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Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of
new organelles and molecules, neurotransmission and to the maintenance of redox
homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but
it is also essential to balance nutritional needs through the mobilization of internal energy
stores. A delicate crosstalk between the pathways that sense nutritional status of the cell
and the autophagic processes to recycle organelles and macronutrients is fundamental to
guarantee the proper functioning of the neuron in times of energy scarcity. This review
provides a detailed overview of the pathways and processes involved in the balance of
cellular energy mediated by autophagy, which when defective, precipitate the
neurodegenerative cascade of Parkinson’s disease, frontotemporal dementia,
amyotrophic lateral sclerosis or Alzheimer’s disease.
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Under physiological conditions, the cell can sense changes in the availability of metabolic fuels and
respond to these challenges through the reconfiguration of energy-producing pathways and recycling
of accumulated or damaged organelles and proteins. For that purpose, the cell initiates the ALP-in
which the damaged or unnecessary organelles and proteins are carried in the autophagosomes and
degraded into the lysosomes-, generating micronutrients that will be used to obtain energy. The cell
uses the energy produced and the micronutrients as building blocks to synthesize new
macromolecules and organelles, which will respond to the cell requirements and maintain cell
homeostasis.

1 THE IMPORTANCE OF AUTOPHAGY TO ACCESS THE INTERNAL
NUTRIENT STORES IN TIMES OF ENERGY SCARCITY

Because the availability of environmental nutrients can be intermittent, cells and organisms have
developed efficient ways to store nutrients during periods of abundance, as well as mechanisms to
mobilize internal nutrient stores and reconfigure catabolic pathways to withstand periods of scarcity.
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Autophagy is the main cellular mechanism for the degradation
and recycling of intracellular components, and thus of the utmost
importance for adapting to and surviving nutrient limitation.
This cellular process begins with the encapsulation of a cargo in a
double membrane structure formed de novo called
autophagosome, and culminates with the fusion of the
lysosome and breakdown of the cargo into its basic building
blocks, which will be used to produce energy or generate new
cellular components. Thanks to pioneering studies in yeasts and
later work in mammalian cells, we know that changes in the
carbon source, as well as wholesale nutrient restriction, can
activate macroautophagy (Mitchener et al., 1976). Multiple
signaling mechanisms modulate autophagic activity in
response to the nutritional status of the cell (Mehrpour et al.,
2010), two of the most important of which are the mammalian
target of rapamycin (mTOR) and the AMP activated protein
kinase (AMPK).

MTOR comprises the mTOR 1 (mTORC1) and mTOR 2
(mTORC2) complexes. The mTORC1 complex is a nutrient
sensing kinase that acts as an integrator of information on
cellular energy balance and negatively regulates the initiation

of macroautophagy. In the presence of nutrients and growth
factors, mTORC1 is activated and supports anabolism and
growth, while inhibiting catabolic pathways such as autophagy
(Hosokawa et al., 2009) (Bar-Peled and Sabatini, 2014). Once
activated, mTORC1 directly inactivates ULK1 (Unc-51 Like
Autophagy Activting Kinase) by phoshorylation at Ser757
(Kim et al., 2011), a condition that is sufficient to inhibit
autophagy in the presence of sufficient nutrients. Furthermore,
mTORC1 can undirectly suppress autophagy by controlling
lysosome biogenesis (Roczniak-Ferguson et al., 2012).
mTORC1-mediated phosphorylation of the transcription factor
EB (TFEB) decreases its transcriptional activity, thus decreasing
the overall expression of autophagy-related gene expression
(Roczniak-Ferguson et al., 2012). TFEB is the master
transcriptional regulator of lysosomal and autophagy-related
genes (Settembre et al., 2011).

he lysosome is the main mediator of cellular catabolism,
being the key organelle in cellular degradation and recycling
processes, which allows this organelle to senses cell’s
nutritional status and give the initial response to the
environmental changes. Thus, lysosome is at the center of a

GRAPHICAL ABSTRACT | Schematic Representation Highlighting the Mechanisms of Nutrient Sensing and Autophagy Under Physiological Conditions.
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complex regulatory network for the control of cellular and
organism homeostasis. The activation of mTORC1 requires its
recruitment to the lysosomal surface, which is mediated by the
amino acid-dependent activation of heterodimeric RAG
GTPase and their interaction with Ragulator (Sancak et al.,
2010; Lawrence et al., 2018; Lawrence and Zoncu, 2019). In this
way, the information collected by the lysosome about the
nutrient levels is transferred to mTORC1 to further regulate
the biosynthesis pathways. The lysosome is also able to initiate
the cellular response to a nutrient need through the activation
of TFEB (Lysosomal mTORC1 and RAG GTPases modulate
the nucleocytoplasmic shuttling of TFEB recruiting it in to the
lysosomes) inducing the expression of genes that are related to
the biogenesis of autophagosomes and lysosomes (Martina and
Puertollano, 2013; Settembre et al., 2013). Recent findings have
shown that lysosome is the place where AMPK can sense
glucose availability as well in the absence of any changes in
cellular energy state (i.e., AMP/ATP) through a mechanism
that involves the formation of a complex with v-ATPase,
ragulator, axin, liver kinase B1 (LKB1) acting in opposition
to mTORC1 (Zhang et al., 2017).

AMPK is activated by nutrient limitation, energy deficiencies
and other stress signals, and plays an essential role in the
maintenance of metabolic homeostasis by activating key
catabolic pathways while inhibiting anabolism. AMPK
activation has classically been accepted to be triggerd by
increased AMP/ATP ratios, but it was recently shown that it
can be activated by glucose withdrawal even before AMP/ATP
ratios increase (Zhang et al., 2017). AMPK promotes
autophagosome formation through direct phosphorylation of
ULK1 and ULK2 at Ser317 and Ser777 (Kim et al., 2011), and
it can also indirectly activate autophagy by inhibiting mTOR
through phosphorylation of tuberous sclerosis complex 2 (TSC2)
and Raptor (Gwinn et al., 2008). Furthermore, AMPK is required
during the TFEB-induced lysosomal biogenesis process;
therefore, it is also capable of stimulating autophagic flux by
increasing the number of lysosomal vesicles (Zhao et al., 2020).
These studies have clearly demonstrated that AMPK, being a
critical sensor of nutrient availability among other important
cellular processes, is capable of coordinating autophagy activity
through mTOR-dependent and independent mechanisms.
Persistently high AMPK signaling as a consequence of energy

TABLE 1 | Summary of altered mechanisms and related genes across neurodegenerative diseases.

Risk factors related
to nutrient

dyshomeostasis

Altered cellular mechanism mTOR/AMPK dysregulation References

AD Gene-related — Dysregulated mTOR response to
starving

Lee et al. (2010)
APOE4 Poor lipid utilization, Impaired

lysosome and endosome sortingPICALM AMPK activation rescues amyloid
pathology

Caccamo et al. (2010), Tramutola et al. (2017), Ou
et al. (2018), Parcon et al. (2018)MAPT Impaired autophagosome

trafficking
Environment/lifestyle-related — Leoni et al. (2013), Vurusaner et al. (2014)
Insulin resistance Impaired brain glucose

metabolism
Hypercholesterolemia Impaired brain cholesterol

metabolism

PD Gene-related — Upregulated mTOR activity Kitada et al. (1998), Valente et al. (2004), Stefanis
et al. (2001)Parkin, PINK1 Impaired mitochondrial recycling

SNCA, LRKK2 Impaired lysosome traffic and
Impaired mitochondrial recycling

Ng et al. (2012), Zhu et al. (2019), Alegre-Abarrategui
et al., 2009

GBA Defective lysosome activity and
Mitochondrial dysfuncion

A et al. (2014), Magalhaes et al. (2016), Osellame
et al. (2013); ME and AH. (2016)

Environment/lifestyle-related Impaired brain glucose
metabolism

Chen et al. (2015), Cai et al. (2019)

NA —

ALS/
FTD

Gene-related — Chronic overactivation of AMPK
signalling likely aggravates
neuropathology

Bartolome et al. (2013), Straub et al. (2021), Lim et al.
(2012a), Ling et al. (2014), Perera and Turner (2016)TARDBP, VCP, CHCHD10,

SOD1
Impaired energy production in
mitochondria
Impaired glucose uptake in MNs

C9ORF72, OPTN, SQSTM1,
VCP, TBK1

Impaired lysosome biogenesis
and maturation

Root et al. (2021), Sundaramoorthy et al. (2015),
Deng et al. (2020), Ju et al. (2009)

GRN (FTD) link to metabolic disease and
lysosome storage disorder

Youn et al. (2009), Smith et al. (2012)

Environment/lifestyle-
related (ALS)

—

Low BMI — O’Reilly et al. (2013), Perera and Turner, (2016)
Type I diabetes mellitus — Jawaid et al. (2015)
Strenuous sport exercising — Gallo et al. (2016), Julian et al. (2021)

NA, Not applicable.
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shortages or dysregulated nutrient sensing would result in
excessive autophagic flux and, consequently, in excessive
elimination of certain organelles such as mitochondria, leading
to further aggravation of the energy crisis. This is consistent with
observations showing that persistent activation of the AMPK
signaling pathway results in neuronal death in vivo (Ju et al., 2011;
Domise et al., 2019; Belforte et al., 2021).

Although autophagy was originally described 60 years ago,
numerous recent studies have reported autophagic alterations in
different human disorders such as cancer and neurodegenerative
diseases, among others (Mizushima et al., 2008; Mehrpour et al.,
2010). Most of the studies that establish a connection between
autophagy dysregulation and disease have emphasized the
important role of autophagy in the maintenance of
prosteostasis, in the quality control of intracellular organelles,

its contribution to cell remodeling, or its role in innate and
acquired immunity (Mizushima et al., 2008). In recent years,
bioenergetic deficiencies combined with impaired autophagic
responses to such challenges have emerged as novel potential
drivers of disease, since they would ultimately aggravate the
energy imbalance and compromise cellular homeostasis
(Chakravorty et al., 2019). In highly specialized tissues with
high-energy demands, the correct balance between energy
production and utilization is essential to guarantee correct
physiological functioning. The human brain consumes up to
20% of the body’s energy, predominantly directed towards
biosynthesis, neurotransmission and defense against oxidative
stress (Tefera et al., 2021). Therefore, during neurodegeneration
or aging -both scenarios where energy-producing pathways are
challenged and nutrients may be scarce-, the correct functioning

FIGURE 1 | Genetic risk factors associated with poor metabolic fitness and defective autophagy in AD. In ApoE4 carriers, the overabundance of ApoE4 in brains
threatens the proper lipid transport from astrocytes to neurons, thus leading to decrease autophagic biogenesis in neurons, poor mitochondrial recycling and, as a result,
increased production of ROS, promoting pathological conditions that allow amyloid and Tau aggregation. Autophagosomes cointain the elements of the beta secretase,
thus, mutations in APP, BACE1 and PS1 increase the production of Aβ, which further interferes with autophagosome formation and aggravates the oxidative stress
status of the neurons. Besides, MAPT mutations increase the hyperphosphorylation of Tau and disrupt vesicle trafficking, impeding autophagosome formation and
transport. On top of that, peripheral hypercholesterolemia may induces, through different ways, the accumulation of the brain cholesterol metabolite 27-OH, where it
mediates a feed-forward loop that downregulates cholesterol synthesis in neurons and astrocytes. This will eventually cause detrimental effects including reduction of
synaptic proteins (Psd95, SNAP-25) and Tau hyperphosphorylation, with consequences on autophagosome formation and trafficking, mitochondrial renewal and ROS
production.
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of autophagy is not only necessary to recycle dysfunctional
organelles and macromolecules, but it is also important for
balancing nutrient needs and guaranteeing the availability of
energy fuels, mainly in the form of glucose and fatty acids.

