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The freshwater prawn Macrobrachium rosenbergii is one kind of important economic
aquaculture species and displays remarkable sexual dimorphism. The molecular
mechanism of sexual differentiation in M. rosenbergii has been primarily unraveled
through the research efforts of the androgenic gland and its related genes. However,
the understanding of conserved genes involved in the molecular mechanism underpinning
sex determination and sexual differentiation of M. rosenbergii is still fragmentary.
MroDmrt11E is a member of the doublesex and mab-3-related transcription factor
(Dmrt) gene family and is prominently expressed in the testis. In the present study, in
vivo knockdown ofMroDmrt11E at the postlarva stage in male prawn induced a complete
and functional sex reversal and achieved the production of an all-male monosex
population. Furthermore, a great deal of new information of upregulated and
downregulated transcriptions involved in sexual differentiation of MroDmrt11E
knockdown was enriched by comparative transcriptomic analysis. The effects of RNAi-
mediated gene knockdown ofMroDmrt11E on the differentially expressed and sex-related
candidate genes, such as transformer, fruitless, feminization, insulin-like androgenic gland
gene, Dmrt gene family, were primarily focused on, and their possible molecular regulatory
relationships in sexual differentiation were analyzed. Meanwhile, the response of primary
Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways was
investigated to expound the potential roles of MroDmrt11E in male sexual
differentiation, which provided a deeper understanding of the molecular regulatory
network underlying sexual differentiation of M. rosenbergii. The finding provided a novel
sexual manipulation technique through silencing of Dmrt gene family for achieving a
complete and functional sex reversal and offered a new insight regarding the mechanism
of the Dmrt gene family in the sexual differentiation of crustaceans.

Keywords: MroDmrt11E gene knockdown, Macrobrachium rosenbergii, sex reversal, sexual differentiation,
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HIGHLIGHTS

1. MroDmrt11E silencing induced a complete and functional
sex reversal in male juveniles and was applied in the
production of an all-male monosex population

2. The effect of RNAi-mediated gene knockdown of
MroDmrt11E on sex-related candidate genes and the
changes of primary KEGG biological pathways were
investigated by comparative transcriptomic analysis
INTRODUCTION

The freshwater prawn Macrobrachium rosenbergii is an
important economic aquaculture species that is widely
distributed in tropical and subtropical regions (1). It displays
remarkable sexual dimorphism, which means the male prawn
grow faster than females and show larger body sizes in adults (2).
Thus, to achieve monosex production of this species,
considerable research efforts have been devoted to unraveling
the molecular mechanism of sex determination and sexual
differentiation of M. rosenbergii (2–4).

In crustaceans, the androgenic gland (AG) provided much
more information in the history of sexual regulation research.
AG is known as a male-specific gland and primarily regulates
male sexual differentiation and maintains male characteristics in
crustaceans. Simultaneously, several insulin-like androgenic
gland peptides (IAGs) have been identified in decapods (3, 5–8).
Previous studies have reported that IAG from M. rosengergii (Mr-
IAG) is proven to participate in male differentiation (3, 9).Mr-IAG
silencing at postlarva (PL) induced a full and functional sex reversal
and achieved the production of an all-male monosex population in
M. rosenbergii (2, 4, 10). Moreover, long-term knockdown ofMr-IR,
the receptor for Mr-IAG, also induced sex reversal and yielded neo-
females in M. rosenbergii (11). For another instance, silencing Cq-
IAG in Cherax quadricarinatus feminized male-related phenotypes
(6). Until now, in crustaceans, the central role of IAG in
orchestrating male sexual differentiation has been well
characterized (10, 12), but the understanding of other conserved
genes involved in sex determination and sexual differentiation is still
fragmentary. On the other hand, identifying and studying the
regulation mechanism of sex-related genes and noncoding RNAs
also provide valuable sexual development information of decapods
(13). Thus, the first question is whether the crustacean develops a
novel sexual differentiation pathway, which connects the AG-
specific genes and other sex-related regulatory factors.

Dmrt is a kind of well-conserved protein and is characterized
by a DNA-binding region called the DM domain (14, 15). All of
the arthropod doublesex (dsx) (16–18), nematode mab-3 (19),
and vertebrate dmrt1 (20) are members of Dmrt gene family and
involved in sex determination and/or sexual differentiation in
bilaterian animals. In Drosophila, primary sex determination
occurs very early in embryonic development when zygotically
transcribed genes located on the X chromosome and the
autosomes and activate Sxl in females but fail to activate it in
males (21). Dsx is the connecting element and the central nexus
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of insect sex determination (18). Dmrt1 has appeared in the
common vertebrate ancestor and is a regulator of male
determination and testicular formation in gonadal cells (20). In
mammals, Dmrt1 activates the male sexual differentiation
signaling pathway and promotes testicular growth and
development (20). Accumulating evidence from these studies
suggested that the sexual differentiation functions of Dmrt gene
family were evolutionarily conserved (14, 15).

Recently, numbers of Dmrt gene family have been identified
from several crustaceans, such as the Chinesemitten crab Eriocheir
sinensis (22), the water flea Daphnia (17), the eastern rock lobster
Sagmariasus verreauxi (23), the Chinese shrimp Fenneropenaeus
chinensis (24), the oriental river prawnMacrobrachium nipponense
(25), and the giant freshwater prawn M. rosenbergii (26–28).
However, one of the limitations of these studies is that these
studies have not explained how the Dmrt participates in sex
determination and/or sexual differentiation pathway.

In M. rosenbergii, several Dmrt gene families have been
identified, including MroDmrt11E, MroDmrt99B, MroiDmrt1a,
MroiDmrt1b, MroiDmrt1c, MroiDmrt1d, MroDSX, and Mr-Dsx
(26–28). These Dmrts show various time-dependent expression
patterns and tissue-specific distributions, which suggested that
these Dmrts were possibly involved in both somitogenesis and
sexual differentiation. Among them, MroDmrt11E presents a
sexually dimorphic expression pattern, and the transcription is
prominent in the testis but lower in the ovary (26, 27). Significantly,
MroDmrt11E knockdown induced a significant decrease of theMr-
IAG transcript (26), suggesting thatMroDmrt11E possibly plays an
upstream role in the “IAG-switch” regulatory signaling and
participates in the sexual differentiation by directly or indirectly
influencing the expression ofMr-IAG (26). However, one question
that needs to be addressed is: What is the role of MroDmrt11E in
male sexual differentiation? There is no direct evidence of animal
experiments to explore MroDmrt11E’s involvement in sex
determination and/or sexual differentiation. InM. rosenbergii, the
position ofDmrt gene family in the sexual differentiation signaling
pathways remains largely elusive.

