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Abstract
Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies 
focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat 
model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumeta-
nide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that 
the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings 
increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted 
neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic 
stage of ischemia.
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Introduction
The subventricular and subgranular zones of the hippocam-
pal dentate gyrus are brain regions where neurogenesis con-
tinues throughout adulthood. They can continue to produce 
new neurons, and form synaptic contacts with the existing 
neural circuitry (Danzer, 2008; Eisch et al., 2008). Robust 
neurogenesis alters noticeably after brain injury (Zhang et 
al., 2008; Zhao et al., 2008). The nervous system shows great  
plasticity after cerebral ischemia (Walther et al., 2009), in-
creasing nerve regeneration, but the long-term viability of 
newborn neurons is relatively limited (Thored et al., 2006). 
These results indicate that the local microenvironment is not 
conducive to self repair after a stroke. It is of important clin-
ical significance to explore new drugs with neuroprotective 
action against the effects of cerebral ischemia. 

The Slc12a2 gene, which encodes the Na+-K+-2Cl– cotrans-
porter 1 (NKCC1), is extensively expressed in different an-
imals and tissues, including the cell membrane of cortical 
neurons of the central nervous system (Lee et al., 2010). Bu-
metanide is a specific antagonist of NKCC1 that can reduce 
the influx of chloride ions into cells of the central nervous 
system (Kahle and Staley, 2008). Bumetanide reduced cere-
bral edema and the infarct area by suppressing NKCC1 in 
the acute stage of cerebral ischemia (O’Donnell et al., 2004; 
Lu et al., 2007; Wang et al., 2014). Shulga et al. (2012) con-
firmed that bumetanide reduced the damage to nerve cells 
in rats. The above results verified that bumetanide exerted a 
certain neuroprotective effect in the brain. Nevertheless, the 
effects of bumetanide on neurogenesis and behavioral recov-
ery in the chronic stage of cerebral ischemia in rats remain 
poorly understood. Therefore, we investigated the effects of 
bumetanide on neurogenesis and the recovery of learning 
and memory functions in rats with focal cerebral ischemia. 

Materials and Methods 
Ethics statement 
All experimental protocols were approved by the Animal 
Ethics Committee of Medical University of China. The ani-
mal studies were performed in accordance with the National 
Institutes of Health Guide for the Care and Use of Laborato-
ry Animals, USA. Precautions were taken to minimize suffer-
ing and the number of animals used in each experiment. 

Animals 
Adult male Wistar rats weighing 200–250 g were provided 
by the Liaoning Changsheng Biotechnology Co., Ltd., Benxi, 
Liaoning Province, China (animal license No. SCXK (Liao) 
2010-0001). The rats were housed at 18–23°C and 30–45% 
humidity and allowed free access to food and water in a pe-
riodically ventilated room with natural light. 

Establishment of a rat model of focal cerebral ischemia by 
intracranial injection of endothelin 1 (ET-1) 
Twenty-two rats were intraperitoneally injected with 10% 
chloral hydrate 350 mg/kg. On a stereotaxic apparatus, after 
shaving and sterilizing the skin, a median incision was made 
and subcutaneous tissue was removed to expose the skull. 

