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Intracranial stereoelectroencephalography (SEEG) is broadly used in the presurgical

evaluation of intractable epilepsy, due to its high temporal resolution in neural

activity recording and high spatial resolution within suspected epileptogenic zones.

Neurosurgeons or technicians face the challenge of conducting a workflow of post-

processing operations with the multimodal data (e.g., MRI, CT, and EEG) after the

implantation surgery, such as brain surface reconstruction, electrode contact localization,

and SEEG data analysis. Several software or toolboxes have been developed to

take one or more steps in the workflow but without an end-to-end solution. In this

study, we introduced BrainQuake, an open-source Python software for the SEEG

spatiotemporal analysis, integrating modules and pipelines in surface reconstruction,

electrode localization, seizure onset zone (SOZ) prediction based on ictal and interictal

SEEG analysis, and final visualizations, each of which is highly automated with a user-

friendly graphical user interface (GUI). BrainQuake also supports remote communications

with a public server, which is facilitated with automated and standardized preprocessing

pipelines, high-performance computing power, and data curation management to

provide a time-saving and compatible platform for neurosurgeons and researchers.

Keywords: epilepsy, stereoelectroencephalography, electrode localization, Epileptogenicity Index, interictal high-

frequency oscillation, Hough Transform

INTRODUCTION

Nearly 30% of the patients with epilepsy eventually become intractable patients resistant
to antiepileptic drugs (Kwan and Brodie, 2000). To these patients, the intracranial
stereoelectroencephalography (SEEG) surgery, first developed by Talairach and Bancaud at
the Hospital Sainte Anne, Paris (Bancaud et al., 1965), is now a common clinical approach to
consider about. SEEG aims at identifying the epileptogenic zones (EZs; Rosenow and Lüders,
2001) in the suspicious area of the brain of an individual by implanting depth electrodes and
capturing the abnormal neural activities, followed by a resection or thermocoagulation surgery
(Cossu et al., 2015; Wang et al., 2020). During this procedure, a large number of neurodata
with multiple modalities occur. Presurgical MRI T1 structural image and CT image after the
implantation surgery can, respectively, be taken as information for brain surface reconstruction
and SEEG electrode localization (Behrens et al., 1994; Dykstra et al., 2012). Neural activities before

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.773890
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.773890&domain=pdf&date_stamp=2022-01-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hongbo@tsinghua.edu.cn
https://doi.org/10.3389/fninf.2021.773890
https://www.frontiersin.org/articles/10.3389/fninf.2021.773890/full


Cai et al. SEEG Analysis Toolbox

the resection surgery are recorded with SEEG electrodes for EZ
localization and lesion analysis, usually lasting for 2 weeks. The
neural activity acquired during the 2-week SEEG recording is
vital to the presurgical planning (Cossu et al., 2015) and of great
value to brain research (Zhang et al., 2019; Akkol et al., 2021).
However, exploiting the large number of multimodal neurodata
and managing them effectively remain a problem to be solved.

The SEEG electrode localization procedure using co-
registered MR and CT images provides neurosurgeons with
accurate anatomical positions of the implanted electrode
contacts (Dykstra et al., 2012). The traditional and broadly used
method of electrode contact localization mostly depends on
visual checking and manual operations (Darcey and Roberts,
2010). After the registration of MR and CT images, technicians
view the CT image slice by slice, locating highlighted contact
voxels and mapping the positions onto the MRI (Darcey and
Roberts, 2010). Trouble occurs since every patient may have 100
contacts implanted on average, and one should check the slices
back and forth for a highlighted contact centroid, which is a
complicated and time-consuming task. Several previous studies
have proposed semiautomated methods (Blenkmann et al., 2017;
Hamilton et al., 2017; Narizzano et al., 2017; Qin et al., 2017;
Li et al., 2019) to improve the effectiveness and precision of
electrode contact localization. The SEEG Assistant (SEEGA)
extension of the 3D Slicer applies an algorithm of the center-of-
mass convergence for the contact segmentation step (Arnulfo
et al., 2015; Narizzano et al., 2017), which shows great feasibility
and robustness in locating contacts along each electrode shaft.
However, this method requires a prior manually defined fiducial
file of the planned starting and ending points of each electrode
and an additional presurgical CT scanning. Another study (Qin
et al., 2017) inherits the convergence algorithm and develops
a preprocessing workflow to reduce the required input. This
workflow includes MRI and CT registration, masking, eroding,
and clustering steps but still needs to insert several pause points
for visual checking and manual adjustments. Another toolbox
(Blenkmann et al., 2017) implements a k-means clustering
algorithm to segment contacts along each electrode, in which
the voxels of each electrode should be carefully thresholded,
otherwise the contacts may not be completely segmented.

