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Abstract

Female tick salivary glands undergo rapid degeneration several days post engorgement.

This degeneration may be caused by the increased concentration of ecdysone in the hemo-

lymph during the fast feeding period and both autophagy and apoptosis occur. In this work,

we first proved autophagy-related gene (ATG) and caspase gene expression peaks during

degeneration of the tick salivary glands. We explored the regulatory role of Rhipicephalus

haemaphysaloides autophagy-related 5 (RhATG5) in the degeneration of tick salivary

glands. During the fast feeding phase, RhATG5 was cleaved and both calcium concentration

and the transcription of Rhcalpains increased in the salivary glands. Recombinant RhATG5

was cleaved by μ-calpain only in the presence of calcium; the mutant RhATG5191-199Δ was

not cleaved. Treatment with 20-hydroxyecdysone (20E) led to programmed cell death in the

salivary glands of unfed ticks in vitro, RhATG8-phosphatidylethanolamine (PE) was upregu-

lated in ticks treated with low concentration of 20E. Conversely, RhATG8-PE decreased and

Rhcaspase-7 increased in ticks treated with a high concentration of 20E and transformed

autophagy to apoptosis. High concentrations of 20E led to the cleavage of RhATG5. Calcium

concentration and expression of Rhcalpains were also upregulated in the tick salivary

glands. RNA interference (RNAi) of RhATG5 in vitro inhibited both autophagy and apoptosis

of the tick salivary glands. RNAi of RhATG5 in vivo significantly inhibited the normal feeding

process. These results demonstrated that high concentrations of 20E led to the cleavage of

RhATG5 by increasing the concentration of calcium and stimulated the transition from autop-

hagy to apoptosis.

Author summary

Ticks are well-known pathogen vectors which transmitted virus, bacterial and protozoan.

They are considered to be second only to mosquitoes as global vectors of human diseases.

Most tick-borne pathogens (TBPs) are transmitted to hosts through tick bites assisted by

saliva. Control of ticks has been achieved primarily by the application of acaricides, a
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method that has drawbacks such as environmental contamination and selection of pesti-

cide-resistant ticks. Understanding the tick physiological characteristics is the key step for

this objective; however, there are knowledge gap remained in tick physiology. Tick sali-

vary glands rapidly degenerate and disappear within 4 days post engorgement. In this

research, we are focused on tick salivary glands rapidly degeneration within 4 days post

engorgement, and made several highlights findings: The first work demonstrated that 20E

promotes both autophagy and apoptosis during tick salivary gland degeneration;

RhATG5 is the first reported ATG5 homologue in ticks; RhATG5 play an important role

in both autophagy and apoptosis during the degeneration of tick salivary glands.

Introduction

Ticks, which are well-known pathogen transmission vectors, are long-lived, reproductively

prolific, and can utilize a variety of hosts [1–3]. Ticks also may remain attached to the host,

feeding on host blood, for long periods [4]. Most TBPs are transmitted to hosts through tick

bites assisted by saliva [3,5–8]. During the blood-sucking process, tick salivary glands secrete a

variety of biologically-active molecules, which reduce host pain and itching, inhibit blood

coagulation, disturb the innate and adaptive immune responses, and dilate the blood vessels

[7–14]. These molecules contribute to the spread, survival, and reproduction of TBPs [15].

Tick salivary glands rapidly degenerate and disappear within 4 days post engorgement

[7,16]. During the degeneration process, many autophagic vacuoles appear in salivary gland

cells and tick secretion ability decreases up to 90% [17]. Salivary gland degeneration begins

during the initial period of fast feeding, and may primarily be caused by the increase in ecdy-

sone in the hemolymph [18,19]. To verify the association between ecdysone and salivary gland

degradation, 20E was added to an in vitro culture of salivary glands that had been extracted

post-feeding, the wet weight and secretion abilities of the salivary glands decreased signifi-

cantly after incubation with 20E [17]. However, the mechanisms underlying these effects

remain unclear.

Autophagy involves two evolutionarily conserved ubiquitin-like conjugation systems, as

follows: the ATG12-ATG5 (participate in the formation of the autophagosome membrane);

and ATG8 can be divided by ATG4B and then connected to PE to form ATG8-PE, which is

marked in the double-membrane of autophagosomes and as an indicator of autophagy [20–

22]. Apoptosis is characterized by DNA fragmentation and caspase activation; therefore, cas-

pase activity usually used to display apoptosis [23]. Caspase-3 is an executor that indicates apo-

ptosis [24]. The upregulation of cleaved-caspase-3 level indicates apoptosis reinforcement [25–

27]. Several studies have attempted to investigate these mechanisms. For example, L’Amoreaux

used Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) staining to

show that the rate of DNA fragmentation was significantly higher in degenerated salivary

glands [28]. In addition, it is reported that caspase3 activity levels increased significantly in

tick salivary glands 72 h post-engorgement [29]. Similarly, metabolic activity levels and mor-

phological characters differed substantially among the salivary glands of fast-feeding, engorged

ticks, and 3 d post-engorged female brown dog ticks (Rhipicephalus sanguineus); metabolic

activity levels in the salivary glands of the fast feeding ticks kept in high level, and nuclear and

plasma membranes were intact. In engorged ticks, the membranes of the type I and type II

acini remained intact, but the nuclei had changed, ATPase activity (proportional to membrane

integrity) had decreased, and acid phosphatase activity (inversely proportional to ATPase

activity) had increased. At 3 d post-engorgement, salivary gland tissue was severely degraded,
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the membranes of most cells (some type I acini, most type II acini, and all type III acini) had

disintegrated, ATPase activity had decreased, acid phosphatase activity had increased, and

apoptotic bodies had appeared [30]. Thus, during salivary gland degeneration, nuclear changes

precede cytoplasmic changes and are accompanied by the formation of apoptotic bodies.

