponding, matched H TMA samples.

For lethal outcome analyses, we created two different sample
sets: (1) all cores with an observed GS p3þ 4; and (2) all cores.

Cohort composition. Table 1a presents the cohort composition.
Only those samples that had a complete set of clinical information
were included. When performing an analysis using a certain set of
biomarkers, only samples with values for those markers were
considered. Hence, the numbers in the table are upper bounds.

Univariate analysis of aggressiveness and lethality. Our objec-
tives for univariate analysis were two-fold: to characterise
univariate behaviour as a performance assessment for potential
inclusion in the final marker set, and to provide a reduced set of
markers for exhaustive multivariable model exploration. See
Supplementary Materials for details.

GS 4+3=7

GS 4+4=8

4+4

4+44+4
3+3

4+4
3+3

GS 3+3=6

H TMA L TMA

Figure 1. Creation of biopsy simulation tissue microarrays (TMAs). A
tissue block from a prostatectomy sample was annotated with all visible
Gleason patterns (top). The example shown is from a patient with an
overall Gleason score (GS) of 4þ3¼7. As shown in a higher-
magnification view (middle), patterns within the same block can be
highly diverse. Two 1-mm cores were taken from each tissue block.
One was taken from an area with the highest GS (4þ4¼ 8) and
embedded into agarose/paraffin along with high-scoring cores from
other blocks to create the H TMA (bottom left). The other was taken
from an area with the lowest GS (3þ 3¼6) and embedded into
agarose/paraffin along with low-scoring cores from other blocks to
create the L TMA (bottom right).

Initial list: 160 biomarker candidates

Step 1:
Biological

criteria

Step 2:
Technical

criteria

Step 3:
Performance-
based criteria

Prioritised list: 120 candidates

Technical validation: 62 candidates

39 Ab candidates tested
Univariate performance, multivariate performance

Biomarker selection on H&L TMAs cohort

Final selection

12 Markers identified
Biological relevance, published literature, univariate
and multivariate analysis, technical considerations

DAB: specificity, signal intensity
IF: specificity, signal intensity, dynamic range,

epitope stability, staining uniformity

1. Biological relevance for cancer
2. In silico analysis
3. Human protein atlas
4. Monoclonal Ab availability

Figure 2. Biomarker selection strategy. Three types of criteria were
used to select 12 final biomarkers. (DAB: Ab specificity assessed based
on chromogenic tissue staining with diamino benzidine (DAB); IF: Ab
specificity and performance based on immunofluorescent tissue
staining).
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Biomarker ranking for aggressiveness via exhaustive search of
multimarker models. We sought to rank the biomarkers by
importance in multimarker models; 31 biomarkers, refined from
the original set of 39 to improve technical performance further,
were used in an exhaustive biomarker search. We considered all
combinations of up to five biomarkers from the 31 biomarkers
tested in the L TMA in the H and L TMA analysis. See
Supplementary Materials for further details.

Biomarker ranking for lethality via exhaustive search of
multimarker models. The same model-building approach done

for aggressiveness was followed for the biomarker ranking for
prediction of lethality. Supplementary Table S3 shows frequency of
biomarker utilisation (top 5%) for lethality.

RESULTS

Biopsy simulation. Our first goal was to develop a biopsy-
sampling model to simulate and exaggerate the biopsy sample
variation observed in clinical practice. For this purpose, we

Table 1b. Clinical features of the cohort used to create L and H TMAs. The distribution of H TMA core Gleason scores and surgical Gleason scores among
the 301 patients with L TMA core Gleason of 3þ 3 or 3þ 4

Core Gleason score L TMA: n of patients Core Gleason score H TMA: n of patients Surgical Gleason score n of patients

3þ 3¼ 6 233 3þ3¼6 149 3þ 3¼ 6 93

3þ4¼7 58 3þ 4¼ 7 112

X 4þ3¼7 26 X 4þ 3¼ 7 30

3þ 4¼ 7 68 3þ3¼6 23 3þ 3¼ 6 14

3þ4¼7 27 3þ 4¼ 7 32

X4þ 3¼ 7 18 X 4þ 3¼ 7 22

Abbreviations: H TMA¼ high-grade tissue microarray; L TMA¼ low-grade tissue microarray.

Table 1a. Clinical features of the cohort used to create L and H TMAs. A single cohort of 380 patients provided samples for the two TMAs

L TMA H TMA

Patients with survival and biomarker information 360 of 380 363 of 380

Mean age (s.d.), years 62.2 (6.76) 62.1 (6.83)

Lethal events, n (%) 60 (16.67) 59 (16.25)

Mean length of follow-up (s.d.), years 11.55 (3.96) 11.52 (3.98)

Pathological tumour stage, n (%)

T2 244 (67.8) 250 (68.9)
T3 112 (31.1) 109 (20.0)
T4 2 (0.56) 2 (0.55)
Missing 2 (0.56) 2 (0.55)

Core Gleason score, n (%)

p 6 233 (64.7) 177 (48.8)
3þ 4 68 (18.9) 98 (27.0)
4þ 3 15 (4.2) 31 (8.5)
8–10 27 (7.4) 47 (13)
Total 343 (95) 353 (97)

Surgical Gleason score, n (%)

p6 108 (30) 112 (31)
3þ 4 169 (47) 138 (46)
4þ 3 30 (8.3) 30 (8.3)
8–10 53 (15) 53 (15)
Total 360 (100) 363 (100)

Deaths stratified by surgical Gleason score, n (% of disease deaths, % of Gleason stratun)

p6 2 (3.3, 1.9) 3 (5.1, 2.7)
3þ 4 20 (33.3, 11.8) 17 (28.8, 10.1)
4þ 3 9 (15, 30) 10 (17, 33.3)
8–10 29 (48.3, 54.7) 29 (49.1, 54.7)
Total 60 59

Abbreviations: H TMA¼ high-grade tissue microarray; L TMA¼ low-grade tissue microarray; TMA¼ tissue microarray. For technical reasons, only 360 samples on the L TMA and 363 samples on
the H TMA were usable.
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embedded cores from annotated prostatectomy tissue into TMAs.
On the basis of centralised Gleason grading by expert urologic
pathologists, a core was taken for each patient from the area with
the least aggressive tumour (low GS) to generate a low-grade TMA
(L TMA); in parallel, a core was taken from the area with the most
aggressive tumour based on Gleason grading (high GS) to generate
a high-grade TMA (H TMA) (Figure 1). Thus, we developed paired
tissue TMAs with samples simulating biopsies biased in two
directions, representing both more and less aggressive tumour
areas from each patient.

