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Abstract. Finding the shortest route between a pair of origin and desti-
nation is known to be a crucial and challenging task in intelligent trans-
portation systems. Current methods assume fixed travel time between
any pairs, thus the efficiency of these approaches is limited because the
travel time in reality can dynamically change due to factors including
the weather conditions, the traffic conditions, the time of the day and
the day of the week, etc. To address this dynamic situation, we propose a
novel two-stage approach to find the shortest route. Firstly deep learning
is utilised to predict the travel time between a pair of origin and des-
tination. Weather conditions are added into the input data to increase
the accuracy of travel time predicition. Secondly, a customised Memetic
Algorithm is developed to find shortest route using the predicted travel
time. The proposed memetic algorithm uses genetic algorithm for explo-
ration and local search for exploiting the current search space around
a given solution. The effectiveness of the proposed two-stage method
is evaluated based on the New York City taxi benchmark dataset. The
obtained results demonstrate that the proposed method is highly effec-
tive compared with state-of-the-art methods.

Keywords: Shortest route problems · Memetic algorithm · Deep
learning · Travel times

1 Introduction

Finding shortest routes is crucial in intelligent transportation systems. Short-
est route information can be utilised to enable route planners to compute and
provide effective routing decisions [8,11,14,16,24]. However, shortest route com-
putation is a challenging task partially due to dynamic environments [3]. For
instance, the shortest path is impacted by various spatio-temporal factors, which
are dynamic in nature, including weather, the time of the day, and the day of the
week. That makes the current shortest route computation techniques ineffective
[3,7]. Moreover, it is a challenging problem to incorporate these dynamic factors
into shortest route computation.
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In recent years, the proliferation of pervasive technologies has enabled the
collection of spatio-temporal big data associated with user mobility and travel
routes in a real-time manner [15]. Modern cars are equipped with telematics
devices including in-car GPS (Global Positioning System) devices which can be
used as a source of valuable information in traffic modelling [23]. The traces gen-
erated from GPS devices has been leveraged by many scenarios such as Spatio-
temporal context recognition, taxi-passenger queue time prediction, study of city
dynamics and transport demand estimation [3,12,13,17,23].

One important aspect of finding shortest routes in realistic environments,
which are inherently dynamic, is travel time prediction [8,22]. Due to the
dynamic nature of in the travel routes, traditional machine learning methods
cannot be applied directly onto travel time prediction. One of the key challenge
for traditional machine learning models is the unavailability of hand-crafted fea-
tures which requires substantial involvement of domain experts. One relevant
approach is the recent use of evolutionary algorithms in other domains to work
along with deep learning models for effective feature extraction and selection [18–
21]. In this study, we aim to identify relevant features for shortest route finding
between an origin and destination, leveraging the auto-feature generation capa-
bility of deep learning. Thereby we propose a novel two-stage architecture for
the travel time prediction and route finding task. In particular we design a cus-
tomized memetic algorithm to find shortest route based on the predicted travel
time from the earlier stage. The contributions of this research are summarised
as follows:

– A novel two-stage architecture for the shortest route finding under dynamic
environments.

– Development of a deep learning method to predict the travel time between a
origin-destination pair.

– A customised memetic algorithm to find shortest route using the predicted
travel time.

The rest of the paper is organized as follows. In Sect. 2, we present our pro-
posed methodology for this study. Section 3 describes the experimental settings
which is followed by the discussion of experimental results in Sect. 4. Finally, we
conclude the paper in Sect. 5.