Alterations in autophagy and in the pathways and
processes of energy production or sensing are a
fundamental part of the complex neuropathological cascade
in many neurodegenerative diseases, and several of the
mechanisms that connect both processes, i.e., AMPK and
mTOR, have been widely studied as first-in-class targets to
treat neurodegeneration. The following lines are intented to
make a comprehensive review on the mechanisms involved in
defective nutrient sensing and organelle reclycling that are
common or specific to the most prevalent neurodegenerative
diseases, and how risk factors, both environmental and
genetic, impinge on them. The processes and mechanisms
are further summarized in Table 1 and illustrated in
Figures 1–3.

2 DEFECTS OF NUTRIENT SIGNALING AND
AUTOPHAGY IN ALZHEIMER’S DISEASE

Alzheimer’s Disease (AD) is the most prevalent age-related
neurological disease worldwide, with its incidence increasing
together with the rise of life expectancy. AD is characterized
by the deposition of amyloid β protein (Aβ) in the form of
extracellular amyloid plaques and by the presence of intracellular
Neurofibrilary tangles (NFT) formed by hyperphosporylated Tau
protein aggregates (TAU) (De Strooper and Karran, 2016). Aβ is
genrated by the cleavage of APP by β-secretases (BACE1) and by
Presenilin 1 and 2 (PS1 and PS2). Mutations in APP, PS1, PS2 or
BACE1 (Reitz et al., 2020) have been shown to be responsible for
the familiar cases of the disease, that show an early onset (EOAD).
However, the vast majority of AD cases (95%) are sporadic,
present a late onset (LOAD) and the causes remain largely
unknown, although its thought to be due to a combination of
environmental and genetic risk factors, in addition to lifestyle.

FIGURE 2 | Schematic representation highlighting the involvement of various genetic risk factors associated to PD in defective mechanisms of nutrient sensing and
autophagy. In PD, abnormalities in lysosomes caused by mutations in the genes LRRK2 or GBA would induce a collapse of the autophagic flux, leading to the
accumulation of misfolded proteins into pathological inclusions, and intermediate autophagic vesicles, such as multivesicular bodies. Mutations in PINK1 and PARKIN
cause important alterations in mitochondrial dynamics, which affects severely the production of energy through the oxidative phosphorylation and increases the
production of oxidative stress. This energy crisis, together with the failed attempt of the ALP to recycle micronutrients, jeopardize the biosynthesis of new
macromolecules and organelles, and eventually compromise the neuronal homeostasis.
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Apolipoprotein E4 (ApoE4) allele is the most significant genetic
risk factor for LOAD, being present in more than 50% of the cases
(Raber et al., 2004). The main role of ApoE is cholesterol
transport, but it is also involved in Aβ processing and glucose
metabolism (Jiang et al., 2008). Indeed, regional glucose
hypometabolism is an eary event in the pathogenesis of the
disease, being used even for diagnosis purposes, and ApoE4
carriers show decreased glucose metabolism compared to non-
carriers (Ong et al., 2014; Johnson et al., 2017).

Considering that glucose is a major source of energy in the
brain, it is possible that in the context of AD, when deficiencies in
glucose metabolism start to occur, autophagy plays a key role in
order to acces internal sources of nutrients to maintain the
bioenergetic homeostasis. However, deregulation of nutrient-
sensing pathways and defects in autophagy and in the
clearance of dysfunctional proteins have also been linked to
AD pathophysiology (Nilsson and Saido, 2014; Hou et al.,
2019). Therefore, a better understanding of pathways such as
the regulation of mTORC1 and AMPK-induced activation of

autophagy may offer novel potential treatments for age-related
diseases.

2.1 Evidence of Poor Nutrient Sensing in
Alzheimer’s Disease
A seminal work on the role of autophagy in AD identified a
higher accumulation of autophagosomes in the frontoparietal
cortex of affected patients through immuno-electron microscopy
(Nixon et al., 2005). Later, another study showed Beclin-1 to be
significantly reduced in AD brains (Pickford et al., 2008).
Upregulation of microtubule-associated light chain 3-ll (LC3-
ll), which induces autophagy, is seen at early AD stages (Yu et al.,
2005). Moreover, genes that regulate autophagy, such as the
phosphatidylinositol-binding clathrin assembly protein
(PICALM), are correlated with the accumulation of tau in
zebrafish and Drosophila models (Moreau et al., 2014) and
have emerged as genetic risk factors for AD (Lee et al., 2011;
Ortega-Rojas et al., 2016; Santos-Rebouças et al., 2017). Indeed,

FIGURE 3 | Schematic representation highlighting the involvement of various genetic risk factors associated to ALS/FTD in defective mechanisms of nutrient
sensing and autophagy. In ALS/FTD, alterations in the autophagic flux caused by mutations in TBK-1, OPTN, SQSTM1, UBQLN2, VCP, C9ORF72 or GRNmay lead to
the accumulation of misfolded proteins into pathological inclusions, and the improper recycling of damaged organelles, as for example mitochondria, to produce
micronutrients. Damagedmitochondria or mutations inCHCHD10 or VCP that are associated with defective mitochondria phenotypes, would further aggravate the
energy crisis that is precipitated by the failure of energy-sensing pathways, such as defective lysosomal signaling or dysregulated AMPK activation.
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PICALM cleavage is altered in AD (Carrasquillo et al., 2010;
Schnetz-Boutaud et al., 2012), leading to reduced levels that
result in a lack of autophagosome maturation of (Lee et al.,
2010). Also, autophagy is disrupted by PS1 mutations related to
EOAD (Lee et al., 2010). Decreased lysosomal acidification, a cause
of autophagy dysfunction, has been observed in fibroblasts from
EOADPS1 A246Emutation carriers and it’s linked tomutations in
a vacuolar ATPase (v-ATPase), responsible for pumping protons
into the lysosome (Coffey et al., 2014). In PS1 deficient cells, the
amino-acid sensing mTORC1 is attached to lysosomal membranes
and does not react to starvation, restricting lysosomal function
(Reddy et al., 2016). These findings suggest that nutrient-sensing
pathways could play a central role in the pathogenesis of AD.

mTORC1 is one of the most studied amino acid nutrient sensing
signaling pathwys andplays a key role in bothAβ andTAUpathologies.
Aβ accumulation has been associated to the overactivation ofmTORC1
signaling, whilst mTOR signaling inhibition leads to reduced Aβ levels
(Caccamo et al., 2010; Kioussis et al., 2021). Moreover, accumulating
evidence suggests that mTOR activation enhances TAU pathology via
autophagy inhibition which, in turn, enhances Aβ accumulation
(Tramutola et al., 2017), that further promotes TAU
hyperphosphorylation. In both cases, mTORC1 inhibition seems to
be beneficial to diminish Aβ and TAU pathology (Wang et al., 2014),
although mTORC1 regulation is complex and needs to be better
understood in order to design effective treatments with minimal
side-effects (Carosi and Sargeant, 2019).

Together with mTORC1, AMPK regulates glucose and lipid
metabolism, it is deregulated in AD brains (Jeon, 2016). Numerous
reports show that AMPK signalling modulates TAU phosphorylation
and pathology in vivo (Domise et al., 2016;Wang et al., 2020b, 2020a).
Further, AMPK is an autophagy activator, thus its activation should
be beneficial to reduce Aβ pathology. For example, treatment with
metformin, a known AMPK activator, induced a decrease of Aβ
pathology in an in vivo model of AD (Ou et al., 2018). Also, some
studies have shown that metformin is associated with a lower risk of
AD (Ng et al., 2014; Chin-Hsiao, 2019). However, this issue remains
controversial, as at least one other study found no correlation between
metformin and AD risk in diabetic patients (Sluggett et al., 2020), and
other studies have found an increased risk of AD with metformin
intake (Imfeld et al., 2012; Ha et al., 2021). The discrepancies between
these reports might be explained by inter-individual differences in the
pathogenesis of AD and highlight the relevance of identifying AD
subtypes for personalized treatments (Loera-Valencia et al., 2019a;
Caberlotto et al., 2019). Altogether, it becomes evident that nutrient
metabolism and autophagy are crucial regulators of pathways with
relevant roles in TAU and Aβ aggregation (Tang et al., 2014; Yang
et al., 2019).

2.2 Autophagy Dysregulation in the Context
of Alzheimer’s Disease: Focus on
Disease-Relevant Genes and Metabolic
Risk Factors
2.2.1 Amyloid β Protein
The relationship between autophagy and amyloidosis is complex
since many features of proteolytic cleavage are involved in both

the clearance and production of amyloid-beta. Inhibition of
autophagy with chloroquine (CQ) in SH-SY5Y cells and the
HEK293T (AβPPsw) model induces intracellular accumulation
of Aβ1-42 (Gerenu et al., 2021), while autophagic activation by
estrogen receptor beta overexpression, decreased Aβ1-42 levels
(Wei et al., 2019). However, Nilsson and co-workers previously
reported that a conditional knockout of Atg7 (with impaired
autophagy), decreased amyloid-beta secretion by 90%, and
normal Aβ secretion was restored when autophagy was
stimulated to normal levels (Nilsson et al., 2013; Loera-
Valencia et al., 2019b). This is evidence that autophagy is
important not only for Aβ degradation but also for its
production, this theory is supported also by the presence of
the four components of the beta-secretase complex in
autophagic vesicles (Yu et al., 2005).