Table 1a describes the clinical features for the multi-institution
cohort of 380 patients for whom paired TMAs were prepared.
Table 1b describes the subset of 301 cases with core Gleason of
3þ 3 or 3þ 4 on L TMA along with their corresponding core
Gleason on H TMA and their surgical (prostatectomy) Gleason.

Sampling for the L TMA was specifically designed to under-
estimate disease severity. As shown in Tables 1a and b, 64.7% of L
TMA samples had a core GS p6, whereas only 30% of these L
TMA samples came from patients with a surgical GS p6. The
probability of upgrade (Table 1b) for samples in the L TMA from
cases with core GS of p3þ 4 to a higher surgical GS was 0.64 (95%
Wilson confidence interval (CI): 0.59–0.69). This probability of
upgrade is higher than that seen in clinical practice (Porten et al,
2011), as expected from the sampling method and patient cohort
used. Thus, by exaggerating sample variation expected in clinical
practice, this biopsy simulation procedure provided a useful model
to identify biomarkers that reliably predict prostate cancer
aggressiveness, regardless of sample variation.

Effect of sampling error on known biomarker model performance.
Prior studies have demonstrated that RP GS of seven or higher
and extension of prostate cancer beyond the prostate gland are
significant predictors of metastasis and prostate cancer-specific
mortality (Ross et al, 2012; Shikanov and Eggener, 2012; Brimo
et al, 2013). Accordingly, we defined ‘aggressive disease’ based on
the prostate pathology as surgical GS of at least 3þ 4 or pT3b
(seminal vesicle invasion), Nþ , or Mþ . We tested the four-
biomarker model (SMAD4, CCND1, SPP1, and PTEN) previously
reported by Ding et al (2011) for its ability to predict both disease-
specific death and disease aggressiveness in our sampling variation
TMA cohort. Using logistic regression analysis on the patient cores
in the L and H TMAs, marker coefficients and AUC were
estimated on the testing set. As shown in Table 2, when measured
on H TMA patient cores, the four-marker signature was able to
predict disease-specific death with a median test AUC of 0.65 (95%
CI of 0.59–0.74). However, when measured on L TMA, represent-
ing biased underestimation of the surgical GS, the four-marker
model showed a non-significant median test AUC of 0.49 (95% CI
of 0.42–0.58). Moreover, the four-marker signature was unable to
predict aggressive disease in either H or L TMA (median test AUC
of 0.56 (95% CI of 0.44–0.64) and of 0.56 (95% CI of 0.46–0.65),

respectively). These results demonstrate the impact of sampling
error on prognostic marker performance, and support the necessity
of identifying alternative biomarker combinations that can predict
outcomes accurately regardless of sampling variation.

Biomarker identification. We next embarked on identifying
biomarkers that would robustly predict cancer aggressiveness in
spite of biopsy-sampling variation. The stepwise approach
involved: (1) identification of candidate biomarkers, (2) evaluation
of their biological and technical suitability, and (3) analysis of
performance in H and L TMA cohorts (Figure 2).

From a search of published literature and publicly available gene
expression data sets, we identified 160 biomarker candidates based
on biological relevance for prostate cancer (Lapointe et al, 2004;
True et al, 2006; Lapointe et al, 2007; Tomlins et al, 2007; Cheville
et al, 2008; Nakagawa et al, 2008; Graff et al, 2009; Makarov et al,
2009; Pressinotti et al, 2009; Gorlov et al, 2010; Taylor et al, 2010;
Chen et al, 2011; Cima et al, 2011; Ding et al, 2011; Markert et al,
2011; Ross et al, 2011; Swanson and Quinn, 2011; Ding et al, 2012;
Kristiansen, 2012). We further prioritised 120 of these markers
based on availability of appropriate monoclonal antibodies (MAbs)
(see Supplementary Table S1 for a comprehensive biomarker
candidate list). Our candidate list included well-characterised
markers relevant for prostate cancer aggressiveness, such as EZH2,
MTDH, FOXA1 (Hu et al, 2009; Yang and Yu, 2013; Mills, 2014),
as well as the markers PTEN, SMAD4, Cyclin D1, SPP1, phospho-
PRAS40-T246 (pPRAS40), and phospho-S6-Ser235/236 (pS6)
previously identified as predictive of lethal outcome on prosta-
tectomy tissue (Ding et al, 2011; Shipitsin et al, 2014).

We next procured MAbs against these 120 prioritised
candidates and tested them for specificity and suitability for the
QMIF assay. Candidate MAbs were further selected on the basis of
signal intensity and specific immunofluorescence-staining patterns,
as described (Shipitsin et al, 2014; Supplementary Materials).
Candidate biomarker antibodies were selected based on signals that
were more stable relative to those of epithelial markers.

Subsequently, we tested the 62 MAbs that passed the previous
steps and determined their dynamic range as well as their
predictive performance. Using a small test TMA designed to
represent the least aggressive areas from prostate tumours with
high and low overall GSs, biomarkers were selected based on
correlation of signal intensity with surgical GS. Specifically, we
required minimally a three-fold difference of signals between
lowest and highest expression values, in addition to the demon-
strated difference in signal value distributions between nonaggres-
sive and aggressive cases. The final 39 candidate MAbs that
fulfilled these criteria were tested on the clinical cohort represented
by H and L TMA blocks described above.

Univariate analysis. Each of the 39 biomarkers were tested for
their ability to predict disease aggressiveness (surgical GS X3þ 4

Table 2. Sampling variation reduces the performance of an established lethal outcome-predictive biomarker signature

Markers: PTEN, SMAD4, CCND1, SPP1
Mean AIC

(2.5%, 97.5%)
Median train AUC

(2.5%, 97.5%)
Median test AUC

(2.5%, 97.5%)

H TMA lethal 282.2 (275.9, 293.2) 0.67 (0.64, 0.70) 0.65 (0.59, 0.74)

L TMA lethal 301.3 (288.6, 316.8) 0.6 (0.58, 0.63) 0.49 (0.42, 0.58)

H TMA aggressiveness 350.1 (330.4, 367.4) 0.62 (0.56, 0.68) 0.56 (0.44, 0.64)

L TMA aggressiveness 381.6 (353.0, 400.7) 0.61 (0.55, 0.68) 0.56 (0.46, 0.65)