The skull and dura were drilled with a 2-mm-diameter elec-
tric drill. ET-1 (Sigma-Aldrich, St. Louis, MO, USA; purity 
≥ 97%, specification 0.1 mg, solid powder) was diluted with 
sterile saline, 0.5 μg/μL. In accordance with anatomical atlas 
of the rat brain (Paxinos and Watson, 2005), ET-1 was in-
jected at 0.5 μL/min with a microinjector into the following 
three points (Soleman et al., 2010): taking anterior fonta-
nelle as a center, (1) anteroposterior = +0.7 mm, mediolater-
al = +2.2 mm, dorsoventral = −2.0 mm; (2) anteroposterior 
= +2.3 mm, mediolateral = +2.5 mm, dorsoventral = −2.3 
mm; (3) anteroposterior = +0.7 mm, mediolateral = +3.8 
mm, dorsoventral = −5.8 mm (Figure 1). Points (1) and (2) 
were in the left cortical motor region; point (3) was in the 
left corpus striatum. At each point, 2 μL of drug was injected, 
totalling 6 μL. There was a 1-minute rest between each 1-μL 
injection. The needle was maintained in place for 3 minutes. 
After injection, the hole was covered with sterile gelfoam, 
and the incision was sutured. At 3 hours after injection (when 
the rats regained consciousness), the rats presenting the fol-
lowing manifestations were considered successful ischemic 
models: right upper limb flexion to the chest when the tail 
was lifted, or tilting to the right when walking, or circling to 
the right, for 24 consecutive hours. Physiological saline (2 
μL) was injected into the same region of 18 sham-operated 
rats. Of the 22 rats injected with ET-1, 4 rats were excluded, 
because 2 rats died and 2 rats did not suffer from cerebral 
ischemia. The successful ischemic models were equally and 
randomly divided into ischemia group (ISC group) and 
ischemia + bumetanide group (ISC + BUM group) (n = 9). 
18 sham-operated rats were equally and randomly divided 
into sham operation group (SHAM group) and sham opera-
tion + bumetanide group (SHAM + BUM group). 

Intracranial sustained administration of bumetanide with 
a mini-osmotic pump 
Seven days after injury, NKCC1 antagonist bumetanide 
was injected in rats of the ISC + BUM and SHAM + BUM 
groups with the mini-osmotic pump (Model 2004; Alzet, 
Palo Alto, CA, USA). The mini-osmotic pump was immersed 
in 37°C sterile water overnight before implantation. Bumeta-
nide (25 μg/μL), diluted by sterile water, was injected into 
the pump, which was connected to a 8-cm catheter. After 
anesthesia with 10% chloral hydrate, a rat was fixed in the 
stereotaxic apparatus (RWD Life Science, Shenzhen, China). 
After shaving, a 2.5-cm-long longitudinal incision was made 
behind the eye to expose the skull. The periosteum on the 
skull was exposed by bluntly shaving with tweezers before a 
hole was made on the lateral ventricle (anteroposterior −0.9, 
mediolateral +1.5) with a 1.2-mm cranial drill. A channel 
between the incision on the head and scapula on the back 
was bluntly opened with a hemostat for pump implantation. 
The catheter, connected to the pump, was inserted into the 
hole in the lateral ventricle. Dental cement was used to cover 
the connecting zone of the catheter base and the skull. Four 
minutes later, the scalp was sutured after the cement was dry. 
On average, 50 μg of bumetanide was pumped every day, for 
21 consecutive days (Figure 2). 
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Morris water maze test 
Nine rats from each group were given a Morris water maze 
test 28 days after injury. The changes in spatial learning and 
memory were detected with the water maze image analysis 
system (Beijing Shuolinyuan Technology Co., Ltd., Beijing, 
China). The escape latencies within 120 seconds were re-
corded for 3 consecutive days. The platform was removed 
from the pool on the last day, and the spatial probe test was 
conducted. The number of platform crossings within 60 sec-
onds was recorded (Furuta et al., 1997). 

Preparation of frozen sections 
Thirty-one days after ischemia, rats were intraperitoneally 
anesthetized with 10% chloral hydrate 350 mg/kg, fixed with 
150–200 mL of 4% paraformaldehyde through the heart, 
and then decapitated. After the skull was opened, brain tis-
sue was fixed in 4% paraformaldehyde at 4°C overnight and 
stored in 30% sucrose solution (0.1 M PBS, pH 7.2–7.4) at 
4°C. The fixed tisssue was embedded with an optimal cutting 
temperature compound, and serially sliced into 40-μm-thick 
coronal frozen sections with a cryostat (Model CM1900; Lei-
ca, Munich, Germany). The above sections were stored in an 
anti-freezing medium at −20°C for further use. 