The present study was designed to explore the potential role
of MroDmrt11E in the male sexual differentiation pathway. In
this study, in vivo knockdown of MroDmrt11E in male PL by
RNA interference (RNAi) was implemented to evaluate whether
MroDmrt11E silencing would induce full functional sex reversal
in M. rosenbergii. Meanwhile, the response of various related
gene transcriptions to MroDmrt11E silencing and the effect of
RNAi-mediated gene knockdown ofMroDmrt11E on sex-related
gene expression were investigated. The main understanding of
this study would offer a novel insight regarding the biological
function and mechanism of Dmrt gene family in regulating
sexual differentiation of crustaceans.
2 MATERIALS AND METHODS

2.1 Animals
M. rosenbergii PL of the same brood was collected from
Yonggang commercial farm in Ningbo, Zhejiang, China, and
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acclimated in laboratory tanks 1 week before injection. The
prawn at the PL15–30 stage with 1.0–1.5-cm body length (BL)
were selected for the treatment. The BL of M. rosenbergii was
measured as a straight line from the base of the eyestalk to the
end of the telson. The injected shrimps were reared in separated
tanks (100 L) under a flow-through system. The temperature was
maintained at 27°C ± 2°C, and the photoperiod was 14:10 (light:
dark per day). Prawn were fed with artificial food twice daily.

2.2 In Vivo Knockdown of MroDmrt11E by
RNAi in Postlarvae
For RNAi experiments, the dsRNAs of MroDmrt11E and Green
fluorescent protein (GFP) were produced and purified as
described (26). Here, 5 mg dsRNA of MroDmrt11E in 0.9%
(w/v) physiological saline was injected into each shrimp (N =
200) through the arthrodial membrane at the base of the fifth
pereiopods using a microinjection needle. The control group
(N = 200) received an equal amount of GFP dsRNA injection.
The injection was performed monthly during the animal
experiment, and three injections for 90 days were performed
for each prawn.

To evaluate the RNAi efficiency, the male reproductive system
of the RNAi group (N = 5) was dissected at the end of the animal
experiment. The interference efficiency ofMroDmrt11E silencing
was detected by both real-time fluorescence quantitative PCR
(qPCR) and semiquantitative-PCR. On one hand, SYBR Green
RT PCR assay was carried out in a CFX384 quantitative PCR
Detection System (Bio-Rad, USA) for qPCR analysis. Here, 18S
(GenBank accession no. DQ642856.1) was used as an internal
reference to adjust the number of cDNA templates. Mro18S-qF
5′-GAGAAACGGCTACCACATCCAA-3′ and Mro18S-qR 5′-
GTGCTCATTCCAATTACGCAGACT-3′ were designed to
generate a 125-bp fragment of Mro18S. And MroDmrt11E-qF 5′-
CGCATCCCACCCTACTTGA-3′ and MroDmrt11E-qR 5′-
GGCTTCCCTCTGCATCATGA-3′ were designed to generate an
89-bp fragment of MroDmrt11E. A total volume of 20 µl mixture
[10 µl of 2× SYBR Master Mix (Applied Biosystems, USA), 1 µl of
cDNAmix, 0.5 µl of each primer (10 µM), and 8 µl of sterile distilled
H2O] was used for qPCR analysis. And the program of qPCR was
95°C for 1 min, followed by 40 cycles of 95°C for 15 s and 63°C for
25 s. Three replicates for each sample were performed. The relative
expression level was calculated using the 2-DDCt method. The data
obtained from qPCR analysis were analyzed for statistical
significance using GraphPad Instat (GraphPad Software Inc.).

On the other hand, one pair of 18S primers (Mro18S-F 5′-
GGTAGTGACGAAAAATAACAAT-3′ and Mro18S-R 5′-CCC
ACCCCAGTCCGGAACTGA-3′) and another pair of Mro
Dmrt11E primers, MroDmrt11E (MroDmrt11E-F 5′-CAC
TCCTCCAGTTGGTTGT-3′ and MroDmrt11E-R 5′-GCTGAT
GGGTGTCCTTGT-3′), were used for semiquantitative PCR
analysis. The PCR products were assessed by electrophoresis
on 1.2% agarose gel. Three replicates for each sample were also
performed. Relative abundances were expressed as the ratio of
MroDmrt11E transcript levels to those of 18S rRNA. The peak
value of the GFP group was set to 100, and the rest of the value
was normalized. The data obtained from PCR analysis were
Frontiers in Endocrinology | www.frontiersin.org 3
analyzed for statistical significance using GraphPad Instat
(GraphPad Software Inc.).
2.3 The Effects of MroDmrt11E Silencing
on the Induction of Sex Reversal
2.3.1 Identification of Sex Reversal by MroDmrt11E
Silencing
In the freshwater prawn M. rosenbergii, the manipulation of the
insulin-like androgenic gland hormone (Mr-IAG) silencing at
the PL period obtained a full and functional sex reversal, leading
to the production of an all-male monosex population (2). Thus,
similar gene silencing is attempted to expound whether
MroDmrt11E participates in male sexual differentiation in
M. rosenbergii.

In the knockdown ofMroDmrt11E, the male/female sex of the
silenced individual was inspected and identified by both external
appearance observation (1) and genetic molecular marker
methods (1, 29). Since gross external signs of first sexual
characteristic, such as genital pores and male appendages, are
not evident at the PL stage, the gene silencing experiment lasted 3
months until clear sexual differentiation with 4.0–5.0 cm BL of
the prawn (1). At the end of the RNAi experiment, male prawn
were distinguished from females with the structure of male
genital pores located at the coxopodite of the fifth pereiopods.
Then, the muscle genomic DNA of the individuals was extracted
respectively and used as the template for PCR amplification to
evaluate the genetic sex as described (29). Subsequently, the sex
reversal genetic male prawn induced by MroDmrt11E silencing
were discriminated then kept for further analysis.

2.3.2 Confirmation of a Complete and Functional Sex
Reversal and the Breeding of Monosex Progeny
The sex reversal male prawn, known as neo-females (N = 14),
were then selected and cultured in the prawn hatchery in Ningbo,
Zhejiang, China. All of the external appearance, the development
and maturation of the ovary, the reproductive behavior, and the
copulation process of the neo-females were observed and
compared with those of normal females during the whole
period of culture. These neo-females were then mated with
normal males and spawned, and the embryos were incubated
in their brood chambers. Furthermore, the various characteristic
parameters of embryonic development, hatching, and
metamorphosis of the progeny of neo-females were surveyed
in parallel with that of the control progeny.

In addition, 10 embryos of egg-nauplius or egg-zoea period
from each progeny were sampled, and the genomic DNA of each
embryo was used for genetic sexual identification by amplifying
the genetic sex marker. In general, the progeny of the neo-
females was expected to be males, known as an all-male monosex
population, whereas the progeny of normal females was
composed of both males and females. Moreover, with regard to
the growth processes of all-male monosex prawn, all of the
embryonic development, zoea larvae metamorphosis, juvenile
growth, and adult culture were monitored through the whole
culture period of 3–6 months in M. rosenbergii.
March 2022 | Volume 12 | Article 772498
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2.4 Comparative Transcriptomic Analysis
of MroDmrt11E Knockdown
2.4.1 RNA Isolation for Transcriptomic Sequencing
To evaluate the potential role of MroDmrt11E in the sexual
differentiation pathway, the response of various related gene
transcriptions and the expression of sex-related genes were
investigated by comparative transcriptomic after MroDmrt11E
gene knockdown in M. rosenbergii.