Abbreviations: AIC¼Akaike information criterion; ROC¼ receiver-operating characteristic curve; TMA¼ tissue microarray. The combination PTENþ SMAD4þCCND1þ SPP1 has previously
been shown to be prognostic for lethal outcome when measured on prostatectomy tissue. We confirmed that these markers are indeed predictive of lethal outcome when measured in the
high-Gleason biopsy simulation tissue (H TMA). However, these markers are unable to predict lethality in the low-Gleason simulation biopsy (L TMA). The markers do not show statistically
significant predictive performance for aggressive disease regardless of whether they were measured in high- (H TMA) or low (L TMA)-Gleason tissue areas. C statistic, area under ROC curve.
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or pathological stage pT3b, and/or Nþ or Mþ ) and death from
disease (survival analysis) when measured in either low- or high-
Gleason areas (Figure 3). Markers shown in red text demonstrated
predictive value (Po0.1) for aggressive disease or death from
prostate cancer based on either an increased or decreased
expression in both low- and high-Gleason areas. This result
suggests that these markers are resistant to varying degrees of
sampling error. There were two markers that were predictive of
aggressiveness and three markers of lethal outcome when
measured in high, but not in low-Gleason areas, indicating that
these markers are not robust to sampling error. Conversely, no
markers were identified that had predictive performance only in
low, but not in high-Gleason areas. Interestingly, out of the 14
markers with significant univariate performance for aggressiveness,
12 markers also exhibited significant univariate performance for
lethal outcome, consistent with a strong correlation between
aggressive disease and lethal outcome. Our performance-based

biomarker selection approach also confirmed correlation between
lethal outcome and expression of three known prostate cancer
progression markers, EZH2, HoxB13, and MTDH2, as previously
reported (Hu et al, 2009; Yang and Yu, 2013; Mills, 2014).

Multivariate analysis: biomarker combinations predicting
tumour aggressiveness. To explore the best multivariate biomar-
ker combinations to predict disease aggressiveness, we exhaustively
searched all possible models with combinations up to and
including five biomarkers (Figure 4A). We focused on 31
biomarkers, further refined from the original set of 39 based on
technical criteria (see Materials and Methods). Initially, an
‘extreme’ model approach was used for the multivariate analysis,
which included removal of ‘intermediate’ samples (GS¼ 3þ 4,
pT3a and N0) for the model building and testing. We separated
patient cores in the L TMA into independent training and test sets,
and tested the resulting models on both L and H TMAs for
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Figure 3. Univariate performance of 39 biomarkers measured in both low- (L TMA; black bars) and high-(H TMA; brown bars) Gleason areas for
disease aggressiveness and disease-specific mortality. (A) The odds ratio (OR) for predicting severe disease pathology (aggressiveness) was
calculated for each marker. Markers with an OR to the left of the vertical line are negatively correlated with the severity of the disease as assessed
by pathology. Those to the right of the line are positively correlated. The markers were ranked based on OR when measured in L TMA. (B) The
hazard ratio for death from disease (lethality) was calculated for each marker and plotted as described for A. Biomarkers in red indicate statistical
significance at the 0.1 level in both L and H TMAs. Biomarkers in blue indicate statistical significance in only H TMA, but not L TMA. Note the large
overlap of biomarkers with statistically significant univariate performance for both aggressive disease and death from disease.
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multivariate performance across sampling variation. For this
purpose, we used logistic regression models to estimate biomarker
coefficients using the training data set, estimated AUC from the
resulting ROC in the testing set, and then repeated the process for
another sampling.

In each case, the most frequently occurring biomarkers in
the top 5 or 1% of the models, sorted by AIC (Akaike information
criterion) (Lindsey and Jones, 1998) and test-set AUC,
were determined. A final tally was generated encompassing
ranking by test, ranking by AIC, and by both test and AIC
(see Figure 4B for a representative example of a five-biomarker
model ranked by AIC and test). Intriguingly, we observed a high
degree of conservation of biomarker order in the top-performing
biomarker models (see Figure 4C; Supplementary Table S2). The
following biomarkers appeared among the top markers in at least
50% of the ranked lists: ACTN1, FUS, SMAD2, DERL1, YBX1,

DEC1, pS6, HSPA9, HOXB13, PDSS2, SMAD4, and CD75.
In addition, CUL2 was present in a number of highly ranked
models (see Supplementary Table S2 for further details of the
ranking results).

Multivariate analysis: biomarkers predicting lethal outcome. A
similar modelling analysis to that applied to predict aggressiveness
was performed for lethal outcome (Supplementary Table S3).
Biomarkers appearing among top markers in at least 50% of the
ranked lists included: MTDH2, ACTN1, COX6C, YBX1, SMAD2,
DERL1, CD75, FUS, LMO7, PDSS2, FAK1, SMAD4, and DEC1 (see
Supplementary Table S3 for further details of the ranking results).

Final biomarker set predictive of prostate cancer aggressiveness
and lethality. We chose a final set of 12 biomarkers based on
careful integration of univariate and multivariate performance, and
analytical considerations, including minimally a three-fold
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Figure 4. Performance-based biomarker selection process for disease aggressiveness. (A) The bioinformatics workflow selected the most
frequently utilised biomarkers from all combinations of up to five markers from a set of 31. (B) Example of performance of top-ranked five-marker
models, including comparison with training on L TMA and then testing on independent samples from L TMA and H TMA. Note that the test
performances on L TMA and H TMA are consistent, with substantial overlap in confidence intervals. (C) Combinations were generated allowing a
maximum of three, four, or five biomarkers. The figure shows the proteins most frequently included when five-biomarker models were used to
predict aggressive disease, ranked by test.
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dynamic signal intensity range across tumour samples for all
antibodies. Figure 5A shows the estimated odds ratios (ORs)
associated with these 12 biomarkers for univariate prediction of
aggressiveness, and Figure 5B provides a biological summary of the
selected biomarkers. The final biomarker set was comprised of:
FUS, PDSS2, DERL1, HSPA9, PLAG1, SMAD2, VDAC1, CUL2,
YXB1, pS6, SMAD4, and ACTN1.

Each of the 12 marker antibodies was rigorously validated by
specificity analyses including western blotting and an

immunohistochemistry assay before and after target-specific
knockdown, as shown in Supplementary Figure S1.