Measurement of infarct volume 
The infarct volume was measured after Nissl’s staining in the 
ISC and ISC + BUM groups (n = 6). Serial coronal sections 
(40 μm thick) were collected at 1-mm intervals from +4.5 
mm anterior to anterior fontanelle and −7.5 mm posterior 
to anterior fontanelle. The sections were soaked in distilled 
water, stained with aqueous solutions of cresyl violet for 10 
minutes, washed with distilled water until colorless. They 
were differentiated with 95% alcohol for 30 seconds, rapidly 
dehydrated with absolute alcohol, permeabilized with xylene 
for 2 minutes, and mounted with neutral resin. Sections on 
ipsilateral and contralateral hemispheres were measured 
with ImageJ (NIH, Bethesda, MD, USA). The total infarct 
volume was calculated by the whole hemisphere area − in-
farct hemisphere area × the interval. 

Immunofluorescence staining 
Six rats were measured in each group. Using the free-float-
ing method (Wang et al., 2015), brain sections were washed 
three times with 0.01 M PBS for 10 minutes each, blocked 
with 5% goat serum (Bioss Biotechnology, Beijing, China) 
for 90 minutes, incubated with Guinea pig anti-DCX poly-
clonal antibody (1:800; Millipore, Billerica, MA, USA) at 
4°C overnight, and then washed three times with 0.01 M 
PBS for 10 minutes each. All samples were incubated with 
Alexa Fluor 488 goat anti-guinea pig IgG (1:800; Invitro-
gen, Carlsbad, CA, USA) at room temperature for 2 hours 
in the dark, and washed three times with 0.01 M PBS for 10 
minutes each. Afterwards, all sections were mounted with 
anti-fluorescence quenching mounting medium. Five sec-
tions through the dentate gyrus of each rat were quantified 
with NIH ImageJ software (Kralic et al., 2005). The den-
dritic development of doublecortin (DCX)-positive cells in 

the hippocampal dentate gyrus was observed with a laser 
scanning confocal microscope (FV1000; Olympus, Tokyo, 
Japan). The three-dimensional structure of dendrites was 
reconstructed after a series of layers of DCX-positive cells 
in the Z-axis direction were magnified 200-fold under the 
confocal microscope. Dendrites and their branches were 
measured and described with NIH ImageJ software (Stumm 
and Höllt, 2007). 

Statistical analysis 
Data were expressed as the mean ± SD and analyzed with 
SPSS 17.0 for windows (SPSS, Chicago, IL, USA). One-way 
analysis of variance or repeated measures one-way analysis 
of variance was used to judge the statistical significance of 
the difference. A value of P < 0.05 was considered statistical-
ly significant. 

Results
Bumetanide could not reduce the infarct size in rats with 
focal cerebral ischemia 
ET-1 injection could evidently induce infarction. The infarct 
volume was similar between the ISC and BUM + ISC groups 
(125.8 ± 8.2 mm3 vs. 129.8 ± 15.2 mm3; P > 0.05; Figure 3).

Bumetanide promoted neural precursor cell proliferation 
and dendritic development in the hippocampal dentate 
gyrus of rats after focal cerebral ischemia
DCX is a marker for neural precursor cells (Zhao et al., 2013). 
The number of DCX-positive cells and their dendritic mor-
phology could be used to observe neural stem cell prolifera-
tion and dendritic development. Compared with the SHAM 
group, the number of DCX-positive cells and the total length 
of dendrites were significantly higher in the hippocampal 
dentate gyrus in the ISC group (P < 0.01). Compared with 
the ISC group, the number of DCX-positive cells and the 
total length of dendrites were significantly greater in the ISC 
+ BUM group (P < 0.01). No significant difference in the 
number of DCX-positive cells and the total length of den-
drites was detected between the SHAM and SHAM + BUM 
groups (P > 0.05; Figure 4). 

Bumetanide improved learning and memory functions in 
rats after focal cerebral ischemia 
Compared with the SHAM and SHAM + BUM groups, 
escape latency was longer and the number of platform 
crossings was significantly less in the ISC group (P < 0.05). 
The escape latency was shorter and the number of platform 
crossings was significantly more in the ISC + BUM group 
than in the ISC group (P < 0.05; Figure 5). 