Proteomic sequencing indicated that energy-related proteins were downregulated during sali-

vary gland degeneration, but some proteins associated with the degradation of DNA or pro-

teins were up regulated; certain proteins involved in apoptosis or autophagy were also

differentially expressed [31]. Thus, similar to some insects, the degradation of tick salivary

glands represents programmed cell death mediated by ecdysone [32–36]. There is also a rela-

tionship between autophagy and apoptosis during the degeneration of tick salivary glands

[37]. In summary, both autophagy and apoptosis are involved in the degeneration of tick sali-

vary glands but their relationship is unclear. Most organisms, from mammals to insects, switch

between autophagy and apoptosis [38]. In mammals, autophagy related 5 (ATG5) plays a regu-

latory role during the transition from autophagy to apoptosis, and the molecular regulation

mechanisms involving this protein have been characterized [39]. ATG5 may promote the

expansion of autophagosomes by combining ATG12 and ATG16 to form ATG12-AT-

G5-ATG16L complexes [40]. Alternatively, ATG5 may be cleaved to produce NtATG5 (24

kDa, amino-terminal truncated), which binds to the apoptosis inhibitor protein BCL-XL

located on the mitochondrial membrane; this binding leads to the activation of the pro-apo-

ptotic protein BAX to form a BAX-BAX homodimer, thereby promoting apoptosis [39,41]. It

was recently shown that, in most insects, the transcription levels of ATG5 and associated genes

were the highest during metamorphosis [42,43]. In addition, similar to ATG5 in mammals,

insect ATG5 is cleaved by calpains, inducing apoptosis after autophagy [33,42–44]. However,

the mechanisms underlying the transition between apoptosis and autophagy in ticks, particu-

larly with respect to salivary gland degeneration, remain unclear.

To address this knowledge gap, we investigated the relationship between autophagy and

apoptosis in the salivary glands of the tick R. haemaphysaloides. We first reported the concen-

tration-dependent ecdysone-mediated programmed cell death in ticks. RhATG5 was

cleaved to produce Nt-RhATG5 during the fast-feeding period. Nt-RhATG5 mediated the

transition to apoptosis following 20E-induced autophagy. High 20E concentrations led to high

levels of intracellular Ca2+, which activated the calpains and mediated the cleavage of

RhATG5.

Materials and methods

Ethical statement

The care of rabbits and mice was approved by the Institutional Animal Care and Use Commit-

tee of the Shanghai Veterinary Research Institute (IACUC approve number: SHVRI-mo-

20180306-008; SHVRI-ra-20180415-04; shvri-ZD-2019-027), and authorized by the Animal

Ethical Committee of Shanghai Veterinary Research Institute.

Ticks and animals

Adult R. haemaphysaloides were attached to the ears of New Zealand White rabbits (about

3kg) and 30 female R. haemaphysaloides and 15 male R. haemaphysaloides per ear; rabbits

were provided by the Shanghai Laboratory Animals Center (Shanghai Institutes for Biological

Science, Chinese Academy of Sciences, Shanghai, China) [45].
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TUNEL staining

The paraformaldehyde-fixed salivary glands were subjected to paraffin-sectioning and antigen

retrieval. Sections were then permeabilized with 0.1% Triton X-100 and incubated for 1 h with

1:9 TdT mixed with fluorescent-labeled dUTP at 37˚C, following the instructions of the Roche

In Situ Cell Death Detection Kit, POD (Roche, 11684817910). To stain the nuclei, sections

were washed three times with phosphate-buffered saline (PBS; 0.14 M NaCl, 0.0027 M KCl,

0.01 M phosphate buffer; pH 7.4)/0.5% Tween-20, and then incubated with 1 μg/mL 4’, 6’-dia-

midino-2-phenylindole (DAPI, Invitrogen, Carlsbad, CA, USA) in dd H2O for 20 min. After

washing, the sections were mounted using fluorescent mounting medium under glass cover-

slips, then viewed and photographed on a Zeiss LSM880 Laser Scanning Confocal Microscope.

Transmission electron microscopy (TEM) analysis

The glutaraldehyde-fixed sections were ultrathin sectioned and treated using standard TEM

procedures [46]. Sections were then viewed and photographed using a Tecnai G2 Spirit BIOT-

WIN TEM (FEI, Hillsboro, Oregon, USA).

Quantitative real-time polymerase chain reactions (qRT-PCRs)

All related genes were identified using a BLAST analysis [47] (http://www.ncbi.nlm.nih.gov/

BLAST/). The salivary glands of the R. haemaphysaloides allowed to feed for different periods

were collected for RNA extraction after microdissection. RNA was converted into the first-

strand cDNA using a HiScript III RT SuperMix for qPCR (+gDNA wiper) kit (Vazyme Bio-

tech, Nanjing, China), following the manufacturer’s protocols. The double-stranded cDNAs of

each gene were used as templates for qRT-PCR, along with specific primers (S1 Table), which

were designed using Primer Premier 5. qRT-PCRs were performed using ChamQ Universal

SYBR qPCR Master Mix (Vazyme Biotech) green and gene-specific primers with a QuantStu-

dio 5 System PCR System (Applied Biosystems, Austin, TX, USA). The qRT-PCR cycling

parameters were 95˚C for 30 s, followed by 40 cycles of 95˚C for 5 s and 60˚C for 30 s. All sam-

ples were analyzed three times.