Finally, we assessed the predictive potential of the final 12-
biomarker set for both disease aggressiveness and disease-specific
death on the entire patient cohort through logistic regression
analyses as described (see Materials and Methods). As shown in
Figure 5C, this resulted in an L TMA test AUC of 0.72 (95% CI:
0.64–0.79) and a corresponding OR for aggressive disease of 20 per
unit change in risk score (95% CI: 4.3–257). To confirm the ability
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Figure 5. Final biomarker set and selection criteria. (A) Twelve biomarkers were selected based on univariate performance for aggressiveness
(shown as OR on left) and lethality as well as frequency of appearance in multivariate models for disease aggressiveness or lethal outcome
(table on right) (B) The biomarker set comprises proteins known to function in the regulation of cell proliferation, cell survival, and metabolism.
(C) A multivariate 12-marker model for disease aggressiveness was developed based on logistic regression. The resulting AUC and OR are shown.
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HR are shown.
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to generalise across sampling error, the model derived from the L
TMA-training set was also tested on H TMA for prediction of
aggressive disease with consistent results (Figure 5C). Without any
further changes to the aggressiveness model, we examined its
performance on lethal outcome prediction by correlating the
aggressiveness risk scores with death from disease. Of note, we
found a similar AUC for lethal outcome as for aggressiveness on
both L and H TMA of 0.72 (95% CI: 0.60–0.83) and 0.71 (95% CI:
0.61–0.81), respectively. The corresponding HRs for lethal outcome
on L and H TMAs were 66 per unit change (95% CI: 5.1–6756) and
36 (95% CI: 3.3–2889), respectively. We conclude that the 12
identified biomarkers are robust to sampling error and predictive
of both disease aggressiveness and lethal outcome.

DISCUSSION

There is a continuing clinical need to assess prostate cancer
aggressiveness more accurately at the time of initial diagnosis as well
as for follow-up of patients, both those under active patient
surveillance and those receiving active treatment (Bangma and
Roobol, 2012; Carter et al, 2012; Brimo et al, 2013). Currently, in
men with early disease, a biopsy GS of 3þ 4¼ 7 or more is one of the
prognostic determinants for active treatment (NCCN, 2012a;
Heidenreich et al, 2014). However, biopsy-sampling error resulting
from tumour heterogeneity and discordant Gleason scoring can
significantly affect the accuracy and reliability of assessing a patient’s
risk of cancer progression, aggressiveness, and lethality. This
uncertainty in prognostication has contributed to significant over-
treatment of patients with biopsies of Gleason grade 3þ 3 or 3þ 4
(Boorjian et al, 2009; Cooperberg et al, 2010; Bangma and Roobol,
2012; Epstein et al, 2012; Sandhu and Andriole, 2012; Loeb et al, 2014).

Biomarkers predictive of prostate cancer aggressiveness and
lethality. In this manuscript, we describe the successful develop-
ment of a performance-based strategy to identify and evaluate
biomarkers predictive of prostate cancer aggressiveness and lethal
outcome, even under circumstances of extreme sampling variation,
an issue typically encountered during prostate biopsy taking. Using
a large cohort (N¼ 380) of annotated clinical prostatectomy
samples with long-term follow-up, the areas of highest and lowest
GS on each prostatectomy tissue were cored to generate paired
TMAs (H and L TMAs) representing the entire cohort, thereby
simulating biopsies with sampling error for each patient. Using
these paired TMAs, we evaluated a large number of biomarker
candidates for the ability to predict aggressive prostate pathology
and lethal outcome when measured in either low- or high-grade
cancer regions from each patient. We first selected biomarkers with
performance against aggressiveness and lethal outcome when
measured in L TMA tissue, to identify those most robust to
extreme sampling error. For this purpose, we only included L TMA
samples with core Gleason p3þ 4 as clinically relevant, as biopsies
with GS 4þ 3 or higher inevitably will be aggressive therapy
candidates. Most of the identified biomarkers from univariate
analyses were predictive of both disease aggressiveness and prostate
cancer-specific mortality regardless of whether they were measured
in L or H TMA tissue samples, and hence robust to sampling
variation (Figure 3). Moreover, performance of some well-
established prostate cancer biomarkers predictive of progression
risk and lethal outcome (SMAD4, EZH2, MTDH2, HoxB13, and
PTEN) corroborated the validity of the approach.

As part of specificity validation of our antibodies, we learned
through target knockdown analyses and mass spectrometry-based
protein sequencing analysis that a MAb sold as anti-DCC actually
recognised the unrelated protein HSPA9, or Mortalin. We found
that HSPA9 was predictive as part of multivariate models and
hence was included in the final 12-marker set. Our functional

analyses revealed the involvement of HSPA9 in clonogenic colony
formation and cell proliferation, consistent with previously
reported data (see Supplementary Figure 2 and Flachbartova
and Kovacech, 2013). This further validates our unbiased,
performance-based marker selection approach.

On the basis of univariate performance as well as frequency of
marker appearance in multivariate models for disease aggressive-
ness and lethal outcome, 12 biomarkers were selected (Figure 5A).
A multivariate model based on these 12 markers showed similar
predictive performance for aggressiveness across tissue-sampling
variation (Figure 5C). Interestingly, the risk scores generated based
on the 12-marker aggressiveness model were equally predictive for
the separate end point of lethal outcome across tissue-sampling
variation (Figure 5C). This indicates a clear linkage between
aggressive features on surgical pathology and lethality, and,
importantly, validates the usage of our pathologic end point for
building our biomarker panel as relevant for long-term patient
outcome. We conclude that the 12 identified biomarkers are
relevant for prediction of tumour behaviour and could serve as the
starting point for development of a clinical, evidence-based
multivariate biopsy test for evaluating prostate cancer aggressive-
ness as a critical aid in early decision-making steps in patient
management (NCCN, 2012a; NCCN, 2012b).

Biomarkers robust to sampling error. A key objective for our
study was to identify and select markers that are highly robust to
sampling error. One of the key reasons for biopsy-sampling error is
the heterogeneity of prostate cancer. The inability to consistently
acquire tissue from the most aggressive parts of the tumour leads to
frequent underestimation of tumour aggressiveness and progres-
sion risk. By coring into the highest and lowest Gleason area from
each patient, we generated paired TMAs of the entire cohort study
designed to simulate two biopsies from each patient, one with
‘maximal’ sampling error (L TMA), and the other with minimal
sampling error (H TMA). We focused on L TMAs with core
Gleason p3þ 4, as these represent the clinically relevant cases
where standard of care is insufficient for accurate prognosis. We
found that B54% of these L TMA cases were upgraded to a higher
surgical GS, which is higher than observed in clinical practice
(Porten et al, 2011), confirming that our approach provided a
biased sampling error model.

The need for identification of biomarkers that are resistant to
sampling error was underscored by examining a well-established
four-marker signature based on Cyclin D1, SMAD4, PTEN, and
SPP1 previously reported to be predictive of lethal outcome based
on prostatectomy cohorts (Ding et al, 2011). Although we
confirmed that the model was predictive for lethal outcome in H
TMA, representing a situation of minimal sampling error, the
model was not lethal outcome-predictive at all in our L TMA tissue
cores, representing maximal sampling error (Table 2). This finding
is consistent with a recent report that the four-marker signature is
unable to predict lethal outcome in low-GS prostate tumours
(Irshad et al, 2013).