2 Proposed Methodology

In this paper, we propose a deep learning assisted memetic algorithm to solve
the shortest route problems. The proposed method has two stages which are (1)
prediction stage and (2) optimisation stage. The prediction stage is responsible
to predict the travel times between a pair of origin and destination along the
given route by using deep learning. The second stage uses memetic algorithm to
actually find the shortest path to visit all locations along the given route. In the
following subsections, we discuss the main steps of the proposed method and the
components of each stage in detail. Figure 1 shows our proposed approach.
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Fig. 1. Flowchart of the proposed two-stage approach

2.1 Prediction Stage

Conventional route finding methods assume fixed cost or travel time between
any pairs of points. That is rarely the case in reality. One approach to the
dynamic travel time issue is prediction. In this work, we incorporate the weather
data along with the temporal-spatial data to develop a deep learning predictive
approach. The goal of the proposed predictive approach is to predict future
travel time between any points in the problem based on historical observations
and weather condition. Specifically, given a group of historical travel time data,
weather data and road network data, the aim is to predict travel time between
source (s) and destination (d) si, di ∈ R, i ∈ [1,2, ..., n], where n is the number of
locations in the road network. Our predictive approach tries to predict the travel
time at t+1 based on the given data at t. The proposed predictive approach has
three parts: input data, data cleaning and aggregation, the prediction approach.
Figure 2 shows the deep learning approach.

Input Data. In this work, we use data from three different sources. The data
involves around 1.5 million trip records. These include the travel time data,
weather data and road network data.

– Travel time data. The travel times between different locations were col-
lected using 2016 NYC Yellow Cab trip record data.

– Weather data. We use the weather data in New York City - 2016. The
data involves: date, maximum temperature, minimum temperature, average
temperature, precipitation, snow fall and snow depth.

– Road network data. The road network data involves temporal and spatial
information as follows:

• Id - a trip identifier.
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• Vendor id - a code indicating whether the provider is involved with the
trip record.

• Pickup date-time - date and time when the meter was started.
• Drop-off date-time - date and time when the meter was disconnected.
• Passenger count - indicates the total number of riders in the vehicle.
• Pickup longitude - the longitude of picked passenger.
• Pickup latitude - the latitude of the picked passenger.
• Dropoff longitude - the longitude of the dropped passenger.
• Dropoff latitude - the latitude of the dropped passenger.
• Store flag - indicates if the trip record was saved in vehicle memory before

sending to the vendor where Y = store and forward; N = not a store and
forward trip.

• Trip duration - duration of the trip in seconds.

Data Preparation. This process involves removal of all error values, outliers,
imputation of missing values and data aggregation. To facilitate the predic-
tion we bound the data ranges between (average + 2) × standard deviation to
(average − 2) × standard deviation. Values outside of these ranges are consid-
ered as outliers and are removed. The missing values are imputed by the average
values. Any overlapping pick-up and drop-off locations are also removed. In the
aggregation step, we combine the travel time data, weather data and road net-
work each time step so that it can be fed into our deep networks.

Prediction Approach. The main goal of this step is to provide high accuracy
prediction of the travel times between different locations in the road network.
The processed and aggregated data is provided as an input for the prediction
approach. Once the prediction model is trained and retrieved, it is then ready
to actually predict the travel times between given locations.

Fig. 2. Illustration of the deep network based prediction model
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In this work, we propose a deep learning technique based on feedforward
neural network to build our prediction approach. The deep neural network con-
sists of one input layer, multiple hidden layers and one output layer. Each layer
(input, hidden and output) involves a set of neurons. The total number of neu-
rons in the input layer is same as the number of input variables in our input data.
The output layer has one single neuron which represents the predicted value. In
deep neural network, we have m number of hidden layers and each one has k
number of neurons. The input layer takes the input data and then feed them
into the hidden layers. The output of the hidden layers are used as an input for
the output layer. Given the input data X (X =x1, .. xn) and the output value
Y, the prediction approach aims to find the estimated value Yest using a simple
approach is as follows:

Yest = x1w1 + x2w2 + x3w3 + b (1)

Where w is the weight and b is the bias. Using a four-layer (one input, two
hidden and one output) neural network as example, the Yest can be calculated
as follows:

Yest = x
(4)
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Where is the x(4)
1 is the output of the network and f is the activation function.

In this work, Keras [1] based on TensorFlow [2] is used to develop our predication
model.