Although the exact mechanism regulating the formation of the
isolation membrane that leads to autophagosome formation is
not fully understood, it has been reported that mitochondria-
endoplasmic reticulum (ER) contact sites (MERCS) are one of the
places where this process can occur (Garofalo et al., 2016).
MERCS are domains arising from the interaction between
specific regions of the ER and the outer mitochondrial
membrane. These contact sites have been related to important
biological processes such as the ER calcium shuttling into
mitochondria and they are altered in AD and in AD-related
models (Paillusson et al., 2016). Moroever, all required
components for APP processing as well as Aβ peptide can also
be found inMERCS (Schreiner et al., 2015). It was recently shown
that the connectivity between mitochondria and ER is increased
in brains and primary neurons isolated from AD mouse models
displaying increased amyloidosis. In addition to MERCS
ultrastructural alterations, neurons from AD mouse models
also displayed alterations in autophagosome formation,
mitochondrial membrane potential and ATP production
during starvation (Leal et al., 2020).

2.2.2 MAPT (Tau Protein Aggregates)
Autophagy is also related to the clearance of TAU as an
alternative pathway for degradation by the ubiquitin-
proteasome system. Swedish amyloid precursor protein gene
double-mutation KM670/671NL (APPswe) EOAD patients
show hyperphosphorylated tau associated with LC3 and p62 (a
ubiquitin-binding protein) in their frontal cortex, which is not
present in control subjects (Piras et al., 2016). Again, the
conditional knockout model of Atg7 shows impaired
autophagy, age-related neurodegeneration, and accumulation
of hyperphosphorylated tau in the brain (Inoue et al., 2012).
Reciprocally, pathogenic tau mutations such as the tubulin-
binding repeats linked to chromosome 17 can induce
accumulation of acid lysosomes and interfere with normal
autophagic flux (Lim et al., 2001). Surmounting evidence
shows the importance of autophagy for AD and other
neurodegenerative diseases; nevertheless, the classic view of
autophagy as a recycling system of the cell is becoming
outdated, since it can actively modulate mechanisms of
synaptogenesis and cell death (Nikoletopoulou et al., 2015;
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Jung et al., 2020). Therefore, we need to study these new roles if a
feasible autophagy-based AD therapy is to be developed.

2.2.3 ApoE4
As we mentioned before, ApoE is a lipoprotein that functions as a
transporter of cholesterol and other lipids in the body (Holtzman
et al., 2012). ApoE has three isoforms (ε2, ε3 and ε4) where ApoE4
confers a higher risk to develop AD and is regarded as the strongest
genetic risk factor for LOAD (Kloske and Wilcock, 2020).

Several studies point to ApoE4 involvement in autophagy
dysfunction. FoxO3a, a member of a family of transcription
factors that play a role in the regulation of several autophagy-
related genes (Audesse et al., 2019), is repressed in human
postmortem brain samples from AD ApoE4 carriers in
comparison to non-carriers (Sohn et al., 2021). This study also
showed a decrease in protein expression of autophagy- and
mitophagy-related genes, such as ATG12, BECLIN-1, BNIP3
and PINK1 that are regulated by FoxO3a. Another study
reported that the coordinated lysosomal expression and
regulation (CLEAR) DNA motifs, a region in the DNA where
the master autophagy regulator and TFEB induces its
downstream genes, can also be targeted by ApoE4, which
competitively binds CLEAR motifs, inhibiting the expression
of autophagy-related genes (Parcon et al., 2018).

Cell-type-specific studies show that astrocyte metabolism is
affected by ApoE4 expression (Figure 1). Upon autophagy-
inducing conditions, ApoE4 expressing astrocytes exhibited
lower autophagic flux in comparison to ApoE3 astrocytes
(Simonovitch et al., 2016). Moreover, APOE4 expression was
associated with altered mitochondrial dynamics including,
fusion, fission, and mitophagy in comparison to ApoE3-
expressing astrocytes (Schmukler et al., 2020). A recent study
investigated the role of ApoE4 in regulating fatty-acid
metabolism in the brain (Qi et al., 2021) and found that ApoE4
astrocytes had more fragmented mitochondria, lower β-oxidation
levels and a higher accumulation of lipid droplets. These effects
could in turn contribute to the lipid dysregulation and bioenergetic
deficits that are observed in AD (Sato and Morishita, 2015).

2.3 Lipid and Cholesterol Sensing in
Alzheimer’s Disease
2.3.1 Alterations in Cholesterol Metabolism Lead to
Inflammation and Synaptic Dysfunction in the Brain
Cholesterol nuclear receptors are widespread in neurons and glial
cells alike (Olkkonen and Levine, 2004; Ali et al., 2013; Moutinho
et al., 2015). Cholesterol levels in the brain are regulated by the
interplay between oxidized forms 24-hydroxycholesterol (24-
OH) and 27-hydroxycholesterol (27-OH) (Meaney et al., 2007;
Båvner et al., 2010; Shafaati et al., 2011; Ali et al., 2013). As
cholesterol is metabolized by the enzyme CYP46A1 into 24-OH
in neurons, HMG-CoA reductase is activated to promote
cholesterol biosynthesis in the brain. Conversely, high levels of
27-OH coming from peripheral cholesterol catabolism decrease
HMG-CoA reductase activity and decrease global cholesterol
levels in the brain. Neurodegeneration depletes the brain from
CYP46A1 and thus decreases cholesterol biosynthesis

(Leoni et al., 2013), which is essential for memory function.
Similarly, hypercholesterolemia leads to the accumulation of 27-
OH in the brain, which disrupts cholesterol metabolism as
discussed below.

Cholesterol in the brain is synthesized de novo by glial cells,
transporting it to neurons via lipoprotein particles, such as APOE
(Figure 1). When cholesterol synthesis disruption causes
neuronal function impairment, showing behavioral defects in
mice (Ferris et al., 2017). Cholesterol metabolism deregulation
can alter astrocytes and microglia physiological states. High levels
of 27-OH generated from a high-fat/cholesterol diet led to
overproduction of S100A8 alarmin and its receptor RAGE,
inducing sterile inflammation that contributes
neurodegeneration (Loera-Valencia et al., 2021a).

Besides pro-inflammatory responses, 27-OH is also able to
activate cellular pathways that are regulated by reactive oxygen
species (ROS) such as autophagy (Vurusaner et al., 2014). By
activating the extracellular signal-regulated kinase (ERK) and the
phosphoinositide 3-kinase (PI3K)/Akt pathways, 27-OH induces
the upregulation of the nuclear factor erythroid 2 p45-related
factor 2 (Nrf2) in vitro. Nrf2 is a transcription factor for several
antioxidant proteins that plays a role modulating autophagy via
p62 in response to oxidative stress (Tang et al., 2019). In vitro
treatments of 27-OH induced an increase in Beclin1, LC3II and a
decrease in p62 (Vurusaner et al., 2018).

Cholesterol metabolism alterations can also directly impact
synaptic function (Figure 1). Evidence shows that APOE4 has
low transport affinity and binding capacity for lipids reducing
cholesterol transport from astrocytes to neurons and leading to
lower synaptic density and cognitive decline (Lee et al., 2021).
Cholesterol imbalance in the brain can worse memory
performance in mice (Merino-Serrais et al., 2019), lead to
synaptic dysfunction by downregulating Psd95 and SNAP-25
(Merino-Serrais et al., 2019).

2.3.2 CD36 and Lipid Sensing in the Brain
While neuroendocrine neurons sense fatty acids to modulate
metabolism in the body (Oishi et al., 1990; Tewari et al., 2000;
Honen et al., 2003), at the cellular level, the molecular sensor for
fatty acids in brain cells is CD36, a transmembrane glycoprotein
that is expressed in many cell types, including epithelial cells,
adipocytes, dendritic cells and hepatocytes, among others
(Mitchell et al., 2011). Although CD36 plays a role in the
binding, transport and uptake of fatty acids (Pepino et al., 2014;
Ioghen et al., 2021) as well as fatty-acid sensing in oral epithelial
cells (Laugerette et al., 2005), it has multiple cellular functions such
as angiogenesis or internalization of bacteria depending on the cell
type where it is expressed on (Abumrad et al., 2005).

Early studies on Alzheimer’s Disease patients showed that
CD36 is highly expressed in cortical samples of AD patients and
cognitively normal subjects with the presence of amyloid plaques
compared with amyloid-free controls (Ricciarelli et al., 2004).
This study pointed at an association between CD36 and Aβ in
human brains independently of AD occurrence. However, a
genetic study of 859 AD patients revealed that a
polymorphism in the CD36 gene significantly associated the
risk for developing AD (Šerý et al., 2017). In the early stages
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of AD, activated microglia and macrophages induce the
expression of CD36 in response to Aβ (Ricciarelli et al., 2004).
The interaction between Aβ and CD36 has been shown to activate
the NLRP3-inflammasome system, inducing the production of
pro-inflammatory cytokines (Sheedy et al., 2013) and ROS
(Coraci et al., 2002; Bamberger et al., 2003). It is also
interesting to consider the possibility that early autophagy
induction by CD36 in response to Aβ can also increase the
autophagy-mediated secretion of oligomers from multi-
vesicular bodies in the brain, thus contributing to seeding and
protein aggregation (Figure 1) (Nilsson et al., 2013; Loera-
Valencia et al., 2019b).

3 DEFECTS OF NUTRIENT SIGNALING AND
AUTOPHAGY IN PARKINSON’S DISEASE

Parkinson’s disease (PD) is a common neurodegenerative
disorder that currently affects 1% of people over 65 years of
age (Aarsland et al., 2021), and whose prevalence is expected to
double by 2060 in the United States (Savica et al., 2018). As well as
bradykinesia, rigidity or rest tremor (Postuma et al., 2015), PD
often features non-motor symptoms (NMS), such as cognitive
impairment or sensory alterations (Chaudhuri and Schapira,
2009). Pathophysiologically, PD is characterized chiefly by a
slow and progressive degeneration of dopaminergic neurons in
the Substantia Nigra (Drui et al., 2014), which is the cause of most
of the motor symptoms, although non-dopaminergic neurons are
also affected in PD (Schneider and Alcalay, 2017; Stoker and
Greenland, 2018). While the underlying causes of the
neurodegenerative process in PD are not fully understood, it
evidently stems from a combination of cell-autonomous and non-
cell-autonomous mechanisms. The former include, altered
mitochondrial bioenergetics, impaired protein recycling (Al-
Bari and Xu, 2020), where the master regulators mTOR and
AMPK are crucial nutrient sensors (Hardie et al., 2012; Tan and
Miyamoto, 2016), whereas protein aggregation and
neuroinflammation are prominent non-cell-autonomous
contributors to PD pathology, and it is believed to
pathogenesis (Poewe et al., 2017). The development of
dopaminergic neurons is an energy demanding process owing
to the extensive branching of dendrites. This high-energy demand
suggests nutrient and energy sensing, via mTOR and AMPK
could be key disease development modifiers. In fact, much of the
future work investigating defective organelles and metabolic
abnormalities in PD is expected to involve analysis of specific
proteins implicated in PD via pathological and genetic studies.
Hence, here we focus on the effects of PD causing gene mutations
on energy balance and the autophagolysosomal pathway, and
their relationship to nutrient-sensing abnormalities.