In the clinical SEEG data analysis, doctors are mainly
concerned about the effect of a few episodes of ictal data for the
location of EZs. Channels with relatively early abnormal activity
during the seizure often indicate the potential EZs. A previous
study defined an Epileptogenicity Index (EI) using the onset
of high-frequency energy to predict the onset area (Bartolomei
et al., 2008). However, in some cases, the onset period may
not be captured to provide sufficient diagnostic information. In
contrast to only a few seizures during the monitoring period,
most of the SEEG signals recorded are seemingly ordinary
interictal data. The sporadic abnormal activities in the interictal
interval, such as spikes or high-frequency oscillations (HFOs),
can be used as plausible pathological markers of EZs. Because
the intracranial EEG recording consumes huge storage space,
recording an 80-channel intracranial EEG at a sampling rate of
2,000Hz for 24 h may generate a data volume of about 50 GB.
It is time-consuming for surgeons to extract sparse interictal

pathological activities from the long-term SEEG. Currently,
the interictal data cannot be fully and effectively traversed by
surgeons and thus is usually deleted. The value of the interictal
data is mostly underestimated. Therefore, there is an urgent
need to detect abnormal activities in interictal SEEG data to
extract pathological information and reduce the workload of
clinicians. Both HFO activities (Navarrete et al., 2016) and
spike detection algorithms (Barkmeier et al., 2012) have been
developed based on waveform morphology, but indexation
methods that efficiently extract interictal epileptic discharge
events are yet to be developed. In addition, the performance of
current interictal event detectionmethods heavily depends on the
manual selection of the parameters (Remakanthakurup Sindhu
et al., 2020). Our interictal data analysis module is designed to
minimize manual interference by implementing an automatic
HFO detection method and retaining only necessary parameter
settings such as filter ranges and channel selections.

After electrode localization and data analysis, cortical surface
reconstruction is an essential step for better visualization. Several
previous studies have developed the reconstruction procedure
(Dale et al., 1999; Fischl, 2012; Henschel et al., 2020; Zöllei
et al., 2020). FreeSurfer group releases tools and pipelines publicly
(Fischl, 2012). They built a reconstruction pipeline, “recon-all,”
covering from primary operations such as motion correction and
skull-stripping, to final steps such as segmentation and cortical
parcellation. Several subsequent studies have also proposed
advanced reconstruction tools such as specifically, “infant-
FreeSurfer” (Zöllei et al., 2020) for covering all ages of subjects
and “FastSurfer” deep learning pipeline (Henschel et al., 2020)
for solving the time-consuming problem. However, FreeSurfer
software and its advanced tools can only be executed on Linux-
based operating systems (OS). Virtual machine configuration and
the usage of terminal lines can be troublesome for someWindows
users. Moreover, there is often a lack of local computing power
for rapid surface reconstruction in the clinical setting.

In this study, we present BrainQuake, an open-source
Python software, providing epilepsy surgeons with tools and
integrated pipelines of surface reconstruction, electrode contact
localization, and ictal and interictal SEEG analysis for presurgical
evaluations. The integration aims at automatically executing the
whole workflow with fewer input files and fewer pause points.
BrainQuake is designed as an end-to-end, highly automated,
time-saving software, free to be downloaded and compatible
with both Linux and Windows OS. With a comprehensive data
processing platform established, surgeons can take the most
advantage of neurodata andmake reliable presurgical evaluations
for those epilepsy patients. We hope this software can be helpful
to clinical practice and human neuroscience studies using SEEG.