Discussion
Cerebral ischemia has been shown to promote nerve regen-
eration in the hippocampal dentate gyrus (Jin et al., 2001; 
Takasawa et al., 2002; Türeyen et al., 2004; Wang et al., 2011). 
Wurm et al. (2007) considered that cerebral ischemia con-
tributed to the dendritic development and altered dendritic 
morphology in newborn nerve cells of the hippocampal 
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Figure 5 Bumetanide effects on learning and memory functions in rats with cerebral ischemia. 
(A) The curves in swimming track in the spatial probe test; (B) escape latency in the place navigation test. Repeated measures one-way analysis of 
variance was used to compare the difference of intergroup data. (C) The number of platform crossings in the spatial probe test. One-way analysis 
of variance was used to compare the difference of intergroup data. Data in B and C are expressed as the mean ± SD, with nine rats in each group. 
*P < 0.05, vs. sham operation (SHAM) group; #P < 0.05, vs. ISC group. BUM: Bumetanide; ISC: ischemia. 
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Figure 1 Rat model of cerebral ischemia by intracranial injection with ET-1. 
(A) Intracranial injection with ET-1 by using a stereotactic method; (B, C) injection position (arrows). ① , ② and ③ are the points of injection. 
Taking the anterior fontanelle as a center, ① : anteroposterior = +0.7 mm, mediolateral = +2.2 mm, dorsoventral = −2.0 mm; ② anteroposterior 
= +2.3 mm, mediolateral = +2.5 mm, dorsoventral = −2.3 mm; ③ anteroposterior = +0.7 mm, mediolateral = +3.8 mm, dorsoventral = −5.8 mm. 
ET-1: Endothelin 1.

Figure 2 Time chart of the whole study. 

Figure 3 Effects of bumetanide on infarct volume in rats with focal 
cerebral ischemia (Nissl staining). 
The infarct volume was similar between the ISC group (A) and BUM 
+ ISC group (B). White: Infarction; BUM: bumetanide; ISC: ischemia. 
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Figure 4 Bumetanide effects on neural precursor cell proliferation and dendritic development in the hippocampal dentate gyrus of rats with 
cerebral ischemia. 
(A) DCX-positive cells in the hippocampal dentate gyrus (immunofluorescence staining). Arrows point to DCX-positive cells. Scale bar: 200 μm. (B) 
Number of DCX-positive cells in the hippocampal dentate gyrus. (C) Dendritic morphology of DCX-positive cells in the hippocampal dentate gy-
rus (immunofluorescence staining). Arrows point to DCX-positive cells. Scale bar: 50 μm. (D) Dendritic morphology of DCX-positive cells in the 
hippocampal dentate gyrus (simulation with NIH ImageJ software). Scale bar: 50 μm. (E) Total dendrite length of a single DCX-positive cell. Data 
are expressed as the mean ± SD, with six rats in each group. **P < 0.01, vs. sham operation (SHAM) and SHAM + BUM groups; #P < 0.05, ##P < 0.01, 
vs. ISC group. BUM: Bumetanide; ISC: ischemia; DCX: doublecortin. 

dentate gyrus. We also confirmed that nerve regeneration 
and dendritic development appeared in the hippocampal 
dentate gyrus after focal cerebral ischemia. The application 
of bumetanide could further promote the above changes, 
but bumetanide did not exert its effect in sham operation, 
which suggested that bumetanide does not promote nerve 
regeneration under normal conditions. These results indi-
cate that after cerebral ischemia, the application of bumeta-
nide produced a microenvironment, which was beneficial to 
the regeneration and survival of nerve cells, exerting a neu-
roprotective effect. 