3.1 Evidence of Poor Nutrient Utilization and
Autophagy Dysregulation in Parkinson’s
Disease Patients
PD patients are neuropathologically characterized by α-synuclein
(α-syn) Lewy Bodies (LBs) neuronal inclusions, not efficiently

metabolized by abnormal autophagy observed in dopaminergic
neurons in the substantia nigra in PD brains (Anglade et al.,
1997). Phosphorylated ubiquitin, as mitophagy tag, is increased in
PD patients and correlates with tau tangles and levels of Lewy
Bodies (LB) (Fiesel et al., 2015; Hou et al., 2018). Moreover, LC3II
has been localized in LBs and its levels were significantly
increased in PD samples (Dehay et al., 2010). In contrast,
lysosomal enzymes activity is impaired, showing that
autophagy is an important cellular process in PD
pathophysiology.

Recycling of cell components is most important during
starvation and so nutrient sensing and energy producing and
regulating systems should always be considered in conjunction
with autophagy. Increased expression of mTOR has been detected
in the temporal cortex of PD patients with aggregations of α-syn
(Crews et al., 2010; Zhu et al., 2019). Moreover, the inhibition of
autophagy that accompanies elevated α-syn expression is
attributed to mTOR activation (Gao et al., 2015; Zhu et al.,
2019). Equally, in cultured cells and neurons with mutant α-
syn mTOR signaling is upregulated and autophagy repressed,
with the latter being reversed by mTOR inactivation (Jiang et al.,
2013; Zhu et al., 2019). Although mTOR inactivation restores
autophagy in PD cell models, it is crucial to avoid complete
inhibition, because mTOR is essential for neuronal growth and
survival and it regulates many important processes, such as
synaptic plasticity and memory formation (Bekinschtein et al.,
2007). Therefore, a balance between induction of autophagy and a
basal mTOR activity has to be achieved for optimal brain function
(Zhu et al., 2019).

AMPK plays a major role in regulating energy metabolism, via
activation of catabolism and repression of energy-consuming
processes (Hang et al., 2015), and AMPK activation can be
neuroprotective during glucose starvation (Culmsee et al.,
2001). AMPK appears to impact dopaminergic neuronal
homeostasis in conjunction with the protein Parkin, is
involved in recycling mitochondria (Zong et al., 2002).
Concordantly, AMPK activation by metformin ameliorates the
locomotion defects of Parkin-null flies, whereas this protective
effect disappears when AMPK is silenced. Overexpression of
AMPK also partially rescued the mitochondrial abnormalities
of Drosophila that express mutated human leucine rich repeat
kinase 2 (LRRK2), LRRK2G2019S (Ng et al., 2012). Furthermore,
resveratrol, a strong activator of AMPK in neurons, increased
mitochondrial biogenesis and autophagic flux in fibroblasts
carrying defective Parkin (Ferretta et al., 2014). Conversely,
prolonged activation of Parkin (Van Rompuy et al., 2014) or
AMPK have been shown to be detrimental for dopaminergic
neurons, so both Parkin and AMPK can be neuroprotective or
neurotoxic depending on the context, although the reasons
behind these diverse effects are not known (Hang et al., 2015).
Therefore, further research is needed, to determine the degree and
duration of the Parkin-AMPK activation that achieves positive
effects on neuron function and survival (Hang et al., 2015).

Autophagolysosomal and mitochondrial function are
integrated with lipid metabolism and there are multiple lines
of evidence indicating that lipid homeostasis is perturbed in PD.
For example, (Zambon et al., 2019), showed a marked reduction
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in cholesterol levels in dopaminergic neurons of PD patients
derived from iPSCs, together with reduced expression of
CYP46A1, an ER enzyme crucial for cholesterol metabolism
(Liu et al., 2010; Zambon et al., 2019). Moreover, some studies
have linked α-syn toxicity with lipid droplet accumulation in
human iPSC-derived neurons, (Fanning et al., 2019), whereas an,
ultrastructural analysis of LB of PD brain found accumulated
lipid vesicles, membrane fragments and cytoskeletal elements
(Shahmoradian et al., 2019). Furthermore, lipid accumulation has
been implicated in several events associated with PD, such as
lysosomal blockade and neuroinflammation (Hallett et al., 2019).
Hence, lipid metabolism is a highly promising target for PD.

Although altered cell metabolism is involved in PD
pathogenesis, further research is needed to elucidate the
fundamental basis of the metabolic alterations, as well as to
understand better the network of interactions that
encompasses the diverse mechanisms implicated in PD
described above. The improved knowledge is expected to
clarify and reconcile, or refute, the following contradictory
results. While some studies reported a reduced risk of PD in
patients with Type 2 diabetes (T2D) (Sääksjärvi et al., 2015),
others find the opposite (Hu et al., 2007; Sun et al., 2012), or no
relation between them (Palacios et al., 2011). Similar
inconsistencies have been described in relation to cholesterol
metabolism, indicating that modifying factors could be
modulating the association between blood cholesterol and PD
risk (de Lau et al., 2006; Mascitelli et al., 2009).

3.2 Evidences of Mitochondrial Dysfunction
in Parkinson’s Disease
Mitochondria have been heavily implicated in PD since the
landmark finding that PD brains have low respiratory complex
I activity (Schapira et al., 1989) and that the complex I inhibitor
rotenone induces dopaminergic cell death in rats (Alam and
Schmidt, 2002). Although the entire respiratory chain depends on
proteins encoded in mitochondrial DNA (mtDNA), defects in
mtDNA can predominantly affect complex I (Dunbar et al.,
1996). Moreover, mutant mtDNAs accumulate with age, and
more so in PD patients (Bender et al., 2006), or alternatively PD
patients display low mtDNA numbers (Tzoulis et al., 2013).
Mitochondrial DNA is further implicated in the PD
developmental cascade by the fact that a variety of defective
nuclear genes that adversely impact mtDNA cause parkinsonism,
featuring DPN cell death and levodopa responsive motor
dysfunction (Miguel et al., 2014; Pedroso et al., 2018).

Further interest in mitochondrial involvement in PD was
sparked by the findings that mutations in key factors required
for mitochondrial recycling, Parkin and PINK1, cause familial PD
(Kitada et al., 1998; Valente et al., 2004). These findings were all
the more provocative as other recycling factors were implicated in
the disease, and defective autophagy is a recurring theme in other
neurodegenerative disorders (Menzies et al., 2015; Guo et al.,
2018). Moreover, as impaired autophagy can result from
mitochondrial dysfunction, and respiratory complex I is
needed for maximal autophagy (Thomas et al., 2018), the
activities of mitochondria, autophagosomes and lysosomes are

coupled; hence, problems with these organelles are concordant,
rather than competing, explanations for the development of PD.

Changes in mitochondrial function in PD could stem from, or
be exacerbated by, altered nutrient metabolism given that the
brain requires a continuous supply of energy in the form of ATP,
much of which is produced from glucose, either via glycolysis or
additionally by its further oxidation in mitochondria (Cunnane
et al., 2020). In fact, decreased glucose metabolism have been
observed in PD patients (Eberling et al., 1994; Ahmed et al., 2009).
Interestingly, glucose deprivation promotes α-syn aggregation
(Bellucci et al., 2008), and impaired bioenergetics and reduced
ATP levels might contribute to the pathogenesis of PD (Cai et al.,
2019). Furthermore, Cai and colleagues suggested that glycolysis
could be a new therapeutic target for PD, as Terazosin, a drug
used to treat prostatic hyperplasia and hypertension, has
neuroprotective effects in multiple PD models. Terazosin, in
addition to blocking α-adrenergic receptors, enhances
glycolysis by stimulating phosphoglycerate kinase 1 (PGK1)
activity; and consequently, increases oxidative phosphorylation
and thus ATP levels (Chen et al., 2015). This enhancement of
PGK1 activity increases dopamine levels, slows or prevents
neurodegeneration and improves motor performance in
several animal models of PD, such as the MPTP mouse,
OHDA rat, and PINK1 and LRRK2 fly models (Cai et al., 2019).

3.3 Parkinson’s Disease Causing Genes as
Drivers of Metabolic Alteration
Although a large majority, 85–90%, of PD cases are sporadic there
is intense interest in the monogenic causes of PD, as they can
potentially reveal the underlying processes that are central to all
forms of PD. Among the cellular mechanisms of the mutant
proteins that cause familial PD are ones related to protein folding
and aggregation, and phosphorylation of α-syn (encoded by the
SNCA gene), neuroinflammation, intracellular vesicular
trafficking, lysosomal and mitochondrial function (Hong et al.,
2011; Hirsch et al., 2013; Ryan et al., 2015; Poewe et al., 2017;
Kuhlmann and Milnerwood, 2020). The genetic study of PD
started in 1997 with the discovery of a missense variant (A53T) in
SNCA in a large Italian family with PD (Polymeropoulos et al.,
1996). Currently, more than 20 genes have been identified as PD
causing genes (SNCA, PARKIN, PINK1, DJ1, LRRK2, GBA,
VSP35. . .) (Blauwendraat et al., 2020). Here, we focus on
three genes with strong links to nutrient-sensing, energy
metabolism and recycling pathways (Figure 2).

SNCA. α-syn protein is a natively soluble protein encoded by
SNCA gene. Under non-pathological conditions, α-syn is
predominantly localized in the presynaptic terminal, where it
plays important roles in transmembrane transport, intracellular
trafficking and cell recycling pathways, including autophagy,
Chaperone-Mediated Autophagy (CMA) or proteasome
pathways (Seidel et al., 2010; Hong et al., 2011; Cannon et al.,
2013; Eisbach and Outeiro, 2013; Oaks et al., 2013; Blauwendraat
et al., 2020). In PD, abnormally aggregated α-syn is the major
component of LBs (Iwatsubo, 2003).