The individual of MroDmrt11E silencing showed clear sexual
differentiation with 4.0–5.0-cm BL of the prawn at the end of the
3-month experiment. The male reproductive system (testis,
sperm duct, and terminal ampullae) and the coxopodite
between the third and fifth pereiopods from males were
dissected from MroDmrt11E-silenced individuals (N = 10), and
the organs were mixed together to provide sufficient RNA for the
transcriptomic sequencing. Total RNA was extracted using
the column TRIzol total RNA isolation kit (Sangon) following
the manufacturer’s protocol. The OD260/280 should range from
1.8 to 2.0 to ensure the purity of the RNA sample.

2.4.2 Identification and Classification of Differentially
Expressed Unigenes
The transcriptome was sequenced using the Illumina HiSeq. The
raw reads were cleaned by removing adaptor sequences, empty
reads, and low-quality sequences. The clean reads were assembled
into non-redundant (Nr) transcripts. The resulting unigene
sequences were then annotated using homology search (BLASTX)
with an E-value cutoff of 10-5 against an NCBI Nr database,
Swissprot, Cluster of Orthologous Groups database (COG), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The
coding sequence and the direction of the annotated unigenes were
determined based on the BLAST results from the four above
mentioned databases. For the differential expression analysis, the
transcript expression level of the unigenes was measured using the
FPKM method (fragments per kilobase per million fragments).
Genes were considered differentially expressed in the given library
when the p-value was less than 0.05 and a greater than 2-fold
change (with the absolute value of log2 fold change more than 1).

Furthermore, the effect of RNAi-mediated gene knockdown of
MroDmrt11E on the expression of sex-related genes was also
investigated. The differentially expressed sexual candidate genes
were considered when the p-value was less than 0.05 and a greater
than 1-fold change (with the absolute value of log2 fold change
more than 0.5) in comparative transcriptomic analysis. According
to these differentially expressed transcripts involved in sexual
differentiation or cell proliferation signal, the putative intuitive
cascade regulation axis or networks of pathways were illustrated.
3 RESULTS

3.1 In Vivo Knockdown of MroDmrt11E by
RNAi in M. rosenbergii
The brief strategy of the present study was illustrated in
Figure 1A. The neo-female prawn was expected to be induced
byMroDmrt11E silencing and applied for the breeding of the all-
male population. The comparative transcriptomic analysis of the
Frontiers in Endocrinology | www.frontiersin.org 4
MroDmrt11E knockdown male reproductive system was
implemented to enrich differently expressed genes.

After in vivo knockdown ofMroDmrt11E gene performed inM.
rosenbergii PL, during the whole RNAi experiment, the mRNA
expression level of MroDmrt11E was dramatically decreased to a
low level compared with control samples (Figure 1B). This result
indicated that a long-term efficiency ofMroDmrt11E silencing was
successfully maintained. Secondly, the male/female sexes of the
MroDmrt11E RNAi and control group were identified by both
external appearance features (a pair of genital pores) (Figure 1C)
and the genetic sex molecular marker method (Figure 1D). In
detail, all female controls in the GFP-silenced group and
confirmations in the MroDmrt11E-silenced group were as
expected, revealing the female-specific sex band (Figure 1D).
Comparatively, although some MroDmrt11E-silenced individuals
morphologically resembled the control females, without male
genital pores at the fifth pereiopods (as evidence of appearance
feature in the control male), they lacked female-specific sex bands
(as evidence of genetic sex in the control female), therefore proving
genetic male (Figure 1D). It was clear evidence for sex reversal that
MroDmrt11E silencing in the PLmales successfully induced the full
functional sex reversal individuals, also known as neo-females.
Moreover, these neo-females were carefully raised to maturity,
with induced female appearance features and reproductive
system (Figure 1E).

3.2 Confirmation of a Complete and
Functional Sex Reversal and the Breeding
of Monosex Progeny
To investigate the potential role of MroDmrt11E in gonad
development, the MroDmrt11E-silenced genetic males (neo-
females) were raised into adults. The result showed that these
neo-females were characterized by the disappearance of male
characteristics (such as male genital pore and male reproductive
system) and the formation and development of female features
(female reproductive system). Moreover, the mature neo-females
developed normal-appearing ovaries as compared with normal
females. As to the ovarian development of M. rosenbergii neo-
females, it was closely related to the individual development
process by significant changes in color and ovarian volume. With
the gradual development and maturation of the ovary, the full
and inflated orange-yellow ovary was displayed throughout the
carapace or extended to the first ventral segment (Figure 2A).

On the other hand, the breeding of neo-females and their
offspring culture was also implemented. The neo-females had
successful mating and showed normal mating behavior when
they mated with normal males (data are not presented). These
neo-females then spawned and incubated the embryos in their
brood chambers, located ventrally on the abdomens (Figure 2B).
The appearance color of embryos presented gradual changes
from yellow to orange, then to light-gray color during embryonic
development in female (enlarged) abdomen (Figure 2B).

Furthermore, to confirm the sex ratio or composition of
offspring, the sex of the embryo was also detected by the
genetic sex marker method. The results showed that the
progeny of the control female was composed of male and
female as expected, whereas the progenies of the neo-female
March 2022 | Volume 12 | Article 772498

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Xu et al. Sex Reversal by MroDmrt11E Silencing
were only males (Figure 2C). It was proven that the offspring of
these neo-females was an all-male population. Therefore, that
was to say,MroDmrt11E gene silencing in male PL period caused
complete and functional sex reversal into neo-female, which
could be applied to produce an all-male population.

Furthermore, with regard to the sex reversal induction and
neo-female production inM. rosenbergii, both the manipulations
of the single gene knockdown and AG ablation have crucial
effects on male sexual differentiation. The detailed results of
various gene silencing, such as MroDmrt11E, Mr-IAG, and Mr-
IR, and AG ablation were summarized and compared in Table 1.

3.3 The Comparative Transcriptomic
Analysis of MroDmrt11E Knockdown
3.3.1 The Differential Gene Expression Analysis of
MroDmrt11E Silencing
To ascertain the effect of MroDmrt11E knockdown on the
expression level of related genes or factors in sexual
Frontiers in Endocrinology | www.frontiersin.org 5
differentiation, comparative transcriptomic profiling from
juvenile males of M. rosenbergii after MroDmrt11E silencing
was enriched in this study. The transcriptomic libraries obtained
about 50.74 million clean reads and 7.61G clean bases in
MroDmrt11E RNAi group and 55.68 million clean reads and
8.35G clean bases in GFP RNAi group. The values of Q20 and
Q30 were more than 97% and 93% in both groups, respectively.