The data were normalized to the gene expression of elongation factor-1 (ELF1A, Genbank

accession no. AB836665) [48] using the 2-ΔΔCt method [49,50]; ΔCt was calculated by subtract-

ing the average ELF1A Ct value from the average Ct value of the target gene.

Sequencing and cloning of RhATG5

RhATG5-specific primers (S2 Table) were designed based on a comparison of the salivary

gland transcriptomes of fasted and engorged R. haemaphysaloides [51]. A BLAST analysis of

the translation products deduced from the open reading frames (ORFs) was performed. We

used ExPASy (https://web.expasy.org/compute_pi/) to predict the molecular weight and iso-

electric point (PI) of RhATG5. We aligned RhATG5 with the ATG5 protein sequences of vari-

ous organisms using Genetyx ver. 6 (GENETYX, Tokyo, Japan). For phylogenetic analysis, the

alignment of the sequences was performed using the MUSCLE algorithm [52] and inferred

using the Maximum likelihood method with the default settings in MEGA X software [53].

Bootstrap support values were estimated using 500 bootstrap replicates. The sequences were

obtained from GenBank or UniProt.

RhATG5 cleavage assay

The ORF sequence of RhATG5 was subcloned into the pET-30a prokaryotic expression vector,

using In-Fusion HD Cloning Kits (Takara Clontech, Mountain View, CA, USA). We
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constructed the mutant and the mutation primers for RhATG5 using the Quick Mutation

Gene Site-Directed Mutagenesis Kit (Beyotime, Shanghai, China), following the manufactur-

er’s instructions. The specific mutation primers that we designed are listed (S2 Table). The

recombinant plasmids pET-30a-RhATG5 and pET-30a-RhATG5191-199Δ were constructed and

transformed into BL21 (DE3) competent Escherichia coli cells (Tiangen, Beijing, China). To

induce the expression of the recombinant proteins RhATG5 and RhATG5191-199Δ, BL21 cells

were incubated in a final concentration of 1 mM isopropyl thio-β-D-galactoside (IPTG) at

25˚C for 12 h. Then, recombinant RhATG5 and RhATG5191-199Δ were affinity-purified using

Ni-NTA His•Bind Resin (Merck-Millipore, Darmstadt, Germany). Recombinant RhATG5

and RhATG5191-199Δ were then incubated with 10μg μ-calpain (Merck) in TE buffer (10 mM

Tris-HCI, 1 mM EDTA, PH 8.0) at 25˚C for 3 hours. The reaction was stopped by adding

2 × SDS loading buffer. The mixtures were heated at 100˚C for 10 min and then separated on

GenScript ExpressPlus PAGE Gels 10 × 8, 12%, 10 wells (Genscript, Nanjing, China). Gels

were stained with Coomassie brilliant blue using eStain L1 (Genscript).

In vitro culture of tick salivary glands and 20E treatment

Unfed ticks were sterilized in 70% ethanol for 30 s and then dried with filter paper. The sali-

vary glands of each tick were removed using microdissection, immediately transferred to L15
medium supplemented with 1% penicillin-streptomycin at 27˚C, and cultured in vitro as previ-

ously described [54]. Cultured salivary glands were then treated with 1 μM, 5 μM, 10 μM, or

20 μM 20E (Sigma-Aldrich, St. Louis, MO, USA). Incubation was stopped and samples were

collected at 24 or 48 h. Dimethyl sulfoxide (DMSO; Sigma-Aldrich) was used as the control.

Each treatment group included the salivary glands from 10 ticks. After incubation, a pair of

the salivary glands in each group was fixed in 4% paraformaldehyde for TUNEL staining or

fixed in 2.5% glutaraldehyde for at least 24 hours at 4˚C for TEM. The remaining salivary

glands were used for western blots.

Antibody generation, western blotting and indirect immunofluorescence

antibody (IFA)

Recombinant his-tag RhATG5 was expressed and purified according to standard protocols

[55]. Polyclonal antibodies (pcAb) against recombinant RhATG5 were developed in mice. We

tested the specific recognition of the recombinant protein by the antibodies using western

blots. To distinguish between autophagy and apoptosis, we chose the molecular markers

RhATG8 (autophagy, MN395580) and for antibody production and the Rhcaspase7 pcAb was

prepared in our lab [56] (apoptosis, MN395579). We predicted the epitopes of RhATG8 online

(http://www.iedb.org/), and synthesized Keyhole limpet hemocyanin (KLH) [57]-coupled

polypeptides based on the epitope amino acid sequences (MKFQYKEEHPFEK). Polypeptides

were dissolved in PBS and Freund’s adjuvant (complete and incomplete; Sigma-Aldrich).

Equal volumes of these solutions were then emulsified together and injected into 6–8 week-old

BALC/c mice or New Zealand White rabbits provided by the Shanghai Laboratory Animals

Center (Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai,

China). Injections were repeated three times at two-week intervals. Serum samples were col-

lected seven days after the third injection.