Study of the α-syn mutant, A53T, (A53T) has revealed
alterations in SIRT1, a NAD+-dependent deacetylase involved
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in several metabolic functions, including mitochondrial
respiration and lipid metabolism suggesting bioenergetic
perturbations in dopaminergic neurons (Donmez and Outeiro,
2013; Zambon et al., 2019). Additionally, α-syn interacts directly
and indirectly with mitochondria and the mitochondrial
recycling pathway. In fact, stable rat neurons expressing A53T,
but not wild-type α-syn, showed significant accumulation of
autophagic vesicles containing mitochondria (Stefanis et al.,
2001). Hence, the inference is that mutant ASYN impairs
mitophagy (Stefanis et al., 2001).

Mutations in the LRRK2 gene are the most frequent cause of
autosomal dominant monogenic PD. The LRRK2 protein is
primarily localized in membrane microdomains, multivesicular
bodies, and autophagic vacuoles (Alegre-Abarrategui et al., 2009;
Rideout and Stefanis, 2014), and it has been linked to autophagy
and phagocytosis (Stoker and Greenland, 2018). Mutations in
LRRK2, such as G2019S (kinase domain) or ROC/COR domain
(R1441C, R1441H and R1441G), enhance the protein’s kinase
activity, and lead to impaired vesicular trafficking, lysosomal
activity and mitochondrial function in PD brains (Ryan et al.,
2015). Particular mutations alter different steps of
macroautophagy (Kuhlmann and Milnerwood, 2020;
Madureira et al., 2020), such as autophagosome-lysosomal
fusion and cargo degradation (Blauwendraat et al., 2020).
Indeed, many LRRK2 mutant cell models have accumulated
large autophagic vacuoles and multivesicular bodies containing
incompletely degraded material (Alegre-Abarrategui et al., 2009),
together with altered mTOR and AMPK activity (Ferree et al.,
2012). Collectively, these studies indicate a direct relation
between defects in autophagy and LRRK2 gain-of-function. In
addition to effects on macroautophagy, LRRK2 mutations were
also reported to affect CMA (Orenstein et al., 2013) and
mitophagy (Hsieh et al., 2016; Korecka et al., 2019), so most
of the clearance routes have been shown to be altered in LRRK2-
PD. Furthermore, iPSCs cultures derived from patients carrying
G2019S or R1441C mutations have defects in mitochondrial
dynamics, as well as alterations in dinucleotide metabolism
(Sanders et al., 2014) or abnormal accumulation of autophagic
vacuoles (Rosenbusch and Kortholt, 2016). Similarly, animal
models overexpressing LRRK2-G2019S show mitochondrial
dysfunction (Rosenbusch and Kortholt, 2016). In summary,
these data indicate that LRRK2 pathogenic mutations can
impair autophagy, and diminish mitochondrial function and
vesicular trafficking.

GBA is a glucosylceramide hydroxylase (GCase), which is
important for sphingolipid degradation (Alcalay et al., 2015).
GBA gene variants are towards the upper limit for risk factors,
being the single greatest risk factor for PD. The initial observation
of higher incidence of PD in families with Gaucher disease, a
lysosomal storage disorder (LSD) caused by deficiency of the
GCase, has led to the identification of heterozygous mutations in
GBA as important and common risk factors for sporadic PD
(Billingsley et al., 2018). Although enzymatic activity of GCase in
GBA heterozygous mutants is not well known, an increased
production of reactive oxygen species, and affected
autophagolysosome function have been shown in fibroblasts
from GBA heterozygotes with or without PD (McNeill et al.,

2014; Magalhaes et al., 2016). Interestingly, all these findings in
GBA mutants suggest a relation between altered lipid
metabolism, bioenergetics and autophagy-lysosomal
dysfunction in PD pathogenesis. For instance, α-syn
accumulation has been described in the brain of patients with
lysosomal disorders, as well as in several mouse models of
lysosomal storage diseases. Hence, lipid accumulation could
contribute to neurotoxicity (Shachar et al., 2011; Nelson et al.,
2014, 2018; Smith et al., 2014).

On the other hand, mitochondrial dysfunction and autophagy
defects have also been reported in Gaucher disease cellular
models, such as iPSC-derived neurons from GBA-PD patients,
primary post-mortem brain tissue from GBA heterozygous
patients or primary hippocampal neurons from GBA L44P
knock-in mouse brains. (Osellame et al., 2013; Gegg and
Schapira, 2016; Schöndorf et al., 2018; Li et al., 2019; Hou
et al., 2020).

4 DEFECTS OF NUTRIENT SIGNALING AND
AUTOPHAGY IN ALS/FTD

4.1 Evidences of Poor Nutrient Utilization
and Autophagy Dysregulation in ALS/FTD
Patients
All over these last few decades, ALS has come to be recognised as
a complex syndrome, not only due to its heterogeneous clinical
display, but also to its newly discovered clinical manifestations
affecting fundamental systemic processes such as metabolism and
autophagy. ALS is therefore considered a systemic condition,
rather than a solely neurological disease (Dupuis et al., 2011;
Robberecht and Philips, 2013; Riancho et al., 2019). ALS is often
related to another neurodegenerative disorder with non-motor
symptoms, the frontotemporal lobar dementia (FTD) (Lau et al.,
2018), as they both share common clinical and pathological
phenotypes—most notably, the existence of TDP-43 positive
aggregates -, and even genetic causality (Robberecht and
Philips, 2013; Pang and Hu, 2021); thus, they have been
suggested to be part of the same spectrum of disease
(Neumann et al., 2006). In this respect, bioenergetic alteration
and activation of the unfolded protein response (UPR) are also
key events of FTD.

4.1.1 Metabolic Alterations Present in ALS Patients
Neurodegeneration is frequently linked to, and potentially arises
from a defective energetic metabolism (Dupuis et al., 2011). In the
same fashion as in other neurodegenerative disorders such as
Parkinson’s or Alzheimer’s disease (Pradat et al., 2010; Błaszczyk,
2020), metabolic homeostasis of ALS patients is severely altered
(Tefera et al., 2021). Of note, most of the occurring abnormalities
correlate with life expectancy and have a negative impact on
overall pathogenic process (Dupuis et al., 2011).

One of the hallmarks of the metabolic alterations observed
in ALS is the loss of the energetic balance, primarily due to a
higher energetic expenditure. In other words, patients with
ALS frequently exhibit a hypermetabolic state characterised by
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an increase of energetic expenditure, loss of body mass and
depletion of energetic deposits as the disease progresses
(Bouteloup et al., 2009; Dupuis et al., 2011; Zufiría et al.,
2016; Vandoorne et al., 2018). Despite the uncertainty
regarding the importance and causality of such
dysregulation, it is worth mentioning that body weight loss
is a fundamental prognostic factor for the patients, who are
often associated with a lower baseline BMI, and being the
disease prevalence 40% lower among obese individuals
(O’Reilly et al., 2013; Perera and Turner, 2016; Vandoorne
et al., 2018). In this sense, alterations in lipid homeostasis have
also been described, reporting an increased LDL/HDL ratio
and also higher triglyceride and cholesterol levels in ALS
patients compared to controls, exhibiting a rather protective
effect (Dupuis et al., 2008). Nonetheless, recently performed
case-control studies on peripheral lipid profile of patients with
ALS have found little or no discriminatory lipid signature
(Fernández-Eulate et al., 2020; Sol et al., 2021).

Remarkably, an obesity-related condition as T2D also seems to
act as a protective state for the development of ALS, delaying the
disease onset up to 4 years (Mariosa et al., 2015; Tefera et al.,
2021). On the other hand, type I diabetes would act as a risk
factor (Jawaid et al., 2015). In accordance with this, abnormal
glucose tolerance has been observed in ALS patients (Pradat
et al., 2010); however, there was controversy as to whether this
intolerance was inherently disease-related or due to a lack of
glucose utilisation as a result of muscle atrophy, or even to an
increased level of free fatty acids (Reyes et al., 1984; Perera and
Turner, 2016).

Interestingly, despite the mentioned evidence of the
systemic hypermetabolic state of the patients, several
performed PET and autoradiography studies using glucose
analogues have demonstrated that frontal and occipital cortex
in the CNS contrarily exhibit a hypometabolic state, while
midbrain areas would remain hypermetabolic (Pagani et al.,
2014; Endo et al., 2017; Germeys et al., 2019; Tefera et al.,
2021). To understand the controversy between the reported
hypermetabolism at a systemic level and hypometabolism at a
central level in patients, it is key to acknowledge the different
nature of processes to which they refer. The systemic
hypermetabolic state indicates increased oxygen
consumption and is recognised as an adaptive response to
satisfy prolonged increased energy demands or to cope with
the inefficiency with which energy is utilized, through the
mobilization of energy stores. However, the CNS
hypometabolic state is ascribed to an inability of cells to
take up glucose due to a state of reduced neuronal cell density,
reduced blood flow and reduced glucose transporter
expression (Tefera et al., 2021), while the central
hypermetabolic state is rather considered a result of glia
hyperactivation (Haidet-Phillips et al., 2011; Cistaro et al.,
2012). Both states, systemic hypermetabolism and central
hypometabolism, appear to have in common one sign: the
inability with which glucose is utilized to obtain energy.

The observation of an impaired glucose uptake in motor
sensory cortex of ALS patients (Pagani et al., 2014) comes in
line with the defective energetic balance of such population.

Besides, sporadic ALS patient-derived skin fibroblasts showed
markedly lowered levels of glycolytic components (Szelechowski
et al., 2018), indicating an alteration of carbohydrate metabolism.
Nevertheless, high glycogen concentrations in the spinal cord of
autopsied patients have been observed (Vandoorne et al., 2018),
both in neurons and glia (Neumann et al., 2006). All these
findings together suggest a loss of the natural coupling
between blood flow and glucose metabolism in the CNS.
Importantly, a widespread prefrontal glucose hypometabolism
has been linked to worsened prognosis and shorter survival of
ALS patients (Rajagopalan and Pioro, 2019).

It has been suggested that multiple environmental modifiers
known to influence energy metabolism, affect the disease onset
and/or its course (Zufiría et al., 2016). One of the most
controversial activities has been physical exercise, as it is a
potent modifier of muscle energy metabolism (Dupuis et al.,
2011; Perera and Turner, 2016; Zufiría et al., 2016), but its exact
repercussion over the disease is still unknown and many of the
performed studies have come up with contradictory results. Case-
control studies carried out over a population from various
European countries came across the fact that not only
strenuous physical exercise was related to the precipitation of
the disease, but also that moderate exercise exerts neuroprotective
effect (Gallo et al., 2016; Julian et al., 2021). Studies carried out
among amateur and professional skiers in Sweden reported that
professional athletes—but not amateurs-where related to a higher
risk of developing ALS (Fang et al., 2016). Equally, another
retrospective cross-sectional observational study carried out on
triathletes found a drastically high representation of such athletes
as ALS patients (Gotkine et al., 2014). Therefore, these two
researches provide evidence suggesting that high-intensity
physical exercise might exacerbate the risk of developing ALS.