2.2 Optimisation Stage

This subsection presents the proposed memetic algorithm (MA) for shortest
route problems. MA is a population-based metaheuristic that combines the
strengths of local search algorithm with population-based metaheuristic to
improve the convergence process [9,10]. In this paper, we used genetic algo-
rithm (GA) and local search (LS) algorithm to form our proposed MA. GA is
responsible for exploring new areas in the search space of solutions. LS is used
to accelerate the search convergence. The pseudocode of the proposed MA is
presented in is shown in (1). The overview of the process is given below followed
by detailed description of these steps.

Our proposed algorithm starts from setting parameters, creating a popula-
tion of solutions, calculating the quality of each solution and identifying the best
solution in the current population. Next, the main steps of MA will iterate over
a number of generations until the stopping criterion is met. At each genera-
tion, good solutions are selected from the population by the selection procedure.
Then the crossover operator is applied on the selected solutions to generate new
solutions. After that the mutation operator is applied on the new solutions by
randomly changing them. A repair procedure is applied to check the feasibility
of the generated solutions and fix the infeasible solutions as some solutions are
no longer feasible. Afterwards a local search algorithm is invoked to iteratively
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Algorithm 1: The proposed memetic algorithm
1 Input: Population size, PS, crossover rate, CR, mutation rate, MR, the

maximum number of generations, Max G and consecutive non-improvement
iterations;

2 Set P Sol=Randomly generate a population of solutions (PS) ;
3 Evaluate the population of solutions;
4 Set iter=0;
5 while iter <Max G do
6 /*Selection procedure*/ ;
7 FirstParent= Select one individual (P Sol);
8 SecondParent= Select one individual (P Sol);
9 /*Check the crossover probability*/;

10 if Rand[0,1] <CR then
11 /*Apply the crossover operator*/;
12 Offspringscx= Crossover(FirstParent, SecondParent);

13 end
14 /*Check the mutation probability*/;
15 if Rand[0,1] <MR then
16 /*Apply the mutation operator*/;
17 Offspringsmutation=Mutate(Offspringscx);

18 end
19 /*Apply local search to Offsprings */;
20 Offsprings=LS(Offspringsmutation);
21 Update the population (P Sol);
22 iter = iter + 1;

23 end
24 Output Best solution found ;

improve the current solutions. If one of the stopping criteria is satisfied, then
the whole MA procedure will stop and the current best solution will be returned
as the output. Otherwise, the fitness of the current pool of solutions will be
calculated. Then the population is updated since new solutions have been gen-
erated by crossover, mutation, repair procedure and local search. After that a
new iteration starts from the selection procedure again.

Set Parameters. The main parameters of the proposed MA are initialised in
this step. The proposed MA has several parameters. These are: population size,
the number of generations, crossover rate, mutation rate and the number of non
improvement iterations for the local search.

Initial Population. The initial population is randomly generated. Each solu-
tion is represented as one chromosome, e.g. one-dimensional array. Each cell of
the array contains an integer number which represent the location.
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Fitness Function. In this step, the fitness value of each solution based on the
objective function is calculated. The better the fitness value is, the higher chance
the solution will be selected to reproduce the next generation of solutions. For
shortest route problems, the fitness is the total travel time between the origin
and destination locations. Therefore, solution with shortest travel time is the
better.

Selection Procedure. This step is responsible for selecting two solutions for
producing the next generation. In this paper, we adopted the traditional tourna-
ment selection mechanism [4–6]. The tournament size is set to 2, indicating that
each tournament has two solutions competing with each other. At each call, two
solutions are randomly selected from the current population and the one with
highest fitness value will be added to the reproduction pool.

Crossover. This step is responsible to generate new solutions by taking the
selected solutions and mixes their genetic materials to produce new offsprings.
In this paper, single-point crossover method is used which only swap genetic
materials at one point [5,6]. It first finds a common point between source node
and destination node and then all points behind the common point are exchanged
between the two solutions, thus resulting in two offspring’s.

Mutation. Mutation operator helps explore a large search space by producing
some random changes in various solutions. In this paper, we used a one-point
mutation operator [5]. Crossover point is randomly selected and then all points
behind the selected mutation point are changed with a random sequence.