Firstly, differential gene expression (DGE) analysis between
MroDmrt11E silencing and control group generated 1,060 genes,
of which 424 unigenes were upregulated and 636 were
downregulated. Secondly, to assess howMroDmrt11E participates
in the sex determination and/or sexual differentiation cascades in
M. rosenbergii, the upregulated and downregulated unigenes with
high percentages, which belong to the categories of response to
various pathways, were identified. The top 10 representative groups
of pathways with a higher percentage of differentially regulated
genes were clustered into the phagosome, Phosphatidylinositide 3-
kinases and protein kinase B (PKB also termed Akt) (PI3K-Akt)
A

B D

C

FIGURE 1 | In vivo knockdown of MroDmrt11E by RNAi in postlarvae. (A) The diagrammatic sketch of in vivo knockdown of MroDmrt11E by RNAi in postlarvae.
MroDmrt11E dsRNA injection was performed in postlarvae, and the gene silencing lasted for 3 months. (B) Detection of the relative MroDmrt11E mRNA level in RNAi
induced and the control group. (C) The sex identification of differentiated male and female prawn by the appearance of sexual characteristics in M. rosenbergii. There
was a pair of male genital pores located at the coxopodite of the fifth pereiopods in males, but a pair of female genital pores located at the coxopodite of the third
pereiopods in females as well as neo-females. MGP, male genital pores; PE, pereiopods. (D) The gender of individuals was identified using sex molecular markers in
both MroDmrt11E RNAi and the control group. The female-specific sex band indicates female genotype. The female-specific sex bands are indicated by the gray
arrows in females. The representative neo-female prawn are shown in a red broken line frame. (E) The neo-female prawn with female appearance features. The
MroDmrt11E-silenced genetic males (neo-females) were raised to maturity and induced appearance features of females. Some neo-females spawned and incubated
the eggs/embryos in their brood chambers, located ventrally on their abdomens.
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signaling pathway, viral carcinogenesis, cell cycle, pathogenic
Escherichia coli infection, focal adhesion, apoptosis, RNA
transport, estrogen signaling pathway, gap junction, and Rap1
signaling pathway. Meanwhile, the highest numbers of
upregulated and downregulated unigenes were focused on zinc
finger/zinc knuckle, and the higher amounts of differentially
regulated genes were enriched on WD domain/G-beta repeat,
tubulin/FtsZ gene family, RNA recognition motif, ribosomal
protein, mitochondrial proteolipid, integrase core domain, and
ATP synthase.

Furthermore, to gain insight into the biological processes
being operative during the sexual differentiation in M.
rosenbergii including other differentially expressed genes, we
Frontiers in Endocrinology | www.frontiersin.org 6
have subjected transcripts (with significant differential
expression) to DEG-enriched KEGG pathway analysis. A brief
illustration of these significant differentially expressed genes,
which come from the four categories of the enriched KEGG
pathway analysis, was detailedly summarized (Figure 3). These
four kinds of categories with a higher percentage of upregulated
and downregulated unigenes were primarily focused on the
pathways of apoptosis (Figure 3A), regulation of actin
cytoskeleton (Figure 3A), oocyte meiosis (Figure 3B), and
protein processing in the endoplasmic reticulum (Figures 3A, C),
respectively. Of these genes differentially upregulated and
downregulated, the expression pattern of important genes playing
crucial roles in these pathways was listed in Table 1S.
A

B

C

FIGURE 2 | The ovarian development of full-functional sex reversal prawn and the breeding of all-male progeny by MroDmrt11E-silenced prawn (neo-females).
(A) The ovarian development and maturation of neo-females. The inset photograph indicated the histology of the mature ovary of neo-females. The ovary was full of
mature oocytes (Oc4) that were intensely eosinophilic (reddish orange). (B) Ventral view of MroDmrt11E-silenced prawn (neo-females) incubating embryos in their
brood chamber. The mature neo-females (B-I) spawned and incubated the embryos in their brood chambers, located ventrally on their enlarged abdomens (B-II,
B-III). The color of embryos presented gradual changes from yellow to orange (B-III) then to light-gray color (B-II) during embryonic development. AW, abdomen; E,
embryos. (C) Genomic validation of representative embryos from each progeny of neo-females. The first row of PCR products was generated from neo-female
embryos, and the second row was from normal females. The presented specific band in gel electrophoresis implied the female embryo.
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3.3.2 The Response of Sex-Related Candidate
Genes to MroDmrt11E Silencing
To explore the effect ofMroDmrt11E on the expression level of sex-
related genes or factors, some significant differentially expressed
unigenes were identified and enriched in the comparative
transcriptomic profiling of M. rosenbergii. The influences or
changes of these upregulated and downregulated transcripts were
presented inTable 2. Furthermore, according to these differentially
expressed transcripts involved in sexual differentiation or cell
proliferation signal, the putative intuitive cascade regulation axis
or networks of pathways were illustrated (Figure 4A).

In addition, the proven switch geneof sexual differentiation,Mr-
IAG, was found in a downregulated transcript, but anothermember
ofDmrt gene family,MroiDmrt1d, was identified as an upregulated
transcript in the transcriptomic ofMroDmrt11E knockdown. The
possible relationships amongMr-Dsx,MroDmrt11E,Mr-IAG, and
other Dmrt gene families were summarized based on the known
information of the various RNAi results of these genes. Dmrt gene
family probablyparticipated in the transcriptional activationofMr-
IAGandpossiblyplayed great roles in the switchofMr-IAG-related
regulatory signaling of male differentiation. Moreover, Mr-IAG
directly or indirectly influenced the expression of partial genes of
Dmrt family (Figure 4B).
4 DISCUSSION

4.1 The Regulation Relationship Between
Dmrt Gene Family and Insulin Signaling
Pathway in Sexual Differentiation
MroDmrt11E is a testis-prominent expressedgene and is speculated
to play an important role in the developmental processes of sexual
Frontiers in Endocrinology | www.frontiersin.org 7
differentiation (26). The present study set out with the aim of
supplying direct evidence from animal experiments and exploring
the biological function of MroDmrt11E involving sexual
differentiation. In addition, Dmrts were shown relative to IAG
and involved in sexual differentiation (25, 28). But the molecular
mechanism of Dmrts regulating sexual differentiation is little
known. The position of the Dmrt gene family in the signaling
pathways orchestrating sexual differentiation was also expounded
by comparative transcriptomic analysis of MroDmrt11E
knockdown inM. rosenbergii.

Firstly, the important highlight of this study has given
remarkable evidence that MroDmrt11E played a crucial role in
male sexual differentiation in M. rosenbergii and provided a
novel sexual regulation illustration of the conserved Dmrt gene
family in crustaceans. Although the crucial role of IAG in
orchestrating male sexual differentiation has been characterized
and the production of all monosex progenies on IAG or IAG’s
receptor manipulation has been achieved, limited information on
conserved genes involved in sexual differentiation has been
published to date (13). In the present study, a gene silencing
strategy was implemented to expound whether MroDmrt11E
participated in male sexual differentiation of M. rosenbergii.
Significantly, MroDmrt11E silencing in juvenile males
successfully caused the disappearance of male characteristics
(such as male genital pores and male reproductive system)
while promoting the formation and development of female
features and inducing full functional sex reversal individuals.
Moreover, the neo-female individuals gave rise to ovarian
maturity, induced appearance features of females, and were
utilized to produce all-male populations.