MATERIALS AND REQUIREMENTS

Software Overview
BrainQuake is an open-source Python software for image and
SEEG data processing of refractory epilepsy patients. BrainQuake
consists of four modules, namely, surface module, electrode
module, ictal module, and interictal modules (Figure 1). The
surface module is used for surface reconstruction of the MRI

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2022 | Volume 15 | Article 773890

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Cai et al. SEEG Analysis Toolbox

T1 image of the patient. We incorporated a GUI, a client-
server communication mode, a public server with powerful
graphics processing units (GPUs), and a data curation system,
to ensure that users share a time-saving, private, and stable
data preprocessing pipeline. The electrode module consists of
a pipeline to locate and anatomically label the SEEG electrode
contacts using both preoperative T1 image and postoperative
CT image. The ictal module and interictal module analyzed the
recorded SEEG data and then pinpoint the suspicious seizure
onset zones (SOZs) using EI and High-Frequency Events Index
(HI), respectively. Finally, BrainQuake provides a comprehensive
visualization result of the 3D brain surface of an individualized
patient, with SEEG contacts and SOZ predictions projected on
it. We developed GUIs for all these modules (Figure 2), and
tutorials can be found along with installation packages.

Data
Subjects
The SEEG electrodes, or intracranial depth electrodes, were used
in human subjects undergoing epilepsy surgical treatment. We
analyzed the data from five patients temporarily implanted with
SEEG electrodes (8–16 contacts per electrode, 2mm diameter,
and 3.5-mm center-to-center spacing). Intracranial EEG was
continuously recorded for 2 weeks on average, and MRI and
CT images were, respectively, acquired before and after the
implantation operation. The surgeries were conducted in the
Department of Neurosurgery and Epilepsy Center, Tsinghua
Yuquan Hospital. Data collection and scientific workup were
approved by its Institutional Review Board.

Example Data
We provided eight sets of sample data so that potential users
can follow the data format and file structure and go through the
procedures in BrainQuake. Sample data are available at https://
doi.org/10.5281/zenodo.5675459, such as MRI T1 image, CT
image in NIfTI-1 type, and recordings of ictal and interictal
EEG data (up to 2 h per patient) for each sample. The file
structure is shown in Figure 3. FreeSurfer “recon-all” results
are also included since we used some of their intermediate
files (mri/orig.mgz, brainmask.mgz; surf/lh.pial, rh.pial) in
our modules. Two separate directories, namely, BrainQuake
dataset and FreeSurfer dataset, will be configured during the
initialization of the software.

Operating Requirements
The codes are divided into the client part and the server part.
Computers running either Linux, Mac OS X, or Windows should
run the client Python GUI code. For the server part, it should
be running on Linux or Mac OS X, since FreeSurfer works
only on Linux. We recommended users install the client GUI
code and communicate with a public server we provided and
leave all the time-consuming works (e.g., surface reconstruction,
CT and MRI image registration) to it. Essential processed
data for functional modules in BrainQuake can be downloaded
from the server. If facilitated with a Linux-based server at
local, one can still download and install the server codes and
run the whole pipeline within their own workspace. On the

remote server side, FreeSurfer (version 6 or higher) should be
properly installed as well as the packages mentioned previously.
Full installation tutorials can be found on https://github.com/
HongLabTHU/Brainquake. Detailed operating requirements are
listed as follows:

1. Computers running on Linux, Mac OS X, and Windows
should run the client codes (i.e., Python scripts outside the
“Server_codes” folder on the GitHub of BrainQuake).