On the basis of univariate marker analyses, we identified 14 and
18 markers with sampling error-robust performance across L and
H TMA samples for disease aggressiveness and lethal outcome,
respectively (markers with red font in Figure 4). Most of these
univariately selected markers were predictive of both indications
across sampling variation, supporting a correlation between disease
aggressiveness and lethal outcome. Interestingly, although all
markers that showed univariate performance for both indications
on L TMA also were predictive on H TMA, two markers (PXN and
MTDH2) and three markers (NCOA2, CCND1 (Cyclin D1), and
AKAP8) (Sattler et al, 2000; Xu and Li, 2003; Hu et al, 2009; Ding
et al, 2011; Canton and Scott, 2013) were predictive of aggressive
disease and lethal outcome, respectively, only when measured on H
TMA, but not on L TMA (Figure 3). This suggests that these
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markers are predictive primarily in situations of minimal sampling
error. Indeed, all these five markers have been shown as important
regulators of cellular proliferation, migration, and oncogenesis (see
e.g., Sattler et al, 2000; Xu and Li, 2003; Hu et al, 2009; Ding et al,
2011; Canton and Scott, 2013). The observation that Cyclin D1 is
predictive of lethal outcome only in H TMA, but not L TMA, is
consistent with the finding that the four-marker signature reported
by Ding et al (2011) was not predictive of lethal outcome in our L
TMA tissue, as well as on low-grade prostate cancer samples
(Irshad et al, 2013). The fact that no markers were predictive for
aggressive disease or lethal outcome on only L TMA, but not H
TMA, is interesting given that we primarily selected for markers
that can predict either aggressiveness or lethal outcome in L TMA,
to reflect maximal sampling error robustness. This suggests that
the identified markers likely reflect field effects from more
aggressive tumour regions, consistent with their similar perfor-
mance in L and H TMA tissue samples.

Genetic and proteomic approaches. An extensive search to find
better prostate cancer biomarkers has led to the identification of
possible genetic markers for clinical risk prognostication (Lapointe
et al, 2004; Lapointe et al, 2007; Tomlins et al, 2007; Cheville et al,
2008; Cuzick et al, 2011; Scher et al, 2013). However, there are
conflicting results regarding the reliability of many such markers in
disease prognosis. For example, although TMPRSS2–ERG gene
fusions are reported to be associated with high-risk tumours, more
recent studies with large cohorts report no strong correlation
between these fusions and patient outcome (Gopalan et al, 2009).
A multivariate gene expression-based test has recently been
reported to predict metastatic disease and lethal outcome based
on a conservatively managed cohort of patients from the United
Kingdom (Cuzick et al, 2012), as well as biochemical recurrence
after treatment in actively managed cohorts in the United States
(Cooperberg et al, 2013; Bishoff et al, 2014). The influence of
sampling variation on this test has yet to be determined.

The results of this study suggest that taking a proteomic
approach, which measures proteins from only the tumour region of
intact tissue, can possibly improve accurate risk classification at the
biopsy stage. The rationale for this idea is two-fold. First, because
prostate cancer is a heterogeneous, multifocal disease, biopsies
frequently contain only lower-grade components, and pathologists
may classify them as low-risk cancers. However, higher-grade
molecular features, not reflected morphologically, have been
reported to extend throughout the cancer (Boyd et al, 2012;
Sowalsky et al, 2013), and therefore are measurable in seemingly
lower-grade-containing biopsies. It is possible to accurately and
sensitively assess such high-grade molecular features in situ from
tumour regions using a proteomic approach, even in tissue samples
with variable amounts of tumour and benign components. This is
an advantage over gene expression-based technologies requiring
tissue homogenisation, resulting in variable dilution of the higher-
grade molecular features depending on the amount of intermixed
benign tissue. Second, Gleason grading on biopsy is subjective,
with expert pathologists disagreeing on up to 30% of cases
(McKenney et al, 2011; Goodman et al, 2012). Molecular features
that can be objectively measured should improve risk classification.

Limitations to the study. The fact that the biomarkers were
analysed in multiple ways for univariate and multivariate
performance on a single, large cohort increases the potential risk
that the results are over-fitted to patients included in this study.
Also, we simulated prostate cancer biopsies by taking 1-mm
diameter cores from prostate tissue blocks to generate TMA blocks.
Protein measurements made from cross-sections of these cores
may perform differently if measured in 20� 1-mm biopsy sections,
as typically encountered in routine pathology practice.

CONCLUSION

There is an urgent need for a reliable and accurate prognostic test
for patients with prostate cancer, given the difficulties of predicting
survival outcomes for patients diagnosed with early-stage cancer
and the resulting overtreatment. Further investigation of the 12
biomarkers identified in this study will enable development of an
objective clinical biopsy test based on multiplex proteomics in situ
imaging. The next step is to identify the optimal biomarker
subset algorithm from these 12 biomarkers, and to validate this in a
large clinical cohort of Gleason- and TNM-annotated biopsy
samples with matched prostatectomy and pathological specimens.
These studies are currently under way.

We propose that the identification strategy for protein
biomarkers described herein is likely to be applicable to other
tumour types, and may serve as a model for performance-based
selection of biomarkers that can be used to develop prognostic or
predictive tests for other tumours where histological assessment is
pivotal to risk stratification and prognostication.

ACKNOWLEDGEMENTS

We would like to thank Drs Raju Kucherlapati, Ronald DePinho,
Lynda Chin, Philip Kantoff, and collaborators at Metamark for
insightful comments and suggestions. We thank Rowena Hughes
and Winnie McFadzean from Oxford PharmaGenesis Ltd for
editorial support in collating comments from authors and
finalisation of the manuscript for submission. Research support:
this project was funded by Metamark Genetics Inc.

CONFLICT OF INTEREST

DLR is a paid consultant and equity holder in Metamark. DMB
and ML are paid consultants to Metamark. All other authors are
paid employees of Metamark.

REFERENCES

Bangma CH, Roobol MJ (2012) Defining and predicting indolent and low risk
prostate cancer. Crit Rev Oncol Hematol. 83(2): 235–241.

Bishoff JT, Freedland SJ, Gerber L, Tennstedt P, Reid J, Welbourn W,
Graefen M, Sangale Z, Tikishvili E, Park J, Younus A, Gutin A,
Lanchbury JS, Sauter G, Brawer M, Stone S, Schlomm T (2014) Prognostic
utility of the CCP score generated from biopsy in men treated with
prostatectomy. J Urol 6(14): 00248–1.

Bjurlin MA, Taneja SS (2014) Standards for prostate biopsy. Curr Opin Urol
24(2): 155–161.