Secondly, apart from the characterization of Dmrt itself, little
information is available regarding key factors upstream or
TABLE 1 | The summary of sex reversal induction and neo-female production in Macrobrachium rosenbergii.

Manipulation Animals Methods and Schemes Amount
of Prawn

Survival prawn
(Survival Ratio)

Gender
of Prawn

Amount of
Neo-Females (Sex
Reversal ratio)

Reference

MroDmrt11E
silencing

Individuals at
postlarval stage (PL
15–30)

dsRNA (5 µg/individual) injection every month
for 90 days

200 69 (34.50%) 33M +
22F +
14N

14 (29.79%) The
present
study

Mr-IAG
silencing

Males at postlarvae
(PL 30)

dsRNA (5 µg/g body weight) injection twice a
week for 71 injections over 9 months

19 10 (52.63%) 6M + 4N 4 (40%) (3)

Mr-IAG
silencing

Individuals at
postlarval stage
(PL 10)

dsRNA (4 µg/g body weight) injection every 5
days for 50 days

100 8 (8.00%) 3M + 2F
+ 3N

3 (50.00%) (10)

Mr-IAG
silencing

Individuals at
postlarval stage
(PL 10)

siRNA (0.5 µg/g body weight) injection every
5 days for 50 days

100 6 (6.00%) 3M + 1F
+ 2N

2 (40.00%) (10)

Mr-IR silencing Individuals at
postlarval stage
(PL 10)

dsRNA (4 µg/g body weight) injection every 5
days for 50 days

100 / / 2 (not given) (11)

Mr-IR silencing Individuals at
postlarval stage
(PL 10)

siRNA (0.5 µg/g body weight) injection every
5 days for 50 days

100 / / 1 (not given) (11)

AG ablation Males
(PL 25–60)

Andrectomy, then 30-day cultivation 1,940 1,280 (65.98%) 878M +
402N

26 (1.33%) (30)

AG ablation All-male population
(PL 20–30)

Andrectomy, then 30-day cultivation 4,137 2,718 (65.69%) 1989M +
729N

729 (17.62%) (30)
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downstream of the Dmrt gene family and other elements of the
signal transduction pathway involving sexual differentiation (27).
Thus, we focused on the relationship between theDmrt gene family
and Mr-IAG. On one hand, it is reported that in vivo silencing of
the Mr-IAG gene significantly decreased the expression of two
MroDmrt genes,MroiDmrt1b andMroiDmrt1c, thereby suggesting
the possible role of these two genes in the IAG switch and sexual
differentiation processes (27). On the other hand, gene knockdown
ofMr-Dsx resulted in a pronounced suppression of the insulin-like
androgenic hormone (Mr-IAG) gene, which indicated that Mr-Dsx
may participate in the transcriptional activation of IAG (28). In the
present study, knockdown of MroDmrt11E was proven
continuously related to the decrease of the Mr-IAG transcript.
However, MroiDmrt1d was contrarily found upregulated in the
male of MroDmrt11E knockdown, which meant MroDmrt11E
caused pronounced suppression of MroiDmrt1d. Thus, a
complex regulation network among the Dmrt gene family
and Mr-IAG was summarized. In brief, both Mr-Dsx and
MroDmrt11E participate in the transcriptional activation of
Mr-IAG, but Mr-IAG is involved in the activation of
MroiDmrt1b and MroiDmrt1c. These results implied that a
feedback loop of the Dmrt gene family may exist. And, the
Frontiers in Endocrinology | www.frontiersin.org 8
various members of the Dmrt gene family had different effects on
the expression ofMr-IAG gene by directly or indirectly influencing
the switch of male sexual differentiation inM. rosenbergii (25, 28).

Differently, MniDMRT11E knockdown significantly
increased insulin-like androgenic gland factor expression in the
oriental river prawn M. nipponense (25), which was contrary to
the result of theMroDmrt11E knockdown sustainedly repressing
the expression of Mr-IAG. It indicated that the evolutionarily
conserved Dmrt gene family plays widely divergent roles in the
sexual differentiation of crustaceans (25, 28).

Moreover, an insulin-like receptor homolog and a male
reproductive-related protein (MRR) were found significantly
downregulated from the transcriptomic analysis of MroDmrt11E
knockdown. Insulin-like receptor (IR) functions as the pivotal
member of the insulin family signaling pathway and directs the
sexual differentiation in mammals (31) and some aquatic livestock
(32, 33). The binding of the insulin-like peptide ligand initiates a
cascade of phosphorylation events, stimulating the downstream
signal transduction and resulting cellular effect (31). Earlier
evidence has shown that IR interacts with IAG to regulate sexual
differentiation and spermatogenesis in crustacean (5, 11, 33, 34). In
more detail, the insulin-like receptor, termed Mr-IR (33),
A

B C

FIGURE 3 | The significant differentially expressed unigenes enriched KEGG pathway analysis by the comparative transcriptomic analysis of MroDmrt11E
knockdown. Four kinds of categories with a higher percentage of upregulated and downregulated transcripts were primarily focused on the pathways of apoptosis
and regulation of actin cytoskeleton (A), oocyte meiosis (B), and protein processing in endoplasmic reticulum (C), respectively. The primary upregulated transcripts
(red color) and the downregulated transcripts (green color) were briefly profiled in the various signaling pathways.
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TABLE 2 | Significantly differential expression of sex-related candidate genes in sexual differentiation and gonad development.

2Foldchange P value Q value Expression

0.55 4.40E-03 8.30E-02 up
-0.76 2.97E-03 6.07E-02 down

1.89 1.43E-09 1.35E-07 up

-2.04 2.60E-05 1.02E-03 down
1.36 1.29E-04 4.19E-03 up
-4.02 1.05E-05 4.72E-04 down

0.59 6.28E-03 1.10E-01 up
3.58 3.64E-07 2.30E-05 up

1.83 2.31E-04 6.97E-03 up

-2.87 4.20E-02 4.58E-01 down
-0.80 1.78E-04 5.56E-03 down
-1.12 8.09E-05 2.79E-03 down

0.82 1.91E-11 2.35E-09 up
1.06 3.91E-17 8.67E-15 up

-1.13 4.44E-07 2.72E-05 down

-2.20 2.55E-27 1.11E-24 down

-1.97 9.04E-04 2.23E-02 down
-2.40 3.56E-15 6.73E-13 down

1.01 4.12E-20 1.16E-17 up

0.82 2.39E-13 3.61E-11 up

1.04 1.02E-08 8.23E-07 up

0.49 3.66E-02 4.18E-01 up

1.18 6.33E-36 4.03E-33 up

1.29 1.09E-11 1.38E-09 up
1.22 7.89E-38 5.44E-35 up
1.37 1.19E-207 9.99E-204 up
1.36 2.13E-22 7.24E-20 up
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Gene Description NR ID HIT Species NRE-value Identity Gene ID MR GR lo