2. Server codes should be run on a Linux-based server, with
FreeSurfer (version 6 or higher) installed.

3. Processor speed: 2.0 GHz or higher recommended.
4. RAM: 8 GB or higher recommended.
5. Python version: 3.6 or higher.
6. Third-party dependencies: numpy, nibabel, matplotlib, scikit-

learn, scipy, mne, vtk, and mayavi.

The public server [Ubuntu 18.04, 40 central processing
units (CPUs), 2.10 GHz] we provided assigns eight cores to
each “recon-all” task for parallel computing and can hold
up to three tasks running simultaneously. Each “recon-all”
task lasts 3 h on average. Server codes are also provided
on the GitHub of BrainQuake so that one can facilitate
their own server for reference. The output package of
a surface reconstruction task from the server pipeline of
BrainQuake includes a typical reconstruction result folder
(produced by FreeSurfer), an “orig.nii.gz” file (produced
by FreeSurfer command “mri_convert”), a “mask.mgz” file
(produced by FreeSurfer command “mri_binarize”), and a
registered “<name>_CT_Reg.nii.gz” file (produced by FSL
command “flirt” with “orig.nii.gz” as its reference image).
Producing all of these files and folders requires FreeSurfer
installed in the operating environment, so if a potential user
prefers not to apply the client-server mode, one can always
import their own “recon-all” folders with all these Supplementary
Files prepared.

METHODS

Image Processing Modules
Surface Module
FreeSurfer provides a complete pipeline, “recon-all,” for surface
reconstruction, which is compiled with abundant tools such
as skull-stripping, image registration, cortical reconstruction,
and segmentation. More time-saving or specific pipelines
such as “FastSurfer” (Henschel et al., 2020) and “infant-
FreeSurfer” (Zöllei et al., 2020) have been released in recent
years. We integrated all those pipelines in the provided
server and also provided processing options in the surface
module GUI so that users no longer need to deal with
the terminal when using “recon-all” or wait too long for
a reconstruction result since the server is facilitated with
GPUs and the average processing time is 3.5 h for “recon-
all” and only 30min for “FastSurfer” and “infant-FreeSurfer.”
Windows users need not configure a virtual machine for
installing FreeSurfer locally since our server can undertake all the
preprocessing works.
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FIGURE 1 | General overview of BrainQuake structure. BrainQuake is designed to analyze the SEEG data (ictal and interictal), CT images, and MRI T1 images. Ictal

and interictal modules are used to predict suspect contacts within seizure onset zones (SOZs). The electrode module exploits the graphic information from a CT image

to locate the stereoelectroencephalography (SEEG) electrodes and contacts, as well as project them onto the brain surface, which is reconstructed by the surface

module. The locations of suspect contacts are marked (blue) on the 3D plot of the surface and electrodes, giving a brief overview of the presurgical evaluation results.

Electrode Module
Either processedmanually or semiautomatically, the main idea of
electrode contact segmentation is to identify the brightest voxels
in a CT image as contact positions along each depth electrode.
To conduct an autonomous pipeline of contact segmentation,
we should make the best use of the image properties. The
electrode module of BrainQuake requires the input data of only
a postsurgical CT NIfTI image and a result package of surface
reconstruction. The pipeline in the module includes three parts,
namely, image preprocessing, electrode clustering, and contact
recognition (Figure 4).

Preprocessing
Before we could autonomously identify an electrode or contact,
we must ensure that the image contains only the intracranial

area of a brain since the skulls, teeth, or some electrode supports
outside the brain are hard to be distinguished from the electrodes
based on the voxel value difference of a CT image. In the
preprocessing step, we registered the CT with the standardized
MR image generated in the surface module. This registration
step uses FSL “flirt” (Jenkinson et al., 2012) after surface
reconstruction in the surface module. Then, the registered CT
can be masked with a skull-stripped MR image in the surface
data package to remove the extracranial part of the CT data since
they are now in the same coordinate. At this time, the CT image
contains only the information about the intracranial brain and
the electrodes, the two of which show a significant difference
in their voxel value ranges. Electrode voxels are much brighter
in the image, so they can be extracted simply by thresholding
(Figure 4A).
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FIGURE 2 | The graphical user interfaces (GUIs) of the main window of BrainQuake and the four functional submodules. (A) BrainQuake main window; (B) Surface

module; (C) Electrode module; (D) Interictal module; (E) Ictal module.