For western blots assays, total proteins from the salivary glands of 10 ticks were extracted

using Tris-buffered saline (TBS; 10 mM Tris–HCl, pH 7.5; 150 mM NaCl with 1 mM phenyl-

methanesulfonyl fluoride) to eliminate individual differences. Protein concentrations were

quantified using the Bradford Protein Assay Kit (Beyotime), following the manufacturer’s

instructions. We used 20 μg of protein from each sample for SDS-PAGE. Western blotting and
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IFA were then performed as previously described [55], and images were captured by

ChemiDoc Touch (Bio-rad, Hercules, CA, USA) or Odyssey (LI-COR, Nebraska, USA) Imag-

ing System. The intensity of target protein bands was measured by Image-Pro Plus software

(Media Cybernetics). The anti-alpha tublin primary antibody was purchased from Proteintech

(Rosemont, IL, USA). The Goat anti-Mouse IgG (H+L) Secondary Antibody conjugated with

HRP, Goat anti-Rabbit IgG (H+L) Secondary Antibody conjugated with HRP, Goat anti-Rab-

bit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 594, Goat anti-

Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 were all

purchased from Invitrogen.

Measurement of cellular Ca2+ in salivary glands

All salivary glands were washed three times with PBS, and then incubated with 3 μM AM ester

Calcium Crimson dye (Invitrogen) for 30 min at 27˚C. After incubation, the salivary glands

were washed three times with PBS, then incubated with 1 mg/mL 2,5’-Bi-1H-benzimidazole,

2’-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)- 23491-52-3 (Hoechst 33342, trihydrochlor-

ide, trihydrate, Life Technologies, H3570) in water for 20 min. After washing three times with

PBS, each whole salivary gland was placed on a glass slide, sealed with Lab Vision PermaFluor

(Thermo Scientific, Carlsbad, CA, USA), and observed under a Zeiss LSM880 Laser Scanning

Confocal Microscope (Oberkochen, Gemany).

RNAi in vivo and vitro
Specific interference primers were designed based on the known sequences (S2 Table), adding

the T7 polymerase promoter sequence to the 5’ end of each primer. After PCR amplification,

the amplicons were purified to obtain templates for double-strand RNA (dsRNA) synthesis.

The dsRNAs of RhATG5 and Luciferase were generated using the T7 RiboMAX Express RNAi

system (Promega, Madison, WI, USA). The dsRNA of each gene was either microinjected into

unfed female ticks (1 μg/ tick).

Our preliminary results indicated that the dissected salivary glands of female R. haemaphy-
saloides were viable in culture (see above). This indicated that salivary gland cultures were suit-

able for a detailed study of RhATG5 RNAi in vitro. We used salivary glands extracted from

ticks during the fast-feeding period (5 and 7 days) for in vitro RNAi experiments. Salivary

gland cultures were treated with RhATG5 dsRNA (1 μg/mL) for 48 h. After 48 h, ticks and sali-

vary glands were analyzed.

Data analysis

GraphPad PRISM 6.0 software (La Jolla, CA, USA) was used for all data analyses.

Mean ± standard error (SEM) values were calculated for three independent experiments, and

two-tailed Student’s t tests were used to identify significant differences between groups

(�p< 0.05; ��p < 0.01, ���p< 0.001, ����p< 0.0001).

Results

Both autophagy and apoptosis occurred in the degeneration of salivary

glands

To determine the exact time of tick salivary gland degeneration, we observed the morphologies

of the salivary glands of ticks fed for different periods. The length, width and bubble diameter

of the salivary glands increased continuously from the first feeding day until engorgement and

rapidly degenerated and atrophied after engorgement (Fig 1A and 1B). TEM observations
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Fig 1. Autophagy and apoptosis profile of tick salivary glands at different feeding times. (A) Morphological observation

in vitro (scale bar: 1000 μm) of salivary glands at different feeding times. (B) Analysis of A), Bars represent mean ± SD for

three replicates. (C) TEM observation (scale bar: 1 μm) of salivary glands at different feeding times. Autophagosomes are

marked with white arrows. (D) TUNEL staining (green, scale bar: 50 μm) of salivary glands during different feeding periods.

Please see S1 and S2 Data for the numerical values and original images used in Fig 1.

https://doi.org/10.1371/journal.pntd.0009074.g001
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showed that mitochondria large amounts of bilayer membrane autophagosomes and autopha-

gic vacuoles during the late feeding and post engorged periods (Fig 1C). Compared to the early

feeding period, DNA fragmentation increased from the fast feeding period to post-engorge-

ment, along with the emergence of autophagosomes (Fig 1D). The TUNEL positivity of cytosol

may relate to the presence of a large number of mitochondria. Autophagy and apoptosis occur

during the degeneration of tick salivary glands, which is consistent with previous observations

[4,16,30,58,59].

