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Abstract

The central role of species competition in shaping community structure in ecosystems is

well appreciated amongst ecologists. However species competition is a consistently missing

variable in Species Distribution Modelling (SDM). This study presents results of our attempt

to incorporate species competition in SDMs. We used a suit of predictor variables including

Soil Adjusted Vegetation Index (SAVI), as well as distance from roads, settlements and

water, fire frequency and distance from the nearest herbivore sighting (of selected herbi-

vores) to model individual habitat preferences of five grazer species (buffalo, warthog,

waterbuck, wildebeest and zebra) with the Ensemble SDM algorithm for Gonarezhou

National Park, Zimbabwe. Our results showed that distance from the nearest animal sighting

(a proxy for competition among grazers) was the best predictor of the potential distribution

of buffalo, wildebeest and zebra but the second best predictor for warthog and waterbuck.

Our findings provide evidence to that competition is an important predictor of grazer species’

potential distribution. These findings suggest that species distribution modelling that

neglects species competition may be inadequate in explaining the potential distribution of

species. Therefore our findings encourage the inclusion of competition in SDM as well as

potentially igniting discussions that may lead to improving the predictive power of future

SDM efforts.

Introduction

Ecologists appreciate the central role of competition among species in shaping community

structure within ecosystems [1, 2]. Species compete for a suit of resources including food [3,

4]; water [5, 6] and space [7, 8]. Heightened competition among species may lead to commu-

nity reorganization as the weaker competitor is often excluded, replaced and possibly suffers

local extinction [9, 10]. However, some species adapt through niche differentiation [11] by

avoiding patches where their access to resources is compromised with competition from
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individuals of the same species (intraspecific competition) or those from another species

(interspecific competition) [12]. It is also noteworthy that for some species, the effect of com-

petition on community structure remains largely negligible [13]. These mechanisms put

together, help to explain why species select or avoid particular patches. It is for this reason that

explaining the geographic distribution of species without using competition as a predictor

may not be adequate. However the inclusion of species competition in SDMs remains a grey

area [6].

The reasons for the exclusion of competition as a predictor variable in SDMs are many

including challenges in rasterizing competition. SDMs require continuous surfaces (e.g., raster

data) as predictor variables [14, 15] but currently, there lacks a formally documented method

for rasterizing species competition despite the documented central role of competition in

explaining species distribution. Some studies have estimated competition from point observa-

tions made in the field [16, 17]. However, to the best of our knowledge, past species distribu-

tion modelling attempts (using SDMs) did not use competition as a predictor variable.

In this study, we hypothesized that competition (estimated by distance from the nearest ani-

mal sighting) is a key predictor of the potential geographic distribution of selected grazers. We

propose that physical separation of two species in a landscape is a strategy adopted to avoid

direct competition for resources such as forage and water. Thus the further away the species

are located in the landscape, the lesser the competition and the closer they are, the more the

competition. To test this hypothesis we determined the relative contribution of competition to

predicting the potential distribution of selected grazers as well as the response of selected indi-

vidual grazers to competition. To achieve this, we used the Ensemble SDM [18] with distance

from the nearest sighting together with five other key traditional predictor variables to predict

the potential geographic distribution of: buffalo (Syncerus caffer); warthog (Phacochoerus afri-
canus); waterbuck (Kobus ellipsiprymnus); wildebeest (Connochaetes taurinus), and, zebra

(Equus quagga) in Gonarezhou National Park, Zimbabwe. We anticipate that the results of this

research will find use in ecological applications that seek to predict the potential distribution

of species by encouraging the incorporation of species competition, a key driver of species dis-

tribution that has been neglected in past SDMs.

Materials and methods

Study site

The study was conducted in the Gonarezhou National Park in south-eastern Zimbabwe (Fig

1). The park lies between longitudes 31.32˚E– 32.41˚E and between latitudes 21.11˚S– 22.22˚E.

The park is the second largest in Zimbabwe with a considerable diversity of large mammalian

species. The 2013 aerial survey estimated the population of our target grazer species as follows:

buffalo (4425); warthog (484); waterbuck (578); wildebeest (1416); and, zebra (1685) [19].

Hunting and other forms of consumptive tourism are not permitted in the park and the main

tourism activity is photographic safaris. Thus, the main sources of human interference with

wildlife include tourist-carrying vehicles that drive along the main tourist routes as well as

poaching for game meat from surrounding communities. Uncontrolled veld fires occur

frequently in the park [20] and these are known to drive ungulate distribution in most

ecosystems.