Hough Transform and Gaussian Mixture Model
After extracting the electrode voxels into point clouds
(Figure 4B), we need to identify the number and axes of
electrodes and label each voxel into different electrode clusters.
This step is completed in most of the previous works by
clustering algorithm with manual adjustment. In BrainQuake,
we developed a method of combining 3D Hough Transform,
a pattern recognition algorithm, and Gaussian Mixture Model,
a clustering algorithm, to label voxels into different electrode
clusters (Figure 5).

Normal clustering algorithms randomly pick some centroids
in CT images, classify the voxels into clusters, and calculate
the new centroid of each cluster. After multiple iterations,
theoretically, voxels belonging to the same electrode can be
assigned to the same cluster. However, the clustering algorithm
is strongly dependent on the initial selection of centroids. With
an improper initialization of the random centroids, the true
distribution of electrode clusters can be difficult to estimate.
There is a high probability that we would get a locally optimal

clustering result, definitely requiring a manual intervention here
to fix it, for example, to merge some of the clusters to form a real
electrode or to split two or more electrodes in the same cluster.

Our method fixes this issue by adding a Hough Transform
before clustering. Hough Transform is a common method used
in computer vision or digital image processing (Illingworth and
Kittler, 1988). It can be used to detect a certain class of shapes
in an image automatically. The main idea of Hough Transform
is that for a specific shape, we have chosen a set of parameters
and created a parameter space. For example, the parameter we
usually used to describe circles can be center and diameter, while
the parameter of 2D lines can be slope and intercept. Suppose
we have a raw image with a mixture of dots on it. Each dot
will vote in the parameter space for every possible parameter
set they can contribute. Positions in the space with the highest
votes are recognized as the parameter sets describing the most
obvious shape in the raw image. In our case, SEEG electrodes in
a CT image are a combination of line-shaped objects in 3D space.
The parameter space is established to represent the line direction
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FIGURE 3 | File structures of two datasets implemented in BrainQuake. Temporary and final results are saved under the folders of each subject.

(horizontal orientation and altitude) and the distance between
the coordinate origin and the line.

First, we transformed those voxels into point clouds
(Figure 5A). Then, we applied a 3D line Hough Transform to
detect line-shaped trajectories (Jeltsch et al., 2016; Dalitz et al.,
2017) in the point clouds, returning centroid and axis direction of
each electrode cluster. At this stage, we got a set of approximate
but not precise results representing the position of each cluster
(Figure 5B), which can be a good set of prior knowledge to
start clustering. After that, we used the Gaussian Mixture Model
(Reynolds, 2009; Pedregosa et al., 2011) to assign each point to
the electrode cluster it belongs, since the point clouds can be
viewed as a mixture of different line-shaped 3D Gaussian kernels
(Figure 5C). After a successful clustering, the axes directions
of electrodes can be regressed (Pedregosa et al., 2011). This
combinatory method makes use of both electrode geometric
prior and voxel distribution in a CT image, which shows excellent
accuracy and robustness in our experiments.

Contact Segmentation
In the SEEG contact segmentation step, our general goal was
to automatically recognize the relatively brightest voxels, which
are viewed as contact positions, along each electrode shaft. We
mainly divided the process into four sub-steps, namely, locating
the head voxel, locating the target contact, stepping toward the
next contact, and locating the rest contacts along the shaft.

First, we applied a linear regression (Pedregosa et al., 2011)
to each electrode cluster of voxels to get the direction parameter
(coefficients between x-y/y-z/z-x axes) of the electrode shaft track
in the 3D space coordinate. We then used the direction to locate
two voxels, respectively, to be the head and tail of the cluster. As
a general assumption that the head voxel is always closer to the
center of the brain (i.e., the center of the image space), we can

locate the position of the head voxel, which is much close to the
target contact.