As essential players in cellular metabolism, several studies
have reported mitochondrial abnormalities in ALS patients
(Perera and Turner, 2016; Vandoorne et al., 2018; Tefera
et al., 2021). Some of the most representative ones are the
presence of mitochondrial aggregates in skeletal muscle of
patients (Sasaki and Iwata, 2007), and altered dynamics
(Tsitkanou et al., 2016) structure, localization, volume and
number in motor neurons, muscle and intra-muscular nerves
(Perera and Turner, 2016). It is worth noting that mitochondrial
function would also be disrupted, particularly regarding
alterations in the electron transport chain, displaying reduced
activity of the key enzyme complexes of the electron transport
chain (Wiedemann et al., 2002; Smith et al., 2019).

Notably, motor neurons appear to be especially vulnerable to
these defects in energetic homeostasis (Vandoorne et al., 2018;
Ragagnin et al., 2019) due, at least in part, to their need to fulfil
unusually high energetic demands to maintain resting membrane
potential and propagate action potentials (Perera and Turner,
2016). Importantly, different types of motor neurons have been
shown to be differentially sensitive to the disease associated
damage, with the neurons innervating type IIb fibres being the
most sensitive ones (Nijssen et al., 2017). Interestingly, it is this
latter type which most clearly relies on glycolytic metabolism for
energy (Frey et al., 2000), again suggesting an alteration in energy
metabolism in the mechanism of ALS.
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4.1.2 Autophagy-Related Alterations in Patients
With ALS
The pathology of ALS/FTD is typically accompanied by marked
alterations in a key physiological process that is related to energy
homeostasis: autophagy (Sala et al., 2012). Since the deletion of
autophagy-related genes is sufficient to cause neuronal death,
autophagy is considered an essential homeostatic process for
neurons (Evans and Holzbaur, 2019).

In general, most neurodegenerative diseases, including ALS
and/or FTD, are characterised by a common pathology
comprising misfolded protein inclusions (Lee et al., 2015;
Crippa et al., 2016; Torres et al., 2021), which eventually are
responsible for degeneration or damage of nerve cells in the
form of oxidative and ER stress, mitochondrial dysfunction
and neuroinflamation (Ghavami et al., 2014; Corti et al., 2020;
Luo et al., 2020). In the specific case of ALS, most of the mutant
proteins associated to the familial inheritance of the disease
exhibit aggregation-prone domains, and thus must be
eliminated to prevent motor neuron toxicity (Zhang et al.,
2020). Motor neurons are particularly sensitive to toxicity
caused by protein misfolding, although it can also affect
other cell types, such as muscle (Crippa et al., 2013). These
defective proteins disrupt the ubiquitin-proteasome system,
which is one of the central degradation systems for the cell, and
thereby initiating a vicious cycle that culminates with further
protein deposition leading to the formation of inclusions
(Crippa et al., 2010).

The mentioned protein inclusions present in ALS/FTD
generally consist of proteins involved in the intracellular
degradation systems, various signalling systems, and in
particular, TDP-43 (Neumann et al., 2006; De Marco et al.,
2011). The neuropathology associated with TDP-43 mutations
is characterised by ubiquitin-positive inclusions in neuronal
and glial cells in the spinal cord and brain of ALS and FTD
patients (Arai et al., 2006; Zhang et al., 2009). Besides, TDP-43
aggregates are characterised by the presence of phosphorylated
forms of the protein, both in its full form and in fragments
(Crippa et al., 2016). Ubiquitin positive TDP-43 aggregates co-
localize with autophagy markers in spinal motor neurons of
sporadic ALS patients (Burk and Pasterkamp, 2019).

Several studies suggest that activation of autophagy may be
protective in some neurodegenerative diseases, given the
potential removal of toxic protein species (Wong and
Cuervo, 2010; Chen et al., 2012; Jaronen et al., 2014).
Under normal conditions, a HSP protein-driven chaperone-
mediated form of autophagy takes place in brain and muscle
(Corti et al., 2020). In this very sense, abnormally high
concentrations of the autophagy-enhancing chaperone
HSPB8 have been detected in the spinal cord (Anagnostou
et al., 2010), skeletal muscle (Crippa et al., 2013) and surviving
motor neurons (Crippa et al., 2016) of ALS patients, as a
possible strategy of the damaged cells trying to get rid of the
toxic aggregates. In parallel, a number of post-mortem and
experimental neuropathological studies have revealed an
increase in the number of autophagosomes in motor

neurons of the spinal cord of both sporadic and familial
cases of ALS (Chen et al., 2012; Riancho et al., 2019).

In this sense, changes in ER morphology have been
reported in patients with ALS (Zufiría et al., 2016). For
instance, fragmentation of the rough ER, irregular
distention of its cisternae and detachment of ribosomes
have been described in degenerating anterior horn cells of
post-mortem samples of patients with ALS (Oyanagi et al.,
2008). Another study showed deposits of granular or
amorphous material in ER lumen of sporadic ALS cases,
thereby suggesting that the accumulation of misfolded
proteins could be the underlying cause of stress at the ER
level (Sasaki, 2010).

The cause behind ER stress in ALS/FTD and subsequent
activations of UPR and autophagy is not clear yet. One of the
postulated explanations suggests that ER stress could arise
from the accumulation of oxidative stress (Jaronen et al.,
2014). Supporting this hypothesis, analysis of blood, urine
and cerebrospinal fluid samples from ALS patients has
revealed an upregulation of oxidative stress markers
(Riancho et al., 2019). Another possible explanation is that
ER stress arises from an imbalance in calcium signalling
(Grosskreutz et al., 2010; Leal and Gomes, 2015) as there is
evidence according to which ALS disease has been found to be
associated with low calcium content at the ER (Jaiswal and
Keller, 2009; Tedeschi et al., 2019). Besides, motor neurons
happen to be especially sensitive to calcium signalling
dysregulation, as their intracellular Ca2+ levels must be
tightly controlled to assure their proper function (Nijssen
et al., 2017).

Beyond these postulates, the dysregulation of metabolic
pathways and/or the poor utilization of energy
resources, either of which are clearly present in ALS/FTD,
presumably play key roles in the mechanisms behind the
induction of pathological ER stress and autophagic
dysregulation in neurons. As further reviewed, the fact
that many of the genes that are found mutated in familial
cases exert key functions in cellular energy homeostasis and
recycling mechanisms provides strong evidence on this link. In
this regard, AMPK is plausibly a key mediator of the activation
of autophagy in response of energy scarcity in the pathological
context of ALS/FTD. AMPK besides its role as
metabolic sensor (Hardie et al., 2016), upon activation,
AMPK turns on autophagic flux as mentioned above. In
this sense, enhanced levels of activated AMPK have been
observed in spinal motor neurons from patients with ALS
(Lim et al., 2012a; Liu et al., 2015b), providing a compelling
explanation for the increased number of autophagosomes in
such neurons. However, it is not clear yet whether chronic
AMPK activation as an adaptive response of affected neurons
against energetic stress may produce beneficial outcomes or
further precipitate the pathological crisis as it would interrupt
the overall synthesis of proteins and over-activate the
degradation of cellular components by the lysosomes
(Figure 3).
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4.2 Involvement of ALS/FTD Genes in
Energetic and Autophagic Homeostasis
In the last decade, multiple studies have identified several
disease-causative genes that overlap in both disorders. Such
genetic mutations have been linked to different types of
specific cytoplasmic inclusions and molecular signatures,
which point to convergence, regarding cellular processes
and pathomechanisms (Blokhuis et al., 2013). Although the
vast majority of ALS-FTD cases have idiopathic or sporadic
origin, unrevealing the genetic basis of the disease might be of
great interest; and, considering that mutations in disease-
causative genes have been also described in sporadic cases
(Chen et al., 2013), similar pathogenic mechanisms could be
present in different ALS-FTD subtypes (Vandoorne et al.,
2018).

4.2.1 ALS/FTD Genes and Regulation of Energy
Metabolism
TARDBP, FUS, SQSMT1, VCP, TBK1, CHCHD10, C9ORF72,
OPTIN, UBQLN2 and SOD1 are the most significant disease-
causative genes that share these two neurodegenerative
conditions. Such genes are implicated in several cellular
processes, including RNA metabolism, autophagy-lysosome
axis and energy metabolism via mitochondrial respiration,
pointing out them as the central pathways involved in ALS-
FTD disease spectrum.

TDP-43 and FUS-proteinopathies are characterized by the
formation of cytoplasmic ubiquitinated and/or
hyperphosphorilated inclusions (Neumann et al., 2006;
Kwiatkowski et al., 2009; Xu et al., 2010). The translocation
of both TDP-43 and FUS onto the cytoplasm implies a loss-of-
function in the nucleus disrupting RNA and protein
homeostasis, which may provoke a vicious cycle causing
further deleterious consequences. It is described that energy
homeostasis is impaired in ALS-FTD (Vandoorne et al., 2018).
These two ribonucleoprotein aggregates are implicated
directly on it by interfering, for example, in mitochondria
functionality. Mutations in FUS, specifically P525L, lead
mitochondria to fragmentation. Deng et al. (2015), observed
in flies carrying mutant-FUS that its translocation occur,
mediated by HSP60 (a mitochondrial chaperonin),
damaging mitochondrial integrity and disrupting
mitochondrial cristae (Deng et al., 2015). Not only in flies,
but also in P525L-FUS expressing cells and patients, mutated
FUS expression provokes reduced mitochondrial membrane
potential and an increment on ROS production. Transgenic
mice overexpressing WT-FUS develop a motor phenotype and
display early structural abnormalities mitochondrial in the
pre-synaptic motor nerve (So et al., 2018).

TDP-43 has been also related with mitochondrial
dysfunction, HEK293 cells overexpressing WT or mutant
TDP-43 showed reduced mitochondrial membrane
potential, oxygen consumption rate, and as a consequence,
low ATP levels (Wang et al., 2016). These defects are likely to
be mediated by the accumulation of mutant forms of TDP-43
in mitochondria leading to impairments in complex I activity,

as shown in neurons from patients with ALS (Tefera et al.,
2021).