Grazer presence data

Presence data for buffalo (n = 93), warthog (n = 27), waterbuck (n = 21), wildebeest (n = 24)

and zebra (n = 44) were collected via an aerial survey conducted in the study area in October

2013. The aerial survey was a sample with transects spaced at 1.5 km and 2.5 km depending on
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PLOS ONE | https://doi.org/10.1371/journal.pone.0181088 July 14, 2017 2 / 14

https://doi.org/10.1371/journal.pone.0181088


animal density within sampling strata. A Cessna 185 fixed wing plane was used and two

observers sitting at the right and left sides of the plane observed animals within strips of width

150 m. The observers searched for animals between two streamers fitted to the wing struts of

the plane during pre-calibration flights in such a way that the search strip on the ground was

150 m wide. Each time animals were sighted, the location of the sighting was marked using a

handheld GPS device (GPSmap 296, Garmin international). A full description of the method

is provided in Norton-Griffiths [21].

Environmental variables

Species distribution models were based on six predictor variables; Soil Adjusted Vegetation

Index (SAVI), distance from roads, distance from settlements, distance from water, distance

from the nearest animal sighting and fire frequency. Initially, we had seven environmental

variables including short term fire scars but this was excluded in the final modelling since it

exhibited evidence of multicollinearity. We tested for multicollinearity among the predictor

variables using the Variance Inflation Factor (VIF) where the predictors with a VIF>10 were

Fig 1. Location of the Gonarezhou National Park (GNP) in south-eastern Zimbabwe showing presence-only location data for five grazer

species.

https://doi.org/10.1371/journal.pone.0181088.g001
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not included in the final modelling. The VIF was calculated using in Eq 1.

VIF ¼ 1
=
ð1 � R2Þ

ð1Þ

We also tested for correlation between pairs of predictor variables using Pearson’s correla-

tion coefficient (Table 1), and observed no multicollinearity amongst the predictor variables

used to build the candidate models (|r|<0.7 [22]).

SAVI is a proxy for grazing forage quantity which adjusts for bare ground [23]. The compu-

tation of SAVI was based on MODIS (MOD02QKM) images freely available at www.ladsweb.

nascom.nasa.gov (accessed on December 12 2016). The MODIS images were acquired for

October 2013, the same time when grazer presence data were collected. Pre-processing of the

data included projection of the data from the sinusoidal (SIN) to the WGS 84 UTM Zone 36

South Coordinate Reference System to ensure compatibility with animal presence data

described earlier. SAVI is a standard vegetation index calculated using Eq 2.

SAVI ¼ ððNIR � RÞ=ðNIR þ R þ 0:5ÞÞ � ð1 þ 0:5Þ ð2Þ

where NIR represents reflectance in the Near Infrared and R represents the Red band of the

electromagnetic spectrum.

Distance from roads and distance from settlements were both used as indicators of human

interference on wildlife e.g., through tourists conducting photographic safaris and illegal hunt-

ing. The roads and settlements were digitised on very high resolution images freely available

on the Google Earth platform (www.googleearth.com). Later, distance from the roads and set-

tlements were calculated using the Euclidean distance algorithm implemented in ArcGIS 10.1

[24].

We included distance from water as a predictor because drinking water is known to drive

the distribution of most ungulates [25]. The active water points during the time of sampling

were extracted from MODIS NDVI (MOD13Q1) data freely available on www.glovis.usgs.gov.

The NDVI of water bodies is generally negative and the<0.0 threshold was used to classify

water points following Huang et al [26]. We later calculated the distance of individual pixels

from the nearest water point using the Euclidean distance calculation algorithm as described

earlier.

The distance of individual pixels from the nearest recorded location of animal sighting was

used as a proxy for interference competition where the pixels closer to the sighting represented

elevated competition while those further away represented reduced competition. First, animal

sighting data from the aerial survey described earlier were extracted. Second, the distance of

individual pixels from the nearest location of an animal sighting other than the one whose

Table 1. Pearson correlation matrix for predictor variables.

SAVI Settlements Roads MNDWI

Distance from Settlements 0.204

Distance from Roads 0.145 -0.036

Distance from Water 0.014 0.134 0.091

Fire Frequency -0.086 -0.236 0.044 0.193

Distance from sighting other than Buffalo 0.050 -0.120 0.311 0.360

Distance from sighting other than Warthog 0.068 -0.096 0.343 0.320

Distance from sighting other than Waterbuck 0.052 -0.125 0.327 0.358

Distance from sighting other than Wildebeest 0.000 0.000 0.000 0.000

Distance from sighting other than Zebra 0.054 -0.124 0.339 0.360

https://doi.org/10.1371/journal.pone.0181088.t001
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distribution was being predicted was calculated using the Euclidian distance algorithm as

described earlier. In this study, we used distance from the nearest sighting as an indirect mea-

sure of interference competition assuming that herbivores occupying the same space in the

landscape tend to compete more for forage and other resources than those further apart.