Relative expression levels of autophagy and apoptosis genes in tick salivary

glands of ticks fed for different periods

The cDNA of tick salivary glands at different feeding times were subjected to qRT-PCR to eval-

uate the expression profiles of autophagy and apoptosis related genes. To investigate the

expression patterns of ATG homologs associated with autophagy, a total of 13 putative

RhATGs, including RhATG3, RhATG4B, RhATG4D, RhATG5, RhATG6 (BECN1), RhATG7,

RhATG8, RhATG9, RhATG10, RhATG12, RhATG13, RhATG14 and RhATG16, occur in the

salivary gland transcriptome of R. haemaphysaloides [51,56], all of the RhATGs contained clas-

sic ATG domains. Most autophagy-related genes were upregulated between the 1st and 3rd day

of feeding, and then down-regulated during the fast-feeding period (days 4–7; Fig 2A). Post-

Fig 2. Transcription profiles of autophagy and apoptosis related genes. (A) autophagy and (B) apoptosis, as quantified using

qRT-PCR. Expression levels of all genes were measured in the salivary glands of female ticks at various stages during the feeding

process: unfed to engorged to 1–3 d post engorgement, F: fed, E: engorged. Each group included 10 ticks and each experiment was

repeated three times. Please see S1 Data for the numerical values used in Fig 2. Bars represent mean ± SD for three replicates.

Significance of differences determined by one-way ANOVA. Data not sharing a common letter indicated there was a significant

difference (p<0.05).

https://doi.org/10.1371/journal.pntd.0009074.g002
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engorgement, most of autophagy-related genes was sharply upregulated except RhATG3, but

the reason remains to be explored (Fig 2A).

Using the same strategies, we identified 4 predicted Rhcaspases, including Rhcaspase1,

Rhcaspase7, Rhcaspase8, and Rhcaspase9. All 4 Rhcaspases contained the conserved peptide

sequence of QACR(I)G [37]. All apoptosis-associated genes were upregulated in fast feeding

period and post-engorged period compared to slow feeding period (Fig 2B). RhCasapase8 was

also sharply upregulated on day 5 of feeding (Fig 2B).

Cloning and recombinant expression of RhATG5

Based the results above, RhATG5 was cloned to study the interaction between autophagy and

apoptosis. The R. haemaphysaloides ATG5 homolog was designated RhATG5 (GenBank acces-

sion no. MK841509). This is the first reported ATG5 homolog in ticks. The full-length open

reading frame (ORF) of RhATG5 was 810 base pairs long and encoded a 270 amino acid pep-

tide. The predicted molecular weight of the RhATG5 protein was 31.3 kDa, with a theoretical

pI of 6.19. Homology analyses indicated that RhATG5 is a member of the ATG5 family. The

APG5 domain extends from amino acids 81 to 270 (marked with a black line), and has 54.58%,

53.85%, 59.85%, and 50.19% identity with the ATG5 proteins from (Homo sapiens;
NP_004840.1), mice (Mus musculus; NP_444299.1), fruit flies (Drosphilia melanogaster;
NM_132162.4), and the cotton bollworm (Helicoverpa armigera; AMQ76404.1), respectively

(S1A Fig). The lysine (K) 130 of Homo-ATG5 is necessary for covalent bond formation in the

ATG12-ATG5 complex [60]. This critical lysine residue of ATG5 is present at position 132 in

RhATG5 (S1A Fig, marked with black frame). Amino acids His80 and Ser127 of homo-ATG5

(His82 and Ser129 in RhATG5) (S1A Fig, marked with black frame) play important roles in

the formation of the ATG12-ATG5-ATG16 complex [60]. Although ticks are evolutionarily

distant from other animals, our phylogeny of ATG5 homologs from a variety of species sug-

gests a close relationship among ATG5 homologs (S1B Fig). This indicates that autophagy-

associated genes, such as the ATG5 homologs, are ancient and have been conserved over long

periods of evolutionary time.

RhATG5 was cleaved and intracellular calcium increased in tick salivary

glands during the fast feeding phase

RhATG5, RhATG8 and Rhcaspase7 were tested to show the occurrence of autophagy and apo-

ptosis. RhATG5, with a molecular weight of 33kDa, kept increasing during all the feeding

times until engorged. RhATG5 was cleaved into NtATG5 (represented a fragmented form of

RhATG5 with a molecular weight of 25 kDa) from the fast-feeding to the engorgement phases

(Fig 3A and 3B). RhATG5 and NtATG5 decreased rapidely post engorgement. The expression

level of RhATG8-PE (16 kDa) appeared at the early feeding time point and low expressed dur-

ing the fast feeding periods, and then peaked post-engorgement, consistent with our qRT-PCR

results (Fig 3A and 3B). Pro-Rhcaspase7 (34 kDa) increased during fast feeding periods and

kept the increase post engorged. Cleaved-Rhcaspase7 (17 kDa) emerged followed the decrease

of RhATG8-PE and kept increasing until post engorgement (Fig 3A and 3B).

The Ca2+concentrations of tick salivary glands during different feeding periods were stud-

ied to display the concentration changes of Ca2+ in the degeneration of tick salivary glands.

According to the results, Ca2+ concentration (displayed as red fluorescence) in the tick salivary

glands increased between the fast-feeding and the engorgement phases along with the degener-

ation of tick salivary glands (Fig 3C); the transcription levels of two Rhcalpains also increased

during this period (Fig 3D), which is consistent with the appearance time of Nt-RhATG5. Our
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Fig 3. RhATG5 cleaved and intracellular calcium increased during the fast feeding phase. (A) Relative protein expression of RhATG5 and other proteins associated

with autophagy and apoptosis related genes. The salivary gland samples were harvested at feeding days 3, 5, 7 and post engorgement days 1, 3, and 5, following by

immunoblotting with the anti-RhATG5 (pcAb), anti-RhATG8 (pcAb), anti-Rhcaspase7 (pcAb) and anti-α-tublin (mAb). (B) Statistical analysis of (A). (C) Ca2+

concentration of tick salivary glands in different feeding periods was measured using Calcium Crimson dye (Invitrogen), and is represented by red fluorescence, scale

bars: 50 μm. (D) qRT-PCR quantification of Rhcalpains expression in the salivary glands of female ticks at various stages during the feeding process: unfed to engorged

to 1–3 d post engorgement. All experiments were performed in triplicate; bars represent the mean ± S. D, and Significance of differences determined by one-way