Repair Procedure. The aim of this step is to turn infeasible solutions into
feasible ones. After crossover and mutation operations, the resulting solutions
may become infeasible [5,6]. In this paper, The MA in our experiments has repair
procedure that ensure all infeasible solutions are repaired.

Local Search Algorithm. The main role of this step is to improve the con-
vergence process of the search process in order to attain higher quality solu-
tions [9,10]. In this paper, the utilised local search algorithm is the steepest
descent algorithm. Steepest descent algorithm is a simple variation of the gra-
dient descent algorithm. It starts with a given solution as an input and uses
a neighbourhood structure to move the search process to other possibly better
solutions. It uses an “accept only” improving acceptance criterion whereby only
a better solution will be used as a new starting point. Given si, It applies a
neighbourhood structure to create sn. Replace sn with si if sn is better. The
pseudocode of the steepest descent algorithm is shown in (2).
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Algorithm 2: Steepest descent algorithm
1 Set MaxIter; Iter = 0;
2 si ← GenerateInitialSolution;
3 while Iter <MaxIter do
4 sn ← apply neighbourhood structure to si;
5 if f(sn) <= f(si) then
6 si ← sn;
7 end

8 end
9 Return the best solution;

Stopping Condition. If the stopping condition is met, terminate the search
process and return the best found solution. For our proposed memetic algorithm,
it will stop if the maximum number of generations is reached. Otherwise, go to
step 24.

Table 1. The parameter settings of the deep learning approach

Parameter Value

Number of input parameters 12

Number of output parameters 1

Number of hidden layers 2

Hidden units in each layer 45, 35

Activation function ReLU

Table 2. The parameter settings of the memetic algorithm

Parameter Tested range Suggested value

Number of generations 5−100 40 fitness evaluations

Population size 5−30 20

Crossover rate 0.1−0.9 0.4

Mutation rate 0.1−0.9 0.2

Consecutive non-improvement iterations 5−20 10

3 Experimental Settings

In this section, the parameter settings of the deep learning and the proposed
algorithm are provided. The values of parameters were selected empirically based
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on our preliminary experiments, where we tested the deep learning model and the
proposed algorithm with different parameter combination using different values
for each parameter. The values of these parameters are determined one by one
through manually changing the value of one parameter, while fixing the others.
Then, the best values for all parameters are recorded. The final parameter values
of the deep learning and the proposed algorithm are presented in Tables 1 and 2.

4 Experimental Results

This section is divided into two subsections. The first examines the performance
comparison between the deep learning approach and other machine learning
models (Sect. 4.1). The second assesses the benefit of incorporating the proposed
components on search performance (Sect. 4.2).

4.1 Deep Learning and Machine Learning Results

In this paper, we have implemented a number of machine learning models and
the results of these models are compared with the deep learning model proposed
in this work. We have tested the followings methods: XGBoost, Random forest,
Artificial neural network, Multivariate regression.

The root-mean squared-error (RMSE) was used as an evaluation metric.
Table 3 shows the results in term of RMSE on the NYC Taxi dataset.

Table 3. Comparing our deep prediction model with other machine learning models
in term of RMSE

Model RMSE

XGBoost 24.06

Random forest 21.34

Artificial neural network 70.21

Multivariate regression 27.19

Our deep learning model 11.01

In the table, the best obtained result is highlighted in bold. From Table 3,
it can be seen that our deep prediction model is superior to the other machine
learning models in term of RMSE. The best values with the lowest RMSE is
11.01 achieved by our approach, followed by 21.34 from random forest, 24.06
from XGBoost, 27.19 from multivariate regression and 70.21 from artificial neural
network.