Fire scars were used as a proxy for grazing forage quality where pixels with high fire fre-

quency represented superior quality forage whilst those with low values represented inferior

quality. Frequent fires are known to clear moribund vegetation and to promote the growth of

fresh grass rich in nitrogen [27]. Fire scar data at the 500 m spatial resolution were obtained

from the MODIS fire data platform made available via www.reverb.echo.nasa.gov (accessed on

1 December 2016). These data were downloaded for a 15 year period (2000–2014). Overlay

analysis was later used to calculate fire frequency for individual pixels. Therefore fire frequency

ranged from zero to 15 where zero represented pixels that were never burnt during the 15 year

period while 15 represented those that were burnt each fire season of the 15 year period.

Modelling approach

The Ensemble algorithm within the Biomode2 package in R [18] was used for modelling with

the target species’ presence location data as the response variable and the six environmental

variables described above as the predictors. Ensemble models were built, each for buffalo,

warthog, waterbuck, wildebeest and zebra. For each SDM, 70% of the presence points were

used to calibrate the model while the remaining 30% were used to validate the model. We used

a threshold of ROC>0.6 for the Ensemble SDM following Thuiller et al [18].

The response of individual species to each of the six predictor variables was assessed using

the response curves. For interpretation of the response curves, the logistic threshold of equal

training sensitivity and specificity was used where the values above the threshold represented

presence while those below represented absence. For overall model performance we used AUC

following Panczykowski et al [28]. We also ran models without distance from the nearest ani-

mal sighting as a predictor to establish changes in model performance when the predictor was

not used to build the model.

The contributions of individual predictors to the final model were tested using the variables

importance calculation based on permutations implemented in the Biomod2 package in R.

This statistic is based on calculation of the Pearson’s correlation between reference predictors

and shuffled predictors. A predictor with a variable importance of zero has no influence on the

final model.

Results

The predictor variables i.e., SAVI as well as distance from roads, settlements and water, dis-

tance from the nearest sighting and fire frequency adequately explained the potential distribu-

tion of buffalo, waterbuck, wildebeest and zebra in the study area (AUC>0.90). However, the

AUC for the model explaining the distribution of warthog was found to be 0.79.

Modelling without distance from the nearest sighting as a predictor variable reduced

the AUC for buffalo (from 0.98 to 0.93), wildebeest (0.99 to 0.94) and zebra (from 0.97 to

0.93). However the AUC became better for warthog (from 0.79 to 0.94) and waterbuck

(from 0.95 to 0.97) when the distance from the nearest sighting was not included as a predic-

tor variable.

The variable importance analysis (Table 2) showed that distance from other animal sight-

ings (used as a proxy for competition) was the best predictor of the potential distribution of

buffalo (0.70), wildebeest (0.79) and zebra (0.79). However, distance from the nearest sighting

was the second from most important variable in predicting the potential distribution of

Missing in action
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warthog (0.34) and waterbuck (0.12). Distance from settlements was the most important vari-

able explaining the potential distribution of warthog whilst distance from water was the most

important in explaining the distribution of waterbuck.

Buffalo selected patches of medium SAVI (0.17–0.23), medium distance to roads (236–4875

m), medium distance to settlements (11–16 km), close to water (2372–3263 m), far from other

sightings (>58 m) and of high fire frequency (4–11 fires in 15 years) (Fig 2).

Response curves for warthog show that for all the six predictor variables, they selected

patches with values above the logistic threshold of equal training sensitivity and specificity

(Fig 3).

Waterbucks selected patches located far from other sightings (>163 m) and those close to

water (<742 m) whilst the other four predictors were below the logistic threshold (Fig 4).

Wildebeest selected patches located far from water (>14 km) and also farther from other

animal sightings but the other four predictor variables were below the logistic threshold

(Fig 5).

Table 2. Variable importance for each species distribution model.