Boorjian SA, Karnes RJ, Crispen PL, Rangel LJ, Bergstralh EJ, Sebo TJ,
Blute ML (2009) The impact of discordance between biopsy and
pathological Gleason scores on survival after radical prostatectomy.
J Urol 181(1): 95–104.

Boyd LK, Mao X, Lu YJ (2012) The complexity of prostate cancer: genomic
alterations and heterogeneity. Nat Rev Urol 9(11): 652–664.

Brimo F, Montironi R, Egevad L, Erbersdobler A, Lin DW, Nelson JB, Rubin MA,
van der Kwast T, Amin M, Epstein JI (2013) Contemporary grading for
prostate cancer: implications for patient care. Eur Urol 63(5): 892–901.

Canton DA, Scott JD (2013) Anchoring proteins encounter mitotic kinases.
Cell Cycle 12(6): 863–864.

Carter HB, Partin AW, Walsh PC, Trock BJ, Veltri RW, Nelson WG,
Coffey DS, Singer EA, Epstein JI (2012) Gleason score 6 adenocarcinoma:
should it be labeled as cancer? J Clin Oncol 30(35): 4294–4296.

Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A,
Castillo-Martin M, Nowak DG, Naguib A, Grace DM, Murn J, Navin N,
Atwal GS, Sander C, Gerald WL, Cordon-Cardo C, Newton AC,
Carver BS, Trotman LC (2011) Identification of PHLPP1 as a tumor

BRITISH JOURNAL OF CANCER Prostate cancer biomarkers robust to sampling error

1210 www.bjcancer.com | DOI:10.1038/bjc.2014.396

http://www.bjcancer.com


suppressor reveals the role of feedback activation in PTEN-mutant
prostate cancer progression. Cancer Cell 20(2): 173–186.

Cheville JC, Karnes RJ, Therneau TM, Kosari F, Munz JM, Tillmans L,
Basal E, Rangel LJ, Bergstralh E, Kovtun IV, Savci-Heijink CD, Klee EW,
Vasmatzis G (2008) Gene panel model predictive of outcome in men at
high-risk of systemic progression and death from prostate cancer after
radical retropubic prostatectomy. J Clin Oncol 26(24): 3930–3936.

Cima I, Schiess R, Wild P, Kaelin M, Schuffler P, Lange V, Picotti P, Ossola R,
Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J,
Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R,
Krek W (2011) Cancer genetics-guided discovery of serum biomarker
signatures for diagnosis and prognosis of prostate cancer. Proc Natl Acad
Sci USA 108(8): 3342–3347.

Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local
variation in primary treatment of localized prostate cancer. J Clin Oncol
28(7): 1117–1123.

Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Du Chane J,
Carroll PR (2005) The University of California, San Francisco Cancer of
the Prostate Risk Assessment score: a straightforward and reliable
preoperative predictor of disease recurrence after radical prostatectomy.
J Urol 173(6): 1938–1942.

Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S,
Gutin A, Lanchbury JS, Swanson GP, Stone S, Carroll PR (2013)
Validation of a cell-cycle progression gene panel to improve risk
stratification in a contemporary prostatectomy cohort. J Clin Oncol 31(11):
1428–1434.

Corcoran NM, Hovens CM, Hong MK, Pedersen J, Casey RG, Connolly S,
Peters J, Harewood L, Gleave ME, Goldenberg SL, Costello AJ (2012)
Underestimation of Gleason score at prostate biopsy reflects sampling
error in lower volume tumours. BJU Int 109(5): 660–664.

Cuzick J, Berney DM, Fisher G, Mesher D, Moller H, Reid JE, Perry M, Park J,
Younus A, Gutin A, Foster CS, Scardino P, Lanchbury JS, Stone S.
Transatlantic Prostate Group (2012) Prognostic value of a cell cycle
progression signature for prostate cancer death in a conservatively
managed needle biopsy cohort. Br J Cancer 106(6): 1095–1099.

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE,
Mesher D, Speights VO, Stankiewicz E, Foster CS, Moller H, Scardino P,
Warren JD, Park J, Younus A, Flake 2nd DD, Wagner S, Gutin A,
Lanchbury JS, Stone S. Transatlantic Prostate Group (2011) Prognostic
value of an RNA expression signature derived from cell cycle proliferation
genes in patients with prostate cancer: a retrospective study. Lancet Oncol
12(3): 245–255.

D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K,
Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A
(1998) Biochemical outcome after radical prostatectomy, external beam
radiation therapy, or interstitial radiation therapy for clinically localized
prostate cancer. JAMA 280(11): 969–974.

Davies JD, Aghazadeh MA, Phillips S, Salem S, Chang SS, Clark PE,
Cookson MS, Davis R, Herrell SD, Penson DF, Smith Jr. JA, Barocas DA
(2011) Prostate size as a predictor of Gleason score upgrading in patients
with low risk prostate cancer. J Urol 186(6): 2221–2227.

Delongchamps NB, de la Roza G, Jones R, Jumbelic M, Haas GP (2009)
Saturation biopsies on autopsied prostates for detecting and characterizing
prostate cancer. BJU Int 103(1): 49–54.

Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X,
Lis R, Hoshida Y, Hiller D, Hu B, Jiang S, Zheng H, Stegh AH, Scott KL,
Signoretti S, Bardeesy N, Wang YA, Hill DE, Golub TR, Stampfer MJ,
Wong WH, Loda M, Mucci L, Chin L, DePinho RA (2011) SMAD4-
dependent barrier constrains prostate cancer growth and metastatic
progression. Nature 470(7333): 269–273.

Ding Z, Wu CJ, Jaskelioff M, Ivanova E, Kost-Alimova M, Protopopov A,
Chu GC, Wang G, Lu X, Labrot ES, Hu J, Wang W, Xiao Y, Zhang H,
Zhang J, Gan B, Perry SR, Jiang S, Li L, Horner JW, Wang YA, Chin L,
DePinho RA (2012) Telomerase reactivation following telomere
dysfunction yields murine prostate tumors with bone metastases. Cell
148(5): 896–907.

Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J (2006)
Diagnostic value of systematic biopsy methods in the investigation of
prostate cancer: a systematic review. J Urol 175(5): 1605–1612.

Epstein JI, Allsbrook Jr. WC, Amin MB, Egevad LL (2005) The 2005
International Society of Urological Pathology (ISUP) Consensus
Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol
29(9): 1228–1242.

Epstein JI, Feng Z, Trock BJ, Pierorazio PM (2012) Upgrading and
downgrading of prostate cancer from biopsy to radical prostatectomy:
incidence and predictive factors using the modified Gleason grading
system and factoring in tertiary grades. Eur Urol 61(5): 1019–1024.