We explored the underlying mechanism, that is to say, the 

presence of NKCC1 that mediates Cl− influx and KCC2 that 
mediates Cl− efflux on the cell membrane of the central ner-
vous system (Kahle and Staley, 2008). KCC2 is expressed in 
mature neurons, whereas NKCC1 is mainly expressed in im-
mature neurons (Vannucci and Perlman, 1997). GABA is an 
important neurotransmitter in the central nervous system, 
and plays a biological role by binding to a GABAA receptor. 
The ionotropic receptor GABAA is in a class of ligand-gated 
ion channels, and expressed on cell membranes. Because 
KCC2 is mainly expressed in normal mature neurons, after 
GABAA receptor is activated, extracellular Cl− concentration 
increases and membrane hyperpolarization occurs, playing 
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the role of an inhibitory synapse (Ge et al., 2007). 
Jaenisch et al. (2010) confirmed that NKCC1 expression 

increased, but KCC2 expression reduced after focal cerebral 
ischemia. After the GABAA receptor was activated, the Cl− 
channel on the cell membrane was opened, allowing a large 
influx of Cl− from the high extracellular concentration to 
low intracellular concentration and caused membrane depo-
larization; here GABA plays the role of an excitatory synapse 
(Nabekura et al., 2002; Blaesse et al., 2009). 

A large number of neural precursor cells proliferate after 
cerebral ischemia, but only a few neural precursor cells dif-
ferentiate further and survive for a long period (Arvidsson 
et al., 2002; Ohab et al., 2006; Thored et al., 2006). The ex-
pression of NKCC1 was found mainly in cell membranes of 
immature neurons (Jaenisch et al., 2010). Bumetanide, an 
antagonist of NKCC1, blocks NKCC1 on the cell membrane 
in the central nervous system, and reduces the influx of Cl− 
(Blaesse et al., 2009). Therefore, bumetanide has greater 
effects on regenerating neural precursor cells. NKCC1 ac-
tivation-induced intracellular Cl− concentration increase is 
the main reason for GABA-mediated immature neuronal 
excitability. Depolarization of GABAA-mediated immature 
neurons may be the reason for the low survival rate of regen-
erated nerve cells after cerebral infarction. 

GABA-mediated depolarization can cause nerve cell 
regeneration and migration (Ben-Ari, 2002; Owens and 
Kriegstein, 2002). However, cell membrane depolarization 
can lead to Ca2+ influx (Nabekura et al., 2002; Toyoda et al., 
2003). This leads to a large amount of Ca2+ influx. Intracel-
lular calcium overload is detrimental to cell survival. Kris-
tián and Siesjö (1998) verified that after cerebral ischemia, 
increased Ca2+ could trigger the death of nerve cells. Nerve 
cells begin to regenerate after cerebral infarction, but the 
survival rate of nerve cells is low over a longer period, which 
is consistent with the above mechanism. Bumetanide pro-
duces factors that are not conducive to nerve regeneration 
and survival, possibly by inhibiting NKCC1 and blocking 
GABA depolarization, but the precise mechanism remains 
poorly understood. 

Our water maze test results demonstrated that bumeta-
nide contributed to the recovery of learning and memo-
ry functions of rats with cerebral ischemia. It is unclear 
whether the regeneration of hippocampal dentate gyrus 
neurons is associated with learning and memory functions. 
Previous studies have confirmed that neural stem cells in 
the subventricular zone and hippocampal dentate gyrus 
could proliferate, migrate and differentiate into neurons 
and glial cells to replace damaged neurons after cerebral 
ischemia (Zhang et al., 2008; Zhao et al., 2008). The hip-
pocampus is a part of the brain that is involved in learn-
ing and memory formation. The maintenance of normal 
hippocampus-dependent learning and memory function 
requires the involvement of new neurons, and nerve re-
generation in the hippocampus can enhance learning and 
memory functions (Gould et al., 1999). Nerve regenera-
tion probably promotes functional recovery, and plays an 
important role in the generation of spatial memory and 

object recognition memory (Broadbent et al., 2004). The 
above findings are consistent with our results. It remains 
controversial whether neurogenesis is directly associated 
with functional improvement (Ohab et al., 2006; Jaenisch 
et al., 2010; Minnerup et al., 2011). 

In conclusion, bumetanide promoted nerve cell regenera-
tion in the hippocampal dentate gyrus and dendritic devel-
opment of neural precursor cells. It also improved learning 
and memory functions in rats with cerebral ischemia. These 
findings provide a theoretical basis for the application of bu-
metanide in the treatment of cerebral ischemia. 
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