ANOVA. Data not sharing a common letter indicated there was a significant difference (p<0.05). Please see S1 and S2 Data for the numerical values and original

images used in Fig 3.

https://doi.org/10.1371/journal.pntd.0009074.g003

PLOS NEGLECTED TROPICAL DISEASES Transition from autophagy to apoptosis during the degeneration of tick salivary glands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009074 January 29, 2021 10 / 23

https://doi.org/10.1371/journal.pntd.0009074.g003
https://doi.org/10.1371/journal.pntd.0009074


results indicated that the cleavage of RhATG5 may be caused by an increase in intracellular

calcium concentration.

RhATG5 was cleaved by μ-calpains in vitro, depending on calcium

concentration

The position of the 6-amino-acids (QTTTER) is crucial for the calpain cleavage site (marked

with red frame) of Homo-ATG5 [39], which occurs at positions 192 to 197 in RhATG5. One

calpain cleavage site was predicted in our analyses of RhATG5 homology (Fig 4A). The coding

sequences of RhATG5 and RhATG5191-199were cloned into prokaryotic expression vectors

(pET-30a) to produce recombinant Rhcaspases 7, 8, and 9. All of the recombinant proteins

were expressed in E. coli. After purification, His-RhATG5 (39 kDa) was incubated with

μ-calpain at different concentrations, Ca2+ treated RhATG5 was cleaved into one active frag-

ment (NtRhATG5, 28 kDa) (Fig 4A). With the same Ca2+ concentration and the same reaction

time, along with the increased concentration of μ-calpain, the bands of NtRhATG5 were more

obvious, and under the same concentrations of μ-calpain, changing the Ca2+ concentration

did not affect the cleavage of RhATG5 (Fig 4A). After the cleavage site was deleted (Fig 4B),

the recombinant protein RhATG5191-199Δ was not cleaved by μ-calpain under identical experi-

mental conditions (Fig 4C).

Induction of autophagy and apoptosis in tick salivary glands by culturing

with 20E

The similarity of results between the 20E titer and the expression profile of autophagy and apo-

ptosis genes in tick salivary glands at different feeding times indicated that 20E might induce

degeneration of the salivary glands. Salivary glands of unfed ticks were cultured with different

concentrations of 20E in vitro. The unfed tick salivary glands exhibited positive TUNEL

Fig 4. In vitro RhATG5 cleavage assays. (A) SDS-PAGE showing that recombinant RhATG5-His is cleaved by

μ-calpain and is not cleaved by calpain in the absence of Ca2+. (B) The RhATG5 cleavage site. (C) The mutant

recombinant RhATG5191-199Δ-His is not cleaved by μ-calpain. Please see S2 Data for the original images used in Fig 4.

https://doi.org/10.1371/journal.pntd.0009074.g004
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staining after treatment with 10 μM 20E at 24 h and 48 h and apoptosis increased with time

(Fig 5A). After incubated with 5μM 20E, ATG8 (green fluorescence) increased at 24h, along

with the concentration of 20E, immunofluorescence analysis showed that RhATG8 and Rhcas-

pase7 (red fluorescence) were co-localized after treatment with high concentrations (10 μM

and 20 μM) of 20E (Fig 5B; displayed as yellow fluorescence).

The qRT-PCRs demonstrated that the expression profiles of ATGs were upregulated

(p<0.0001) 24 h after treatment with 10 μM 20E. These results were consistent with western

blot results. All ATGs increased during the first 48 h of feeding but significantly decreased at

72 h (Fig 6A). The apoptosis-related genes, Rhcaspase7 and Rhcaspase8 were upregulated at 24

h, similar to the ATGs (at 24 h; Fig 6A and 6B); however, the expression levels of these genes

decreased between 24 and 48 h. All the Rhcaspases were upregulated at 72 h (Fig 6B).

Treatment with high concentrations of 20E increased intracellular Ca2+

and mediated the cleavage of RhATG5 in tick salivary glands

As mentioned above, unfed tick salivary glands were treated with different concentrations of

20E. The results of western blots showed that RhATG8 and RhATG8-PE was upregulated after

treatment with a low concentration (5 μM) of 20E. With the increase in the concentration of

20E, RhATG8 and RhATG8-PE decreased and both cleaved-Rhcaspase7 and NtRhATG5

increased after treatment with high concentrations of 20E (10 μM and 20 μM; Fig 7A and 7B).

Ca2+ was tested in the 20E treated tick salivary glands to demonstrate the increased Ca2+

during the ecdysone mediated degeneration of tick salivary glands (Fig 7C). Similarly, Rhcal-

painI peaked at 24 h, while RhcalpainII expression peaked at 72 h (Fig 7D). The data shows

that the cleavage of ATG5 and caspase-3 depends on the increase of the calcium concentration

after 20E induction.