Flachbartova Z, Kovacech B (2013) Mortalin - a multipotent chaperone
regulating cellular processes ranging from viral infection to
neurodegeneration. Acta Virol 57(1): 3–15.

Goodman M, Ward KC, Osunkoya AO, Datta MW, Luthringer D,
Young AN, Marks K, Cohen V, Kennedy JC, Haber MJ, Amin MB
(2012) Frequency and determinants of disagreement and error in gleason

scores: a population-based study of prostate cancer. Prostate 72(13):
1389–1398.

Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW,
Eastham JA, Scardino PT, Scher HI, Tickoo SK, Reuter VE, Gerald WL
(2009) TMPRSS2-ERG gene fusion is not associated with outcome in
patients treated by prostatectomy. Cancer Res 69(4): 1400–1406.

Gorlov IP, Sircar K, Zhao H, Maity SN, Navone NM, Gorlova OY, Troncoso
P, Pettaway CA, Byun JY, Logothetis CJ (2010) Prioritizing genes
associated with prostate cancer development. BMC Cancer 10: 599.

Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM,
Parsons SH, Brail LH, Colligan BM, Koop JW, Hurst BM, Deddens JA,
Neubauer BL, Stancato LF, Carter HW, Douglass LE, Carter JH (2009)
eIF4E activation is commonly elevated in advanced human prostate
cancers and significantly related to reduced patient survival. Cancer Res
69(9): 3866–3873.

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T,
Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N (2014) EAU
guidelines on prostate cancer. part 1: screening, diagnosis, and local
treatment with curative intent-update 2013. Eur Urol 65(1): 124–137.

Hu G, Wei Y, Kang Y (2009) The multifaceted role of MTDH/AEG-1 in
cancer progression. Clin Cancer Res 15(18): 5615–5620.

Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S,
Le Magnen C, Guarnieri P, Sumazin P, Benson MC, Shen MM,
Califano A, Abate-Shen C (2013) A molecular signature predictive of
indolent prostate cancer. Sci Transl Med 5(202): 3006408.

Kristiansen G (2012) Diagnostic and prognostic molecular biomarkers for
prostate cancer. Histopathology 60(1): 125–141.

Kvale R, Moller B, Wahlqvist R, Fossa SD, Berner A, Busch C, Kyrdalen AE,
Svindland A, Viset T, Halvorsen OJ (2009) Concordance between Gleason
scores of needle biopsies and radical prostatectomy specimens: a
population-based study. BJU Int 103(12): 1647–1654.

Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, Ferrari M,
Hernandez-Boussard T, Brooks JD, Pollack JR (2007) Genomic profiling
reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res
67(18): 8504–8510.

Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K,
Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM,
Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR (2004) Gene
expression profiling identifies clinically relevant subtypes of prostate
cancer. Proc Natl Acad Sci USA 101(3): 811–816.

Lindsey JK, Jones B (1998) Choosing among generalized linear models applied
to medical data. Stat Med 17(1): 59–68.

Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, Carter HB,
Carroll P, Etzioni R (2014) Overdiagnosis and overtreatment of prostate
cancer. Eur Urol 65(6): 1046–1055.

Makarov DV, Loeb S, Getzenberg RH, Partin AW (2009) Biomarkers for
prostate cancer. Annu Rev Med 60: 139–151.

Markert EK, Mizuno H, Vazquez A, Levine AJ (2011) Molecular classification
of prostate cancer using curated expression signatures. Proc Natl Acad Sci
USA 108(52): 21276–21281.

McKenney JK, Simko J, Bonham M, True LD, Troyer D, Hawley S,
Newcomb LF, Fazli L, Kunju LP, Nicolas MM, Vakar-Lopez F, Zhang X,
Carroll PR, Brooks JD. Canary/Early Detection Research Network Prostate
Active Surveillance Study I (2011) The potential impact of reproducibility
of Gleason grading in men with early stage prostate cancer managed by
active surveillance: a multi-institutional study. J Urol 186(2): 465–469.

Mills IG (2014) HOXB13, RFX6 and prostate cancer risk. Nat Genet 46(2):
94–95.

Mohler JL, Armstrong AJ, Bahnson RR, Boston B, Busby JE, D’Amico AV,
Eastham JA, Enke CA, Farrington T, Higano CS, Horwitz EM, Kantoff PW,
Kawachi MH, Kuettel M, Lee RJ, MacVicar GR, Malcolm AW,
Miller D, Plimack ER, Pow-Sang JM, Roach 3rd M, Rohren E, Rosenfeld S,
Srinivas S, Strope SA, Tward J, Twardowski P, Walsh PC, Ho M,

Prostate cancer biomarkers robust to sampling error BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2014.396 1211

http://www.bjcancer.com


Shead DA (2012) Prostate cancer, Version 3.2012: featured updates to the
NCCN guidelines. J Natl Compr Cancer Netw 10(9): 1081–1087.

Moyer and U.S. Preventative Services Task Force (2012) Screening for prostate
cancer: U.S. Preventive Services Task Force recommendation statement.
Ann Intern Med 157(2): 120–134.

Nakagawa T, Kollmeyer TM, Morlan BW, Anderson SK, Bergstralh EJ,
Davis BJ, Asmann YW, Klee GG, Ballman KV, Jenkins RB (2008)
A tissue biomarker panel predicting systemic progression after PSA
recurrence post-definitive prostate cancer therapy. PloS One 3(5): e2318.

NCCN (2012a) NCCN Clinical Practice Guidelines in Oncology: Prostate
Cancer, version 3.2012; available at: https://www.nccn.org/store/login/
login.aspx?ReturnURL=http://www.nccn.org/professionals/physician_gls/
pdf/prostate.pdf. (accessed 14 February 2014).

NCCN (2012b) Prostate cancer early detection, version 2.2012, available at
www.NCCN.org. (accessed 14 February 2014).

Porten SP, Whitson JM, Cowan JE, Cooperberg MR, Shinohara K, Perez N,
Greene KL, Meng MV, Carroll PR (2011) Changes in prostate cancer
grade on serial biopsy in men undergoing active surveillance. J Clin Oncol
29(20): 2795–2800.

Pressinotti NC, Klocker H, Schafer G, Luu VD, Ruschhaupt M, Kuner R,
Steiner E, Poustka A, Bartsch G, Sultmann H (2009) Differential
expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between
low- and high-risk prostate cancer. Mol Cancer 8: 130.

Reese AC, Cowan JE, Brajtbord JS, Harris CR, Carroll PR, Cooperberg MR
(2012) The quantitative Gleason score improves prostate cancer risk
assessment. Cancer 118(24): 6046–6054.