Transformer-2b (Tra2) QBY91827.1 Macrobrachium rosenbergii 8.00E-64 100.00% Cluster-19843.19254 233.30 159.73
Zinc finger (fruitless
homolog)

XP_037797540.1 Penaeus vannamei 1.00E-156 59.95% Cluster-19843.21827 36.18 61.07

Doublesex and mab-3
related transcription factor
1d (MroiDmrt1d)

MK468652.1 Macrobrachium rosenbergii 0.00E+00 100.00% Cluster-19843.21058 94.54 25.51

Vitellogenin BAD11098.1 Pandalus hypsinotus 0.00E+00 57.77% Cluster-19843.27812 7.69 31.69
Forkhead box L2 (Foxl2) ALD48735.1 Procambarus clarkii 2.00E-109 62.80% Cluster-19843.29432 64.02 24.86
Wnt family member 4
(Wnt4)

QBS32932.1 Eriocheir sinensis 1.00E-157 89.39% Cluster-19843.33298 1.17 18.91

Catenin alpha XP_023712277.1 Cryptotermes secundus 0.00E+00 83.57% Cluster-19843.15216 178.04 118.18
Nuclear receptor HR4
(NR)

XP_037795474.1 Penaeus monodon 0.00E+00 78.55% Cluster-19843.1335 31.22 2.61

Cytochrome P450
(CYP315a1)

QBJ27553.1 Sagmariasus verreauxi 0.00E+00 61.01% Cluster-19843.6938 36.59 10.26

Cytochrome P450 (CYP2) ALA09303.1 Eriocheir sinensis 4.00E-173 48.21% Cluster-19843.12355 0.71 5.17
Feminization-1A (Fem1) AKS25864.1 Eriocheir sinensis 0.00E+00 81.29% Cluster-19843.18428 51.97 90.19
Insulin-degrading enzyme-
like (Insulinase)

XP_027229987.1 Penaeus vannamei 0.00E+00 75.45% Cluster-19843.21622 28.19 61.21

Polyubiquitin-C XP_023158674.1 Ceratitis capitata 0.00E+00 99.77% Cluster-19843.22200 520.82 295.05
Ubiquitin-conjugating
enzyme E2 (UbcH5)

XP_027238029.1 Penaeus vannamei 3.00E-93 96.60% Cluster-19843.21815 489.46 234.66

Ubiquitin-conjugating
enzyme E2 (Ubc6/7)

XP_037787246.1 Penaeus monodon 2.00E-121 80.93% Cluster-19843.21559 45.40 99.23

Insulin-like androgenic
gland specific factor (Mr-
IAG)

FJ409645.1 Macrobrachium rosenbergii 7.00E-171 100.00% Cluster-19843.27103 41.70 192.24

Insulin receptor (IR) CDI30232.1 Blattella germanica 3.00E-171 32.11% Cluster-19843.16620 5.26 20.60
Male reproductive-related
protein (MRR)

ABQ41253.1 Macrobrachium rosenbergii 2.00E-30 96.38% Cluster-19843.13975 17.51 92.49

Piwi-like protein Ago3
(Piwi2)

AZN25269.1 Penaeus monodon 0.00E+00 65.67% Cluster-19843.21923 634.88 314.25

Putative germ-line specific
RNA helicase vasa protein
(PL10-like protein, PL10)

ADB28896.1 Macrobrachium nipponense 0.00E+00 91.28% Cluster-19843.21825 618.27 349.97

Proliferating cell nuclear
antigen (PCNA)

AYT70175.1 Rimicaris exoculata 8.00E-122 92.63% Cluster-19843.18613 236.89 115.48

Chromodomain-helicase-
DNA-binding protein 1-like
(CHD1)

XP_037772797.1 Penaeus monodon 0.00E+00 85.94% Cluster-19843.19508 161.64 114.79

Cyclin-dependent kinases
2 (Cdk2)

AVM39148.1 Macrobrachium nipponense 0.00E+00 99.67% Cluster-19843.21750 880.36 387.44

Cyclin E AGW23550.1 Penaeus monodon 0.00E+00 78.86% Cluster-19843.23974 222.12 90.75
cathepsin B AEC22812.1 Macrobrachium nipponense 0.00E+00 95.53% Cluster-19843.21212 878.83 377.00
cathepsin L AGN52717.1 Macrobrachium rosenbergii 0.00E+00 99.61% Cluster-19843.22524 4110.23 1594.17
cathepsin-D AMQ98967.1 Macrobrachium rosenbergii 0.00E+00 99.46% Cluster-19843.27411 418.37 163.43

MR, MroDmrt11E RNAi Readcount; GR, GFP RNAi Readcount.
g
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functioned as a receptor for Mr-IAG, and its knockdown induced
sex reversal and retarded the process of spermatogenesis in
M. rosenbergii (11). In this study, not Mr-IR but a novel insulin-
like receptor homolog was found as a significantly downregulated
transcript, which indicated thatmore than one IR are involved in
the insulin family signaling pathway and participate in the
regulation of sexual differentiation. Meanwhile, a male
reproductive-related protein expressed in the terminal
ampullae of the male reproductive system (35) was also
identified as a significantly downregulated transcript. It means
thatMroDmrt11Ewas required for the transcriptional activation
of Mr-IAG or IR or MRR, but it was not clear whether the
MroDmrt11E gene can directly stimulate their expressions in
the prawn.

In brief, this study revealed the potential and complex
regulatory relationships among various Dmrt gene families and
several insulin signaling pathway-related factors. It also implied
that the insulin signal pathway is crucial for female/male
reproductive development or maintenance in crustaceans.

4.2 Sex-Related Candidate Genes Involved
in the MroDmrt11E Knockdown
MroDmrt11E has been validated to affect the development of
male gonads and played its potential function in sexual
Frontiers in Endocrinology | www.frontiersin.org 10
differentiation and reproductive development (26). Compared
with differently expressed genes of the transcriptomic library, a
great deal of sex-related candidate genes were focused on.
However, due to the limitation of the molecular mechanism of
sexual differentiation in crustaceans, the position of the
MroDmrt11E or Dmrt gene family in the signaling pathways
orchestrating sexual differentiation of M. rosenbergii is hard to
be clarified (28). Recently, with the analogous transcripts
addressed in many crustaceans, it suggested that crustacean
species may adopt a similar sex determination and/or sexual
differentiation pathway to that reported in insects (36).
Therefore, the well-characterized molecular mechanism of sex
determination of insects is used as an important reference clue.
For instance, the primary sex determination and somatic sexual
differentiation are controlled bya genetic hierarchyX:A>Sex-lethal
(Sxl) > Transformer/Transformer 2 (Tra/Tra2) > Dsx and Fruitless
(Fru) inDrosophila (16, 21, 37, 38). Therefore, in the present study,
some sex-related homologs, including Tra2, Foxl2, Fru,
Feminization-1 (Fem-1), were identified and screened as
significant differential genes from the comparative transcriptomic
library. In the following sections, we tried to provide more
valuable information and infer the potential roles of these
candidate sex-related genes in sex determination and/or sexual
differentiation pathways.
A