Fig 5. Programed cell death caused by 20E in vitro. (A) TUNEL staining showing green fluorescence, Scale bars: 50 μm. (B)

Rhcaspase7 (red fluorescence; pcAb from rabbits) and RhATG8 (green fluorescence; pcAb from mice) were co-localized after

treatment with high concentrations of 20E (10–20 μM; displayed as yellow fluorescence), scale bar: 20 μm. Please see S2 Data for the

original images used in Fig 5.

https://doi.org/10.1371/journal.pntd.0009074.g005
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Inhibition of RhATG5 delayed apoptosis in the tick salivary glands

RhATG5 was knocked down in tick salivary glands in vitro (Fig 8A, S2A and S2B Fig), and the

results showed that RhATG8-PE was downregulated relative to the control at 1 d post-

engorgement and cleaved-Rhcaspase7 was downregulated relative to the control at day 5 of

fast feeding (Fig 8A). RhATG5 knockdown result in the inhibition of apoptosis, and the degree

of nuclear and cytoplasmic separation was reduced (Fig 8B). In addition, TEM analysis showed

that, compared with the control groups, the degree of vacuolization was noticeably reduced

Fig 6. qRT-PCR quantification of the expression levels of (A) autophagy-related genes and (B) apoptosis-related genes after

treatment with 20E. Please see S1 Data for the numerical values used in Fig 6. Bars represent mean ± SD for three replicates.

Significance of differences determined by Student’s t-test: �p< 0.05; ��p< 0.01, ���p< 0.001, ����p< 0.0001.

https://doi.org/10.1371/journal.pntd.0009074.g006
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Fig 7. Treatment with 20E increased cellular Ca2+ concentration and mediated the cleavage of RhATG5 in vitro. (A) Western blots showing the expression levels

of proteins associated with autophagy and apoptosis after treatment with different concentrations of 20E, each group consist of the salivary glands of 10 ticks. (B)

Statistical analysis of (A). (C) Cellular concentrations of Ca2+, using Calcium Crimson dye (red fluorescence, scale bars: 50 μm). (D) qRT-PCR quantification of

calpains after treatment with 20E. Bars represent mean ± SD for three replicates. Significance of differences determined by Student’s t-test: �p< 0.05; ��p< 0.01,
���p< 0.001, ����p< 0.0001. Please see S1 and S2 Data for the numerical values and original images used in Fig 7.

https://doi.org/10.1371/journal.pntd.0009074.g007

PLOS NEGLECTED TROPICAL DISEASES Transition from autophagy to apoptosis during the degeneration of tick salivary glands

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009074 January 29, 2021 14 / 23

https://doi.org/10.1371/journal.pntd.0009074.g007
https://doi.org/10.1371/journal.pntd.0009074


after knockdown (Fig 8C). These results revealed that RhATG5 is crucial for both autophagy

and apoptosis.

RNAi knockdown of RhATG5 in vivo inhibited tick blood-feeding behavior

RNAi of RhATG5 in vivo caused inhibition on the blood-feeding behavior of R. haemaphysa-
loides. When RhATG5 was knocked down (Fig 9A), R. haemaphysaloides blood-feeding behav-

ior was inhibited (Fig 9B). In addition, RhATG5-knockdown ticks had a decreased

engorgement rate and a higher mortality rate than wild-type ticks (Table 1). However, there

was no difference in attachment rate at 48 h between the wild-type and the RhATG5-knock-

down groups (Table 1). These results suggest that RhATG5 plays an important role during tick

feeding.

Discussion

Ticks are well-known pathogen vectors which transmitted virus, bacterial and protozoan and

they are evolutionarily distant from mammals and insects. Understanding the tick

Fig 8. RNAi of RhATG5 in vitro. (A) Knockdown of RhATG5 inhibited the protein expression of RhATG8-PE and cleaved-Rhcaspase7. (B) Knockdown of RhATG5

reduced the degree of vacuolization in the tick salivary glands, scale bars: 1 μm. (C) Positive TUNEL staining decreased after RNAi of RhATG5, scale bars: 50 μm. Please

S2 Data for the original images used in Fig 8.

https://doi.org/10.1371/journal.pntd.0009074.g008
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physiological characteristics is the key step for investigating the mechanism of pathogen trans-

mission in ticks. However, there are knowledge gap remained in tick physiology. ATG5 is

required for autophagy and apoptosis in most species. However, this was previously not recog-

nized in ticks. The 20E steroid hormone promotes programmed cell death in insects but the

mechanism in ticks is unclear. We first proved that 20E promotes both autophagy and apopto-

sis and that ATG5 is necessary for autophagy and apoptosis in ticks.

Most of the apoptosis and autophagy associated genes were sharply upregulated post

engorgement. This indicated that both autophagy and apoptosis occur during tick salivary

gland degeneration. ATG5 and ATG12, which are generally thought to form a covalently-

bound complex during autophagy [61,62], had similar transcriptional profiles in R. haemaphy-
saloides during feeding (Fig 2A). ATG16, other major members of the ATG5-ATG12-ATG16

complex [63,64], ATG10, the E2 ubiquitination protein, as the catalyst of complex formation

[61,65], were also upregulated after engorgement. Interestingly, the expression levels of most

autophagy-related genes in the tick salivary glands peaked during the slow-feeding phase

(Fig 2A), as did the ecdysone titer changed. Thus, the upregulation of autophagy-related genes

during the slow-feeding period (days 1–4) might be associated with the elevated concentra-

tions of ecdysone in salivary glands, but this supposition requires further experimental confir-

mation. Our results clearly showed that, during the fast-feeding phase (days 5–7), autophagy-

related genes were downregulated, but apoptosis-related genes were upregulated. In addition,

the two initial Rhcaspases (Rhcaspase8 and Rhcaspase9) were upregulated before the two effec-

tor Rhcaspases (Rhcaspase1 and Rhcaspase7) molecules (Fig 2B). Thus, our results indicated

that both autophagy and apoptosis are involved in the degeneration of tick salivary glands.