Robertson NL, Emberton M, Moore CM (2013) MRI-targeted prostate biopsy:
a review of technique and results. Nat Rev Urol 10(10): 589–597.

Ross AE, Marchionni L, Vuica-Ross M, Cheadle C, Fan J, Berman DM,
Schaeffer EM (2011) Gene expression pathways of high grade localized
prostate cancer. Prostate 71: 1568–1578.

Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI (2012) Do
adenocarcinomas of the prostate with Gleason score (GS) o/¼ 6 have the
potential to metastasize to lymph nodes? Am J Surg Pathol 36(9): 1346–1352.

Sandhu GS, Andriole GL (2012) Overdiagnosis of prostate cancer. J Natl
Cancer Inst Monogr 2012(45): 146–151.

Sattler M, Pisick E, Morrison PT, Salgia R (2000) Role of the cytoskeletal
protein paxillin in oncogenesis. Crit Rev Oncog 11(1): 63–76.

Scher HI, Morris MJ, Larson S, Heller G (2013) Validation and clinical utility
of prostate cancer biomarkers. Nat Rev Clin Oncol 10(4): 225–234.

Shikanov S, Eggener SE (2012) Hazard of prostate cancer specific mortality
after radical prostatectomy. J Urol 187(1): 124–127.

Shipitsin M, Small C, Giladi E, Siddiqui S, Choudhury S, Hussain S,
Huang YE, Chang H, Rimm DL, Berman D, Nifong TP, Blume-Jensen P
(2014) Automated quantitative multiplex immunofluorescence in situ
imaging identifies phospho-S6 and phospho-PRAS40 as predictive protein
biomarkers for prostate cancer lethality. Proteome Science (in press).

Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin
64(1): 9–29.

Sowalsky AG, Ye H, Bubley GJ, Balk SP (2013) Clonal progression of
prostate cancers from Gleason grade 3 to grade 4. Cancer Res 73(3):
1050–1055.

Steyerberg EW, Roobol MJ, Kattan MW, van der Kwast TH, de Koning HJ,
Schroder FH (2007) Prediction of indolent prostate cancer: validation and
updating of a prognostic nomogram. J Urol 177(1): 107–112.

Swanson GP, Quinn D (2011) Using molecular markers to help predict
who will fail after radical prostatectomy. Prostate Cancer 2011:
290160.

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS,
Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N,
Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A,
Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL,
Gerald WL (2010) Integrative genomic profiling of human prostate cancer.
Cancer Cell 18(1): 11–22.

Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM,
Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, Shah RB,
Chinnaiyan AM (2007) Integrative molecular concept modeling of
prostate cancer progression. Nat Genet 39(1): 41–51.

True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM,
Gelmann E, Datta M, Mostaghel E, Knudsen B, Lange P, Vessella R, Lin D,
Hood L, Nelson PS (2006) A molecular correlate to the Gleason grading
system for prostate adenocarcinoma. Proc Natl Acad Sci USA 103(29):
10991–10996.

Vellekoop A, Loeb S, Folkvaljon Y, Stattin P (2014) Population-based study of
predictors of adverse pathology among candidates for active surveillance
with Gleason 6 prostate cancer. J Urol 191(2): 350–357.

Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL (2008)
Systematic review: comparative effectiveness and harms of treatments
for clinically localized prostate cancer. Ann Intern Med 148(6):
435–448.

Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor
coactivator family. Mol Endocrinol 17(9): 1681–1692.

Yan P, Seelentag W, Bachmann A, Bosman FT (2007) An agarose matrix
facilitates sectioning of tissue microarray blocks. J Histochem Cytochem
55(1): 21–24.

Yang YA, Yu J (2013) EZH2, an epigenetic driver of prostate cancer. Protein
Cell 4(5): 331–341.

This work is licensed under the Creative Commons
Attribution-NonCommercial-Share Alike 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)

BRITISH JOURNAL OF CANCER Prostate cancer biomarkers robust to sampling error

1212 www.bjcancer.com | DOI:10.1038/bjc.2014.396

https://www.nccn.org/store/login/login.aspx?ReturnURL=http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://www.nccn.org/store/login/login.aspx?ReturnURL=http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://www.nccn.org/store/login/login.aspx?ReturnURL=http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
www.NCCN.org
http://www.nature.com/bjc
http://www.bjcancer.com

	title_link
	MATERIALS AND METHODS
	Reagents and antibodies
	Slide processing and staining protocol
	Acquisition, processing, quality control, and annotation of FFPE prostate cancer tissue blocks
	Generation of TMA blocks
	Biomarker selection
	Image acquisition
	Definiens automated image analysis
	Data stratification and end points in the analysis
	Cohort composition
	Univariate analysis of aggressiveness and lethality

	Figure™1Creation of biopsy simulation tissue microarrays (TMAs).A tissue block from a prostatectomy sample was annotated with all visible Gleason patterns (top). The example shown is from a patient with an overall Gleason score (GS) of 4+3=7. As shown in 
	Figure™2Biomarker selection strategy.Three types of criteria were used to select 12 final biomarkers. (DAB: Ab specificity assessed based on chromogenic tissue staining with diamino benzidine (DAB); IF: Ab specificity and performance based on immunofluore
	Biomarker ranking for aggressiveness via exhaustive &!QJ;search of multimarker models
	Biomarker ranking for lethality via exhaustive search of multimarker models

	RESULTS
	Biopsy simulation

	Table 1b 
	Table 1a 
	Effect of sampling error on known biomarker model performance
	Biomarker identification
	Univariate analysis

	Table 2 
	Multivariate analysis: biomarker combinations predicting tumour aggressiveness

	Figure™3Univariate performance of 39 biomarkers measured in both low- (L TMA; black bars) and high-(H TMA; brown bars) Gleason areas for disease aggressiveness and disease-specific mortality.(A) The odds ratio (OR) for predicting severe disease pathology 
	Multivariate analysis: biomarkers predicting lethal outcome
	Final biomarker set predictive of prostate cancer aggressiveness and lethality

	Figure™4Performance-based biomarker selection process for disease aggressiveness.(A) The bioinformatics workflow selected the most frequently utilised biomarkers from all combinations of up to five markers from a set of 31. (B) Example of performance of t
	Figure™5Final biomarker set and selection criteria.(A) Twelve biomarkers were selected based on univariate performance for aggressiveness (shown as OR on left) and lethality as well as frequency of appearance in multivariate models for disease aggressiven
	DISCUSSION
	Biomarkers predictive of prostate cancer aggressiveness and lethality
	Biomarkers robust to sampling error
	Genetic and proteomic approaches
	Limitations to the study

	CONCLUSION
	A5
	ACKNOWLEDGEMENTS
	A6
	A7