Besides its involvement in mitochondrial energy production,
TDP-43 has also proven to be fundamental for fat and glycolytic
metabolism (Stallings et al., 2013). The exact metabolic pathway
in which it takes part remains to be clarified, but several studies
have suggested that TDP-43 participates in the mechanisms of
nutrient sensing and glucose uptake in motor neurons and other
cells such as islet β-cells, through regulation of AMPK or
adiponectin signalling, or controlling the levels of the Rab
GTPase-activating protein Tbc1d1 (Ling et al., 2014; Perera
and Turner, 2016; Zufiría et al., 2016). TDP-43 has also
emerged as a key regulator of insulin secretion, as it exerts
transcriptional control over crucial components of the insulin
secretionmachinery, such as UNC13A, ci-Ins2 and CaV1.2 RNAs
(Araki, 2019; Stoll et al., 2020; Brown et al., 2021).

Coiled-Coil-Helix-Coiled-Coil-Helix Domain 10
(CHCHD10) is a protein with several functions involved in
mitochondrial metabolism (e.g., regulation of ETC
components’ synthesis) (Zhou Z.-D. et al., 2017). CHCHD10
is located in the intermembrane space, and its mutated forms’
overexpression in HeLa cells leads to fragmentation of
mitochondrial network. Furthermore, patients’ muscle as well
as fibroblasts showed deficient ETC activity, along with
abnormalities in cristae morphology (Bannwarth et al., 2014).
A recent study performed with muscle conditional KO-
CHCHD10 mice, reported that these mice showed motor
defects, aberrant NMJs and thereby disturbed neuromuscular
transmission (Xiao et al., 2020). Interestingly, exogenous ATP
contributed rescuing the NMJ defects in KO-CHCHD10 muscles.
The loss of CHCHD10 function in motor neurons elicits an
energy deficit that activates unique responses to nutrient stress in
both the mitochondria and ER, including AMPK signaling and
UPR (Straub et al., 2021).

Valosin-containing protein (VCP), an ER protein that
fundamentally functions as a driver of misfolded proteins to
proteosome during ER stress, is also involved in mitochondrial
fitness and thereby contribute to the cellular energetic balance. In
this regard, patients carrying VCP mutations leads to severe
mitochondrial uncoupling, resulting in decreased ATP
generation, making neuronal cells more vulnerable to energy-
demanding processes (Bartolome et al., 2013).

4.2.2 Role of ALS/FTD Genes in Autophagy
As mentioned above, many of the overlapping genes in ALS-FTD
are involved in autophagic pathway. Interestingly, the main
hallmark of this neurodegenerative condition are cytoplasmic
aggregates that are not being degraded probably due to non-
functional autophagic flux. Its impairment results in reduced cell
survival, and thereby causes progressive degeneration.

TANK binding kinase 1 (TBK-1) is a protein kinase that
belongs to the IKK-kinase family, which is involved in innate
immune system. It is also a key player in autophagy, mainly
regulating phosphorylation of autophagy and mitophagy
adaptors (e.g., SQSTM1 and OPTN) (Pilli et al., 2012).
Mutations in TBK1 has been reported as disease-causative in
both ALS and FTD, or ALS-FTD continuum (Freischmidt et al.,
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2015). HEK293T cells transfected with mutant TBK1 compared
to WT, showed diminished phosphorylation and reduced
homodimerization, which are essential for TBK1 activation.
These results were further confirmed using patients’ derived
lymphoblastoid cell lines carrying missense mutations in
TBK1, where phospho-TBK1 was found reduced, meaning that
TBK1 activation is altered because of the reduced
phosphorylation by self-interaction or with other kinases (de
Majo et al., 2018). Using live-cell imaging to examine mitophagy
dynamics after mitochondrial depolarization in HeLa cells, it has
been observed that TBK1 and its downstream target OPTIN are
required for engulfment of damaged mitochondria. And,
specially, it has been seen that loss or chemical inhibition of
TBK1, as well as expression of TBK1E696K, OPTINW478G and
OPTINQ398X, which are ALS-linked mutations, impair
mitophagy, thereby accumulation of damaged mitochondria
occurs (Moore and Holzbaur, 2016).

As mentioned above, Optineurin (OPTN) is a downstream
target of TBK1, which is involved in several vesicular trafficking
pathways. Many ALS-linked mutations in OPTN map within the
ubiquitin-binding domain (UBD) (Maruyama et al., 2010), which
lead to increased OPTN-immunoreactive cytoplasmic inclusions.
Neuron2A cells expressing UBD-mutated OPTIN showed an
accumulation of LC3-II-positive inclusion bodies by decreasing
autophagy-mediated degradation (Shen et al., 2015). ALS-
associated OPTN mutants expression in NSC-34 motor
neuron-like cell line, showed disrupted interaction between
OPTN and myosin VI, resulting in interrupted protein
trafficking, as well as endoplasmic reticulum stress and Golgi
fragmentation. Moreover, implication of OPTN in lysosome
trafficking during autophagy in association with myosin VI
has been reported, since ALS-mutant expression as well as
knockdown of OPTN lead to blockage of lysosome-
autophagosome fusion, hence accumulating autophagosomes
in neuronal cells (Sundaramoorthy et al., 2015).

Sequestosome-1(SQSTM1) encodes p62, a multifunctional
protein that has an essential role in selective autophagy, as
well as regulating mTOR-signalling pathway. Some of ALS-
FTD associated mutations in SQSTM1 map to the LC3-
interactin region, whereby lipid-anchored form of LC3 is
bound, allowing the phagophore to evolve in autophagosomes
(Stamatakou et al., 2020). Goode et al. (2016) demonstrated that
the ALS-associated L341V mutation of SQSMT1 affects on the
recognition of LC3, reducing binding affinity. These results that
were obtained from experiments done in motor neuron-like cells
with the L341V mutant SQSMT1, showed more difficulties for
incorporation into autophagic vesicles (Goode et al., 2016). In
addition to this loss-of-function of the protein, many papers have
reported that there is also a gain-of-toxicity which is manifested
through p62-positive cytoplasmic inclusion, and not only in
neurons, but also in glial cells (Arai et al., 2003). Recent
studies have revealed that ALS-FTD linked mutations in
SQSTM1 reduce SQSTM1 phosphorylation, which is necessary
for activation of selective autophagy, as well as impair KEAP1-
SQSMT1 interaction (essential for antioxidant response
activation), leading to increased TDP-43 associated aggregates
(Deng et al., 2020).

Ubiquilin 2 (UBQLN2) is a chaperon protein that transports
ubiquitinated cargoes to be degraded by ubiquitin-proteasome
system (Zhang et al., 2014), playing a key role in protein quality
control network (Shahheydari et al., 2017). It is also necessary for
autophagosome maturation since its reduction leads to decreased
autophagosome formation (Rothenberg et al., 2010).
Interestingly, UBQLN2 has been related with mTOR, an
essential negative regulator of macroautophagy, highlighting its
involvement on the autophagic flux (Jung et al., 2010; Şentürk
et al., 2019). Mutations in UBQLN2, which are linked to
chromosome-X, cause dominantly inherited ALS-FTD (Deng
et al., 2011). Recent studies have shown that flies with ALS
associated UBQLN2 mutation display defective autophagic flux
due to the impaired interaction with the v-ATPase proton pump,
which is responsible for lysosome acidification. Therefore, loss of
ubqln2 provokes lysosome alkalization, impairing the
degradation process; which can be ameliorated in flies by acid
nanoparticles for lysosome re-acidification (Şentürk et al., 2019).
Consistent with this data, human HeLa cells carrying
UBQLN2P497S mutation, show disturbances in proteostasis
through interferences in autophagy pathway, as well as in
HeLa UBQLN2-KO cell line, in which autophagosome
acidification is impeded. Nevertheless, exogenous WT
UBQLN2 expression is enough to restore autophagosome
acidification almost as normal HeLa cells levels (Wu et al., 2021).

Valosin-containing protein (VCP) in addition to its role in
mitochondrial respiration, it is also involved in ubiquitin-
containing autophagosomes maturation (Johnson et al., 2010;
Tresse et al., 2010). Interestingly, Tresse et al. (2010)
demonstrated that VCP is essential for autophagosome
maturation at a late stage after acidification; since MEFs
expressing tagged-LC3 and mutated-VCP have shown
accumulation of immature autophagic vesicles, some of which
are acidified and abnormally large and. Other studies have proven
the implication of VCP in autophagy by knocking it down, and as
a result accumulation of autophagosomes have occur (Ju et al.,
2009).

An expansion of GGGGCC hexanucleotide within the
C9ORF72 gene was identified as an ALS-FTD causative
mutation (DeJesus-Hernandez et al., 2011; Renton et al.,
2011). When it was discovered, its biological function
persisted unknown for many years. Nowadays, it has been
included as an important player in the function and
homeostasis of the lysosome (Amick and Ferguson, 2017). In
addition, both human and mouse cell models lacking/expressing
mutant- C9orf72 have shown abnormal lysosomes, and together
with that, defects in autophagy and lysosomal degradation (Root
et al., 2021). This may reinforce the aberrant upregulation of
mTORC1 seen in c9orf72 and smcr8 double-knockout (dKO)
mice, resulting in mTOR signalling overactivation, due to the
disruption of autolysosome acidification. (Shao et al., 2020). In
Drosophila studies, it has been shown that the repetition of the
GGGGCC hexanucleotide impairs the nuclear import of Mitf/
TFEB, a transcriptional regulator of autophagolysosomal
function, leading to autophagy disruption, accumulation of
lysosome-like organelles and proteostasis prior to
neurodegeneration (Cunningham et al., 2020).
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As discussed above, AMPK is plausibly a key protein
mediating a link between the abnormalities of energy
producing pathways and autophagy, which are central to the
pathological continuum of ALS/FTD; and as such, dysfunction of
various causative genes is associated with impaired AMPK
signalling. For instance, pathological expression of TDP-43 or
mutant SOD1 and CHCHD10 elicits intense activation of AMPK
in mice spinal cords and motor neurons (Lim et al., 2012b; Liu
et al., 2021; Straub et al., 2021). Importantly, activation of AMPK
induces some of the ALS/FTD proteins to mislocalize or change
its functional status, as observed for TDP-43 and TBK1 (Zhao
et al., 2018; Liu et al., 2021), suggesting that AMPK activation is
not a mere epiphenomenon but establishes a bidirectional
crosstalk with ALS/FTD pathology. In this sense, suppression
of AMPK activity exerted consistent improvements of motor
functions in TDP-43 overexpressing mice (Liu et al., 2015a).