Table 1. Effects of knocking down RhATG5 on tick feeding behavior.

dsRhATG5 dsLuciferase

Attachment rate at 48h (%) 80.22±0.906 87.70±0.690

Engorgement rate (%) 0 75.79±3.255

Engorged tick weight (mg) —— 363.01±30.01

https://doi.org/10.1371/journal.pntd.0009074.t001

Fig 9. RNAi of RhATG5 in vivo. (A) Confirmation of RhATG5 silencing using qRT-PCRs. Total RNA was extracted on feeding day 5 from female

ticks injected with dsRNA. Bars represent mean relative expression of RhATG5 across three replicates; error bars represent standard error. ���,

P< 0.001, based on two-tailed Student’s t tests. (B) Representative images comparing ticks injected with dsRhATG5 with control groups on day 6 of

feeding. DsRhATG5 injection inhibited blood-feeding behavior; injected ticks were smaller than control ticks. Please see S1 Data for the numerical

values used in Fig 9.

https://doi.org/10.1371/journal.pntd.0009074.g009
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It has been suggested that the peak in hemolymph ecdysteroid concentration during the

fast-feeding phase contributes to the initiation of salivary gland degeneration [19]. This

hypothesis was supported by the results of the TUNEL and TEM assays of the salivary glands

from ticks allowed to feed for different periods (Fig 1A, 1B and 1C). As shown above, the pro-

tein NtATG5, which was a maker for the transition from autophagy to apoptosis, was initially

expressed during the fast-feeding phase (days 5–7) and was significantly downregulated post

engorgement. After a transient peak in expression on day 3 of feeding, the transcriptional lev-

els of most autophagy-related genes were reduced. In contrast, the expression levels of the

Rhcaspases increased during the fast-feeding period (Fig 2A and 2B). In addition, intracellular

Ca2+ concentration and Rhcalpain expression peaked simultaneously with the appearance of

NtATG5 (Fig 4C and 4D). The knockdown of RhATG5 in vitro delayed both autophagy and

apoptosis, demonstrating that RhATG5 is closely associated with both autophagy and apopto-

sis in the tick salivary glands.

In insects, programmed cell death is usually induced by ecdysone [33,34,66]. In addition,

peak ecdysone titer peaks simultaneously with the autophagy-related gene transcription in

most insects [32,34,66]. After insects enter metamorphosis, ecdysone concentration in the

hemolymph increases sharply and up to 0.15μM, and is converted into highly-active 20E; 20E

then induces the degeneration of obligate tissues [34,67]. It has been reported that the ecdy-

sone titer (about 0.2μM) in tick salivary glands increases throughout the feeding period, and

remains elevated for up to six days post engorgement [19]. However, it is unclear whether

these events are associated in ticks.

For the 20E treatment in vitro, considering the differences in activity between commercial

20E and 20E synthesized in the body, and there may be differences in tick species and mea-

surement errors in the preliminary concentration detection, we mainly refer to the concentra-

tion of 20E in insects. Our results showed that, similar to insects [43,68], 20E induced

Fig 10. Schematic showing how 20E induces autophagy and apoptosis in the tick salivary glands. At low

concentrations (during the slow-feeding phase, days 1–4 of feeding) 20E induces autophagy. As the concentration of

20E increases (during the fast-feeding phase, days 5–7 of feeding), cellular Ca2+ increases, mediating the cleavage of

RhATG5, and thus the transition from autophagy to apoptosis.

https://doi.org/10.1371/journal.pntd.0009074.g010
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autophagy in low concentrations (RhATG8-PE upregulated), while high concentrations of 20E

stimulate the cleavage of RhATG5 (the appearance of NtRhATG5) and transition from autop-

hagy to apoptosis (RhATG8-PE downregulated and cleaved-Rhcaspase7 upregulated) in tick

salivary glands. However, the situation appears to differ in the salivary glands of blood sucking

tick in vivo. Ticks switched from autophagy to apoptosis during the rapid blood-sucking

period due to the increase of ecdysone in the hemolymph, but this transition was reversed post

engorgement. Thus, our results indicated that the rates of both autophagy and apoptosis were

high in tick salivary glands post engorgement. We hypothesize that this phenomenon might be

due to the long feeding period of ticks, and might be caused by host-specific factors, but fur-

ther studies are necessary to investigate these factors.

During the slow blood-feeding period, ecdysone concentration was elevated in the tick sali-

vary glands, resulting in a general increase in the transcription of RhATGs. However, during

the rapid feeding phase, ecdysone concentration fluctuated in the hemolymph, intracellular

Ca2+ concentration increased, and NtRhATG5 appeared (Fig 10). These factors reflected a

transition from autophagy to apoptosis. Our findings provide a basis for advanced studies on

tick salivary glands degeneration.
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profiles of (A) fed-5d and (B) engorged-0d tick salivary glands after the RNAi of RhATG5.
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