Second, we applied a “center-of-mass” convergence algorithm
(Arnulfo et al., 2015) to locate the target contact. We viewed each
voxel value as the “mass” of a single voxel or “weight” of this
point. In this way, the center-of-mass is defined as the “heaviest”
point within a small region of voxels. After finding out the
head voxel, we calculated the center-of-mass of its surrounding
region (a geometry-restricted cubic volume with respect to the
actual contact size, 2 × 2 × 2mm cube in our case). We then
again calculated the next center-of-mass within the surroundings
of the newly found center-of-mass. After 1–2 iterations of this
procedure, the calculated center-of-mass eventually converges to
the brightest voxel around the head of the electrode (i.e., the real
target contact position).

Third, as we already knew the electrode track direction and
the target contact, stepping out a specific distance along the
direction from the target contact can give us a position close
to the next contact. The step size should equal the real distance
between two adjacent contacts (3.5mm in our case). In this
case, we made sure that the position found was close enough
to the next contact, which was ready for another center-of-mass
convergence procedure.

Finally, using the same center-of-mass convergence and the
stepping strategy, the rest contacts can be recognized one by
one. In this iterative process, we also set a geometrical restriction
to ensure that the directed positions are always settled within
the cluster by doubling the weights of the voxels in the cluster
(Figure 4D).

Validation Method of Electrode Localization
We used two methods to validate the results of the electrode
module, namely, visual inspection of the electrode positions and
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FIGURE 4 | The pipeline of electrode localization and contact segmentation procedures in the electrode module. (A) The preprocessing step includes image

registration from the raw CT of a subject to MRI (orig.mgz after surface reconstruction), skull-stripping of registered CT (using brainmask.mgz after surface

reconstruction), and thresholding of electrodes in the CT data. (B) The coordinates of electrode voxels in the CT image after thresholding can be extracted and

plotted, viewing as a mix of point clouds. (C) After applying a Hough Transform and Gaussian Mixture Model algorithm, the electrodes are clustered and labeled by

different colors. (D) Contact segmentation step: contact positions are recognized one by one by converging to the center-of-mass based on voxel values. Contact

positions are marked as red asterisks. (E) The results of the contact segmentation pipeline are projected onto the 3D surface space.

quantitative measurements of the electrode contact distribution.
The recognized contacts were projected onto the 2D slice of the
fusion of MR and CT images. Then, we scanned through all these
slices and visually checked if the electrodes and the highlighted
electrode shaft on CT slices were overlapped.

To quantitatively estimate the accuracy of contact localization,
we must define a gold standard of contact positions and then
estimate the contact deviation error one by one. Usually, a
group of clinical experts should be invited to view through all
those image slices and mark the contact positions manually.
However, due to the artifacts of each contact in the CT images,
one may find it tough to segment those contacts since the
adjacent contact pairs are usually merged. Thus, we could not
trust the manual segmentation results as a gold standard. In this
study, we estimated two indirect metrics, namely, axis-contact
distance (i.e., distances between contacts and their estimated
shaft axis) and adjacent contact distance of each adjacent contact
pair (Arnulfo et al., 2015; Narizzano et al., 2017). Both of the
metrics are based on the geometric properties of the SEEG

electrodes. Contacts along the same electrode shaft are line-
shaped regressed, and the axis-contact distance ideally can be
close to 0mm. The axis-contact distance is defined as the distance
between the contact position and the regression line of the
electrode shaft. It reveals how straight the contacts are located.
The electrodes we used have a fixed spacing distance of 3.5mm
between neighboring contacts, so the adjacent contact distance
we estimated should be distributed similarly to a Gaussian with
a mean of 3.5mm and a trivial variance as much as possible.
However, it is often the case that the electrode shaft bends slightly
and the contacts deviate from the line after the implantation
surgery, which in some way causes these two distributions to be
not so ideal (refer to the “Discussion” section).