4.3 Abnormal Lysosome Function in
FTD-GRN as Example of Defective
Integration Between Nutrient Sensing and
Nutrient Recycling in Neurodegeneration
As explained above, the lysosome is a chief metabolic hub that
controls the metabolic status of the cell in response to the
environmental changes. Failure of lysosomes has been
implicated in the pathogenesis of neurodegeneration,
metabolic disease and cancer (Ballabio and Bonifacino, 2020).

The lysosome performs very relevant functions in the central
nervous system for the correct maintenance of the cell
homeostasis. The central nervous system requires higher rates
of macromolecules synthesis and organelles for the proper
neuronal plasticity, and autophagy for the degradation of
damaged proteins and organelles, which cannot otherwise
reduce concentration by cell division (Root et al., 2021). In
fact, mutations in genes linked to the lysosome produce
complex diseases that are commonly accompanied by
neurological syndromes. An extreme example of this is the
haploinsufficiency of the lysosomal protein progranulin
(PGRN), which causes neurodegeneration of the
frontotemporal lobe with TDP-43 pathology (FTD) (Kao et al.,
2017).

More than 50 different pathogenic granulin (GRN)
mutations have been identified in patients with FTD (Baker
et al., 2006; Cruts et al., 2006). Most of the mutations lead to a
sequence frameshift and premature stop codons. This results
in mutant mRNA transcripts, which undergo nonsense-
mediated mRNA decay which leads to a reduction of the
precursor protein, PGRN, and its proteolytic products,
granulins (Baker et al., 2006; Cruts et al., 2006). While
heterozygous mutations of GRN cause an adult age onset
FTD with ubiquitinated TDP-43 inclusions and behavioural,
agrammatism and motor speech deficits (bvFTD, nfvPPA)
(Ferrari et al., 2019), homozygous GRN mutations produce
a different and more aggressive juvenile onset of a LSD known
as neural ceroid lipofuscinosis (NCL), characterized by
abnormal lipopigment deposition in dysfunctional
lysosomes (Mole et al., 2019) (Figure 3).

PGRN has been implicated in many physiological processes
ranging from cell-cycle progression, cell migration, neurotrophic
signalling, wound repair, modulation of inflammation,
tumorigenesis, and metabolic fitness (Van Damme et al., 2008;
Bateman and Bennett, 2009), acting upstream these processes by
keeping lysosomes healthy (Rideout and Stefanis, 2014; Lui et al.,
2016; Paushter et al., 2018). PGRN can play a direct or indirect
role on the lysosome acidification and enzymatic activity of
lysosomal enzymes (Tanaka et al., 2017). Although a portion
of PGRN is secreted to the extracellular space, the majority of
intracellular PGRN localizes within lysosomes. It has been
reported that PGRN and/or granulins can regulate the
enzymatic activity of (GBA) (Zhou et al., 2019; Valdez et al.,
2020), β-hexosaminidase A (HexA) (Chen et al., 2018) and
CTSD, lysosomal enzymes that are important for proper
lysosomal activity (Beel et al., 2017; Valdez et al., 2017). On
top of that, a relevant evidence linking the role of PGRN with the
lysosome is that GRN expression is regulated by the transcription
factor TFEB (Belcastro et al., 2011), responsible for the activation
of the CLEAR, which regulates the expression of genes involved in
autophagy and lysosomal pathway (Settembre et al., 2011).

PGRN was first linked with a lysosomal function when
homozygous GRN mutations were discovered to cause NCL
(Smith et al., 2012). Importantly, the accumulation of storage
material andmultillamelar bodies was discovered in post-mortem
cortical brain tissue and cells from FTD patients with
heterozygous GRN mutations (Ward et al., 2017). Accordingly,
GRN-deficient mice models display NCL-like phenotypes
(Ahmed et al., 2010; Petkau et al., 2012; Wils et al., 2012;
Filiano et al., 2013; Zhou, 2017) together with lysosomal
defects in brains (Wils et al., 2012; Zhou, 2017). Collectively,
these evidences raise lysosomal dysfunction as a central
neurodegenerative process that is caused by PGRN
insufficiency and linked to TDP-43 pathology (Ward et al., 2017).

The lysosome is a control hub for cellular growth and survival
(Settembre et al., 2013; Mony et al., 2016; Lawrence and Zoncu,
2019). In line with this, PGRN was first related to metabolic
disease when it was seen that the serum PGRN levels were
increased 1.4-fold times in individuals with visceral obesity
and T2D (Youn et al., 2009). Not only increased PGRN levels
in blood correlated positively with body mass index (BMI), fat
mass, fasting glucose and insulin levels, and insulin resistance
(Hossein-Nezhad et al., 2012), but also mediated TNF-a-induced
insulin resistance through the regulation of IL-6 expression in
3T3-L1 adipocytes. Matsubara et al. proved that PGRN promotes
IL-6 expression preventing the insulin induced phosphorylation
of IRS-1 and AKT, suppressing insulin-stimulated glucose uptake
and causing TNF-α induced insulin resistance (Matsubara et al.,
2012). Chronic inflammation is a well-known consequence of
obesity in T2D (Romeo et al., 2012). These patients have
increased secretion of cytokines and chemokines as TNF-α
and IL-6 and the recruitment and activation of innate immune
cells (Taube et al., 2012). The previously mentioned evidence also
supports that PGRN acts as a adipokine increasing IL-6 levels and
being regulated by TNF-α treatment (Okura et al., 2010). This
evidence suggests that PGRN could be regulated by the increased
inflammatory cytokines and promote insulin resistance.
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Although the role of PGRN is mostly related to the lysosome
the primary role that was attributed to the granulin peptides was
the modulation of cell growth, so initially it was considered a
growth factor (He and Bateman, 2003). The treatment with
recombinant PGRN showed stimulation of proliferation of two
epithelial cell lines (Daniel et al., 2000). In relation to this PGRN
is the only growth factor that is able to induce cell-cycle in IGF-I-
receptor negative mouse embryo fibroblasts that are not able to
complete the cell cycle (Zanocco-Marani et al., 1999). Moreover,
PGRN is able to stimulate endothelial cell migration and vessel
growth in vitro and in vivo (He et al., 2003; Toh et al., 2013).
PGRN is expressed in proliferating blood vessels and induces the
expression of vascular endothelial growth factor (VEGF) a key
mediator of angiogenesis (Gonzalez et al., 2003; Tangkeangsirisin
and Serrero, 2004). It has been shown that PGRN is able to bind
to the receptor Tyrosine Kinase, EPH receptor A2 (EphA2) and
activate MAPK and AKT signalling pathways (Zanocco-Marani
et al., 1999; Neill et al., 2016). In relation with the mitogenic and
angiogenic functions, PGRN has been associated to several
cancers, generally with a direct correlation between the PGRN
levels and cancer malignancy (Tangkeangsirisin et al., 2004;
Abrhale et al., 2011; Serrero et al., 2012; Edelman et al., 2014).
In the other hand, reducing PGRN levels by direct antibody
treatment against PGRN have a tumour suppressor effect (Ho
et al., 2008).

PGRN is a well-established modulator of immune function a
very relevant physiological process that takes part in cancer,
metabolic disease and neurodegeneration (Toh et al., 2011;
Cenik et al., 2012; Jian et al., 2013; Tanaka et al., 2013; Kao
et al., 2017). Microglia, the resident immune cells in the brain, are
the cells with the highest expression levels of PGRN, being
especially elevated in those which have become reactive
(Naphade et al., 2010; Zhou X. et al., 2017). It has been shown
that PGRN can regulate multiple microglial function, activation,
migration, phagocytosis and synapse pruning among others (Van
Damme et al., 2008; Yin et al., 2010; Pickford et al., 2011; Martens
et al., 2012; Lui et al., 2016). The PGRNs regulation of microglial
activation is a complex regulation, where PGRN and GRN
peptides have opposite inflammatory functions, with PGRN
generally being anti-inflammatory and granulin peptides pro-
inflammatory (Zhu et al., 2002; Kojima et al., 2009). Considering
the role of PGRN as a growth factor in the periphery and its role
in neurodegeneration, it is not surprising that PGRN and GRN E
can function as neurotrophic factors. PGRN and GRN E promote
neuron survival and neurite outgrowth in vitro and in vivo (Van
Damme et al., 2008; Ryan et al., 2009; Gass et al., 2012; De
Muynck et al., 2013). Whereas small-interfering RNA (si-RNA)
mediated knock down of PGRN in primary rat hippocampal
neurons reduces neurite arborisation (Tapia et al., 2011). Since
PGRN expression is very low in the developing brain and is a
protein that is secreted in an activity-dependent manner in the
synapses and regulates microglia activation, its role may be more
relevant in the context of neurite plasticity in the adult brain
(Tapia et al., 2011; Petkau et al., 2012; Petoukhov et al., 2013).

In summary, PGRN has emerged as an essential protein for the
fitness of lysosomes to integrate nutrient sensing with cellular
recycling and anabolic processes to respond to energy demands.

The function of PGRN in lysosomes provides further compelling
explanation for the particular vulnerability of ALS/FTD
degenerating neurons to the dismantlement of the fine-tuned
crosstalk between energy imbalance and cellular recycling
through the ALP.

5 CONCLUSION AND PERSPECTIVES

Dysregulation of the energy-producing pathways due to
dysfunctional mitochondria or altered glycolysis, as well as
defects in the autophagic process are common pathological
features of several neurodegenerative diseases, including PD,
FTD, ALS and AD. The bulk evidence derived from
experimental studies highlights a pathogenic loop in which
metabolic perturbations and dysregulated energy-sensing
pathways cause a cellular energy crisis. In such scenario of
energy scarcity, the main cellular process that responds to this
challenge, autophagy, is also altered, further aggravating the
energy crisis due to the inability to recycle damaged
mitochondria and to provide micronutrients for the
biosynthesis of new molecules. Indeed, the fact that many of
the genes found mutated in PD, FTD, ALS, and to a lesser extent
in AD, share common functions in the regulation of
mitochondrial metabolism, autophagic flux and lysosome
function provides further compelling evidence for this
pathogenic loop.

However, why the different diseases affect distinct brain
areas and neuronal populations remains elusive. It is likely that
the participation of other pathogenic mechanisms could make
some neuron subtypes more vulnerable than others. In any
case, the crosstalk between energy metabolism and autophagy
regulation appears to be a pillar in the pathological cascade of
the different neurodegenerative diseases, and therefore
treatments aimed at alleviating such loop might be
beneficial for either condition.
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