B

FIGURE 4 | (A) The sex-related candidate unigenes enriched in putative sexual differentiation pathway by the comparative transcriptomic analysis of MroDmrt11E
knockdown. The primary upregulated transcripts (red color) and the downregulated transcripts (green color) were briefly profiled in the signaling pathway. The genes
with gray color possibly participated in the sexual differentiation but did not show significant differential expression by MroDmrt11E knockdown. (B) The brief
relationship among Dmrt gene family and Mr-IAG was summarized to evaluate their potential influences involved in the sexual differentiation of M. rosenbergii.
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4.2.1 Transformer and Transformer-2
Tra and Tra-2 are mRNA splicing factors and act as a downstream
splicing complex, regulating specific splicing of target RNAs (21,
37–39). In Drosophila species, it is known that the action of Sxl
results in the active splice variant of Tra in females (37). Then, Tra2
acts in concert withTra to regulate female-specific splicing of target
RNAs (21, 37, 38). In the present study, upregulated Tra2 homolog
was identified in the transcriptomic library of MroDmrt11E
silencing, indicating that MroDmrt11E possibly participated in
the regulation of sex or gonad-specific splicing of target RNAs
through suppression of the expression of Tra2. On the other hand,
four Sxl isoforms, named MroSxl1, MroSxl2, MroSxl3, and
MroSxl4, have been identified in both males and females in M.
rosenbergii (40). However, none of these Sxl genes were screened as
significantly differential transcripts from the comparative
transcriptomic library until now. In addition, several Sxl and Tra-
2 isoform-encoding transcripts show broad tissue expression but
not sex-biased expression patterns in crustaceans, suggesting that
Sxl-Tra-Dsx may be unique to Drosophilidae and not conserved
among decapods (41).

4.2.2 Fruitless
Fru, defined by its zinc fingers and forkhead box L2 (Foxl2)
defined by a unique DNA-binding domain, is known as a
transcription factor (20, 21, 37, 38). Fru is a male-promoting
gene, regulating the development of the male central nervous
system and male sexual behavior (39). It is spliced in the absence
of the female Tra/Tra-2 complex, carried out by non-sex-specific
splicing machinery (21, 37, 38). Nevertheless, Fru showed sexual
dimorphism in ovaries and testis, which displayed upregulated
expression in ovaries of M. rosenbergii in the comparative
transcriptomic database of gonads (42).

On the other hand, Foxl2 expression ensues and acts to inhibit
the male pathway while promoting the female pathway through
the action of Rspo1, Wnt family member 4 (Wnt4), and catenin
in the absence of the Sry-driven expression of Sox9 (43).
Interestingly, Foxl2 displayed upregulated expression in testis
from the transcriptomic database of gonads of M. rosenbergii
(42). Meanwhile, Sp-Wnt4, a member ofWnt4 gene in mud crab,
Scylla Paramamosain, was expressed at a higher level in the ovary
compared to other tissues, but the expression level of Sp-Wnt4
was significantly increased in testis after unilateral eyestalk
ablation (44). In the present study, significantly upregulated
Foxl2, downregulated Fru, and Wnt4 homolog were identified
in MroDmrt11E knockdown. It suggested that MroDmrt11E
expression might act to inhibit the expression of Foxl2 gene
while promoting the action of Fru and Wnt4 in the sexual
differentiation process.

In addition, it is reported that Foxl2 was able alone or with
nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly
to upregulate the expression of cyp19a and repress the expression
of Dmrt1 in the olive flounder Paralichthys olivaceus (45). It
meant that Foxl2 may play an important role in ovarian
differentiation by maintaining cyp19a expression and
antagonizing the expression of Dmrt1 (45). The cytochrome
P450 CYP315a1, a member of the CYP superfamily gene, was
implicated in the ecdysteroidogenic pathway (46). Meanwhile,
Frontiers in Endocrinology | www.frontiersin.org 11
CYP315a1 was also identified as a sex-related gene. From the
comparative transcriptome analysis ofM. rosenbergii, CYP315a1
was suggested involved in testicular development (42). Nuclear
receptors are a class of proteins found within cells that are
responsible for sensing steroid and thyroid hormones and
certain other molecules (47, 48). Steroid hormones are well
known to be responsible for controlling reproduction and
development in higher organisms like arthropods (46, 47). In
the present study, upregulated Foxl2, nuclear receptor (NR), and
CYP315a1 homologs in MroDmrt11E knockdown were all
identified, and the expression of their transcripts was by the
above studies, which indicated that MroDmrt11E inhibited the
expression of CYP315a1 through repressing the expression of
Foxl2 and/or NR. Moreover, MroDmrt11E perhaps participated
in the signaling pathway of various hormones and played great
roles in reproduction and gonad differentiation.

4.2.3 Feminization-1
Fem-1 is characterizedbyone of themost commonprotein–protein
interaction motifs and ankyrin repeat motifs and known as a
regulatory factor of signal transduction in the sex determination
signaling pathway (21, 37, 38, 49). InM. rosenbergii,Mrfem-1 was
exclusively expressed in the ovary, suggesting that Mrfem-1 might
be associated with ovarian maturation in prawn (50). An ovary-
specific gene Fem-1 homolog,Mnfem-1, has been identified in the
oriental river prawn,M.nipponense (51). TheMnfem-1 protein can
be potentially interactive with cathepsin L and proteins containing
the domains of insulinase (also called an insulin-degrading
enzyme), ankyrin, or ubiquitin in yeast two hybridization (51).
Accordantly, in the present study, downregulated Fem-1A and
insulinase homolog, three upregulated cathepsin homologs, and
one polyubiquitin-C homolog were identified in the comparative
transcriptomic analysis of MroDmrt11E knockdown (Table 2).
Meanwhile, several significant differentially expressed genes
encoding the domains of ankyrin were found as upregulated
transcripts (data not shown). It suggested that MroDmrt11E
probably played significant roles in activating or inhibiting the
expression of these genes or elements (such as cathepsin, insulinase,
and ubiquitin) through suppression of the Fem-1 homolog.

Cathepsins, ubiquitously present inmost organisms, belong to a
family of proteases that cleaves other proteins, and some of these
genes were shown to be involved in the ovarian maturation and
embryo development of Penaeus japonicus (52) andM. nipponense
(53). Furthermore, the gonadal transcriptomic database of
Oratosquilla oratoria included eight cathepsin genes (54). Two
cathepsins, cathepsin I and cathepsin D-like, were predominantly
expressed in the testis ofO. oratoria, suggesting that cathepsinsmay
be involved in testicular development (54). In the present study,
three upregulated cathepsin homologs were identified in the
comparative transcriptomic analysis ofMroDmrt11E knockdown,
which indicated that MroDmrt11E may play an important role in
sexual and/or gonad differentiation by antagonizing the expression
of cathepsins.