Species Variable Variable importance

Buffalo Distance from nearest sighting 0.701

Distance from water (m) 0.052

Distance from settlement (m) 0.046

Fire frequency 0.035

SAVI 0.023

Distance from road (m) 0.004

Warthog Distance from settlement (m) 0.699

Distance from nearest sighting 0.336

Fire frequency 0.013

Distance from water (m) 0.002

Distance from road (m) 0.001

SAVI 0

Waterbuck Distance from water (m) 0.767

Distance from nearest sighting 0.116

SAVI 0.032

Fire frequency 0.03

Distance from road (m) 0.024

Distance from settlement (m) 0.017

Wildebeest Distance from nearest sighting 0.789

Distance from road (m) 0.082

Distance from water (m) 0.049

Distance from settlement (m) 0.03

SAVI 0.02

Fire frequency 0.015

Zebra Distance from nearest sighting 0.777

Distance from road (m) 0.068

Distance from water (m) 0.047

SAVI 0.045

Distance from settlement (m) 0.035

Fire frequency 0.007

https://doi.org/10.1371/journal.pone.0181088.t002

Missing in action
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Zebras selected patches of high SAVI (>0.263), close to roads (<79 m), far from other

sightings (>44.23 m) and also those patches of high fire frequency (>13 fires) whereas dis-

tance from settlements and distance from water were found to be below the logistic threshold

(Fig 6).

Fig 2. The response of buffalo to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d)

distance from water, (e) distance from nearest sighting and (f) fire frequency. Dotted lines represent the logistic threshold of equal training

sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0181088.g002
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Discussion

We observed that interference competition (estimated by distance from the nearest animal

sighting) explained the distribution of the target species better than forage (SAVI), interference

from humans (distance from roads and settlements), distance from water and fire frequency.

However, in tandem with past literature [29, 30], distance from water sources and distance

from settlements were also important predictors of grazer distribution. SAVI was generally

found to be the least important predictor.

These findings imply that using SDMs to predict the distribution of grazers without compe-

tition as a predictor may be inadequate. Our use of distance from the nearest sighting as a

Fig 3. The response of warthog to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from

settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency. Dotted lines represent the

logistic threshold of equal training sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0181088.g003
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proxy for competition among grazer species for inclusion in SDM provides an important first

step towards better characterisation of herbivore competition. Previous characterization of

competition has largely been restricted to field based observations that are limited in both

space and time [31, 32].

Results from the response curves consistently showed that all the target species avoided

patches that are located near other animal species. In particular, peak probabilities of presence

for the modelled species were observed at distances generally more than 500 m away from the

next sighting. It could therefore be inferred that the patches located further away from other

species are associated with less interference competition for resources such as forage and

Fig 4. The response of waterbuck to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance

from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency. Dotted lines

represent the logistic threshold of equal training sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0181088.g004
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water. However, the effect of competition on the potential distribution of warthog and water-

buck was second best. For the warthog, distance from the nearest settlement was the most

important predictor whilst for the waterbuck, distance from the nearest water source was the

most important. While selection of patches close to settlements by warthogs is surprising,

selection of patches close to water by the waterbuck could be explained by the fact that the

antelope is largely water dependent [33, 34].

The major strength of our study lies in the inclusion of distance from the nearest sighting (a

proxy for competition) with other traditional predictor variables to model the potential distri-

bution of selected grazers. To the best of our knowledge competition is a missing variable in

Fig 5. The response of wildebeest to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance

from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency. Dotted lines

represent the logistic threshold of equal training sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0181088.g005
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SDMs. Results from our study therefore provide impetus to explore newer approaches for

characterizing competition in ecosystems. To date characterizing competition has been limited

to point measurements. Our findings are also reliable because modelling was based on pres-

ence data from five different species, thus suggesting that the reported importance of competi-

tion is a consistent pattern rather than a product of chance. However, a possible limitation of

our analyses is that, the way we estimated competition might not be the best since wildlife

aerial surveys are sample estimates and therefore miss some animals in the landscape. In

Fig 6. The response of zebra to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from

settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency. Dotted lines represent the logistic

threshold of equal training sensitivity and specificity.

https://doi.org/10.1371/journal.pone.0181088.g006
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addition, results from our study give a snapshot of the predicted distribution of the study spe-

cies during the time of sampling and as such cannot be easily used to represent their distribu-

tion at all times of the year.

Conclusion

In this study we provided evidence for the importance of competition as a predictor for the

geographic distribution of grazing ungulates. Our findings suggest that SDMs that exclude

competition as a predictor variable might be inadequate in explaining the potential distribu-

tion of species in ecosystems. We therefore propose the inclusion of competition in SDMs.
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