This good result can be attributed to the factor that deep learning consider
all input features and then utilise best ones through the internal learning process.
On the other hand, other machine learning methods require feature engineering
step to identify the best subset of features which is a very time consuming and
needs a human expert.
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4.2 The Proposed Memetic Algorithm Results

This section evaluates the effectiveness of the machine learning models and the
proposed memetic algorithm. To this end, genetic algorithm (GA) and memetic
algorithm (MA) with different machine learning models are tested and compared
against each other. These are: GA with XGBoost, GA with random forest, GA
with artificial neural network, GA with multivariate regression, GA with deep
prediction model, MA with XGBoost, MA with random forest, MA with artificial
neural network, MA with multivariate regression and MA with deep prediction
model. The main aim is to evaluate the benefit of using our deep prediction
model and local search algorithm within MA.

Table 4. Results of the GA and MA with different prediction models (Part I)

Algorithm Number of locations

500 1000

Best std Best std

GA with XGBoost 5933.61 243.76 7671.84 136.72

GA with random forest 5844.78 194.14 7533.67 153.98

GA with artificial neural network 9401.86 215.61 10154.01 707.65

GA with multivariate regression 6217.77 227.02 7907.34 256.39

GA with deep prediction model 4602.03 153.69 6837.17 142.24

MA with XGBoost 5774.54 116.07 7405.12 120.02

MA with random forest 5637.81 96.16 7360.04 119.18

MA with artificial neural network 9293.44 196.01 10093.88 693.31

MA with multivariate regression 6171.63 138.09 7499.22 155.03

MA with deep prediction model 3234.11 71.3 6411.72 127.69

To ensure a fair comparison between the compared algorithms, the initial
solution, number of runs, stopping condition and computer resources are the
same for all instances. All algorithms were executed for 30 independent runs
over all instances. We also used 4 instances with a different number of locations
ranging between 500 and 2000 locations, which can be seen as small, medium,
large and very large.

The computational comparisons of the above algorithms are presented in
Tables 4 and 5. The comparison is in terms of the best cost (travel time) and
standard deviation (std) for each number of locations, where the lower the better.
The best results are highlighted in bold. A close scrutiny of Tables 4 and 5
reveals that, of all the instances, the proposed MA algorithm with deep learning
approach outperforms the other algorithms in all instances. From Tables 4 and
5, we can make the following observations:

– GA with deep prediction model obtained better results when compared to
GA with all other prediction models across all instances.
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Table 5. Results of the GA and MA with different prediction models (Part II)

Algorithm Number of locations

1500 2000

Best std Best std

GA with XGBoost 12908.11 998.91 13634.01 501.94

GA with random forest 12833.67 1076.14 13593.47 529.61

GA with artificial neural network 15751.01 1703.07 15882.33 992.84

GA with multivariate regression 13012.41 1047.41 13809.41 591.56

GA with deep prediction model 10571.09 607.99 12946.67 388.14

MA with XGBoost 12641.08 613.12 13436.42 481.08

MA with random forest 12607.91 684.74 13309.01 503.44

MA with artificial neural network 15603.17 980.01 15206.93 755.31

MA with multivariate regression 12988.14 721.36 13498.96 564.05

MA with deep prediction model 9561.36 131.29 12721.45 129.15

– GA with deep learning obtained better results when compared to MA with
all other machine learning models (apart from MA with deep learning) across
all instances.

– MA with deep learning obtained better results when compared to GA and
MA with all other machine learning models across all instances.

This justifies the benefit of using deep learning approach to predict the travel
time and the proposed memetic algorithm to exploit the current search space
around the given solution.

5 Conclusion

In this study, we proposed a novel two-stage approach for finding the shortest
route under dynamic environment where travel time changes. Firstly, we devel-
oped a deep learning method to predict the travel time between the origin and
destination. We also added the weather conditions into the input to demon-
strate that our approach can predict the travel time more accurately. Secondly,
a customised memetic algorithm is developed to find shortest route using the
predicted travel time. The effectiveness of the proposed method has been evalu-
ated on New York City taxi dataset. The obtained results lead to our conclusion
that the proposed two-stage shortest route is effective, compared with conven-
tional methods. The proposed deep prediction model and memetic algorithm are
beneficial.
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