4.2.4 Heat Shock Protein
Heat shock protein (Hsp) contributes to the interaction with
steroid hormone receptors, temperature, estrogen signaling, etc.,
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and several Hsps are critical for successful embryogenesis and
reproduction (55, 56). It is reported that three Hsps (heat shock
protein 27, heat shock protein 70, and heat shock protein 70
cognate3) exhibited upregulated expression patterns in the
transcriptomic database of testis from M. rosenbergii (42). In
the present study, four heat shock protein 90 homologs (Hsp90s)
and one Hsp70 homolog were identified as upregulated
transcripts, respectively. It was indicated that MroDmrt11E
probably had a suppression effect on the expressions of Hsp90s
and Hsp70, which may play a regulatory role in spermatogenesis
of testis and gonad development.

In conclusion, many highly conserved sex-related candidate
homologs were identified as upregulated or downregulated
transcripts in the comparative transcriptomic library of M.
rosenbergii testis after MroDmrt11E knockdown. Although
these data were screened from the transcriptomic library and
need to be further examined, this study provided new
information on the sex-related candidate genes and their
possible regulation mechanism in sexual differentiation.
Notwithstanding its limitation, the putative position of
MroDmrt11E involved in the signaling pathways orchestrating
sexual differentiation ofM. rosenbergii is worth further clarifying.

4.3 MroDmrt11E Participated in Gonad
Development in M. rosenbergii
The MroDmrt11E presented testis-prominent distribution and
were localized in spermatogonia and spermatozoa during
spermatogenesis, suggesting that the MroDmrt11E participated
in the development of the male reproductive system (26). In the
present study, several cell division and proliferation-related
candidate genes, including Piwi2, PL-10, PCNA, Cdk2, CycE,
and CHD1 homologs, were found as upregulated genes that are
previously implicated in regulating germ cells.

1. De novo transcriptomic analysis of the Japanese mantis
shrimp O. oratoria showed that Piwi2 and vasa-like protein
genes exhibited a higher expression level in ovaries than that
in testis, suggesting that they may play an important role in
germ cell differentiation (54).

2. Germline-specific vasa protein, also known as PL10-like
protein, encodes an ATP-dependent RNA helicase
belonging to the DEAD and is essential not only for germ
cell specification during embryogenesis but also for the
completion of meiosis of the germ cells in adults (57). A
vasa-like gene, Mrvlg, is specifically expressed in the germ
cells and differentially expressed during germ cell
differentiation in both ovary and testis ofM. rosenbergii (57).

3. Proliferating cell nuclear antigen (PCNA) is an evolutionarily
well-conserved protein found in all eukaryotic species and plays
an important role in cell cycle regulation and checkpoint
control, DNA repair, translesion DNA synthesis, DNA
methylation, chromatin remodeling, and gonadenogenesis in
various species (58). The PCNA of Chinese shrimp F. chinensis,
termed FcPCNA, was highly expressed in proliferating tissues,
such as hematopoietic and ovary (59). InO. oratoria,PCNAwas
expressed at a higher level in the ovaries than in the testis,
suggesting it may be related to oogenesis (36).
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In conclusion, the upregulation of all of these cell division,
proliferation, and differentiation-related candidate homologs
suggested that MroDmrt11E probably participates in regulating
both spermatogenesis and oogenesis. Despite this preliminary
characteristic, this study indicated the important clues for further
functional research of MroDmrt11E in gonad development.
4.4 The Changes of Primary Kyoto
Encyclopedia of Genes and Genomes
Pathways in MroDmrt11E Silencing
MroDmrt11E silencing induced dramatic sex-related alterations,
including male feature feminization, extensive male reproductive
system inhibition, oocyte meiosis promotion, and the ovarian
development of neo-females. The phenomenon of complete and
functional sex reversal individuals, induced by MroDmrt11E
knockdown, showed a close relationship with various biological
pathways. The pathway enrichment was used to capture the
functional specialization ofMroDmrt11E silencing and, based on
known functional roles, validated various biological aspects in
prawn and other closely related crustaceans.

Firstly, the pathway of protein processing, which happens in the
endoplasmic reticulum (ER), was thought to be significantly
involved in energy and substance metabolism during sexual
differentiation and sex reversal. Abundant transcripts were
exposed to protein processing in ER, including upregulated genes,
such as Sec62/63, Sec61, Hsp70, Hsp90, P97, and UbcH5, and
downregulated genes, such as Ubc6/7, GlcII, OS9, TRAM, and
Skp1. Meanwhile, the mammalian target of rapamycin (mTOR)
signaling pathway is also involved in the regulation of the rate of
protein synthesis. The upregulated Rheb gene and downregulated
EIF-4E gene were enriched. In addition, a series of upregulated
factors such asPI3K, Rac, F-Actin, anda-tubulin, involved inPI3K/
Akt signaling, were intensively activated and participated in the
regulation of actin cytoskeleton and apoptosis. It was reported that
the transcription of MroDmrt11E was prominent in testis and
localized in spermatogonia and spermatozoa during
spermatogenesis (26). The degeneration of the male reproductive
system, induced by MroDmrt11E silencing in PL males, indicated
that MroDmrt11E was a crucial regulator of testicular formation.
The absence of male characteristics (male genital pores and
reproductive system) in juvenile males probably had close
relationships with the pathway of apoptosis and regulation of
actin cytoskeleton, which is possibly involved in the development
and reconstruction of the female reproductive system and ovary.

Moreover, the enrichment of KEGG’s oocyte meiosis pathway
indicates its involvement in the ovarian development of neo-
females. Several factors, upregulated genes, namely, Calm, CaN,
CycE, and Cdk2, and one downregulated gene, SFC, were
involved in the oocyte meiosis. Most genes downstream of the
fertilization and translation of maternal mRNAs were
upregulated, indicating MroDmrt11E plays an important role
in the regulation of oocyte meiosis. Furthermore, many
upregulated factors, such as Piwi2 (36), PL-10 (57), PCNA
(58), Cdk2 (60), CycE, and CHD1 homologs, were all
intensively activated to promote the germ cell proliferation and
cell differentiation of the ovarian development by MroDmrt11E
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knockdown. These significant responses to primary KEGG
pathways provided clues to understand the mechanism of
sexual differentiation.

In conclusion, dsRNA-mediated gene knockdown of
MroDmrt11E led to a complete and functional sexual reversal,
which possibly established a crucial basis for the new
development of manipulating monosex progeny of prawn. The
data of comparative transcriptomic analysis, after MroDmrt11E
silencing mediated, provided a deeper understanding of the
molecular regulatory network underlying sexual differentiation
in M. rosenbergii and provided a novel insight into the roles of
Dmrt homologs in the sexual differentiation of crustaceans.
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