SEEG Data Analysis Modules
Ictal Module
For ictal data, clinicians tend to mark the areas where the
pathological activity occurs earlier as the potential SOZs. Based
on this consensus, an EI method is commonly used to predict the
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FIGURE 5 | Three examples of electrode point clouds have been 3D Hough-transformed and then clustered using the Gaussian Mixture Model. (A) The initial point

clouds of electrodes are extracted from the CT intracranial image of an individual after several preprocessing steps. (B) The centroids and directions (showing by the

red arrows) of SEEG electrodes are detected by the Hough Transform algorithm of a line in 3D coordinates. (C) The clustered electrodes are marked using different

colors, after applying the Gaussian Mixture Model and the prior knowledge of the centroids and directions of clusters generated from (B).

SOZs (Bartolomei et al., 2008). In this study, we implemented a
simplified EI measurement in BrainQuake, predicting the SOZs
by quantifying the combined effect of the timing order and the
strength of high-gamma energy change in each channel during
the onset process of the seizure (Zhao et al., 2019).

Before we did any automatic computation, we first filtered
the raw signals into high-gamma frequency bands (60–140Hz,
power noise at 50Hz) using a second-order IIR notch digital filter
and a fifth-order Butterworth IIR filter (Virtanen et al., 2020).We
then manually selected a segment of the baseline (BL) data, as
well as a segment of the target data containing the initial onset
process of seizure. The BL data should be located before the
seizure onset, and a range of around 60 s should be enough for
it. The target data should cover the seizure onset process, that is,
to start somewhere before the onset and end within the seizure.
The length of the target data is not limited as long as it covers the
seizure onset process.

After the manual selection, we calculated an EI for each
channel. First, the band-passed signals are transformed into
a high-frequency energy spectrum by amplitude squaring and
window smoothing (500-ms window length, 1 sample point
per step). Second, we calculated the average value of the high-
frequency energy of the BL data, which is used to normalize the
high-frequency energy by division. In this way, we obtained the

normalized high-frequency energy (NHFE) (Figure 6A). Third, a
threshold of onset time was calculated for each channel i, which
is 10 times the standard deviation (SD) of baseline (BL) NHFE
above its maximum value as follows:

threi = max
(

NHFEBL, i
)

+ 10σ (NHFEBL, i)

For each channel, once the normalized energy in the target data
exceeds its corresponding threshold, we decided this moment as
the onset time of its abnormal activity. Fourth, we sorted the
channels by their onset time and defined the time coefficient (TC)
as the reciprocal of the order of each channel (i.e., 1, 1/2, and 1/3).
Also, we calculated the average energy of each channel in a 250-
ms period right after the earliest onset time as energy coefficient
(EC) using the NHFE. Finally, the EI of each channel i is obtained
by the following:

EIi =
√

TCi × ECi

As we can notice, EI, combining the effect of timing and energy
strength, can be used to quantify the degree of epileptogenicity of
each electrode channel (Figure 6A).

Interictal Module
A previous study on the SEEG interictal data found that both
HFOs and spikes are the reliable biomarkers of SOZ, while HFO
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FIGURE 6 | Methods of ictal and interictal SEEG data analysis. (A) Onset timing order and energy strength during the initial stage of seizures are sorted to calculate

the Epileptogenicity Index (EI). (B) Numbers of over-threshold high-frequency events are counted as High-Frequency Events Index (HI).
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has better specificity for SOZ than spikes (Wang et al., 2017;
Roehri and Bartolomei, 2019). The HFO subcategory, 80–250Hz
ripple component, is relatively more common than a higher
frequency component (Wang et al., 2013). This frequency band
can also take into account the spike activity, which is similar to a
full-band signal (Roehri et al., 2017; Cai et al., 2021). Therefore,
for the interictal data, we extracted the pathological activity
by detecting the short-term abnormal energy enhancement in
the 80–250Hz band, providing an efficient indexation method
through unified energy detection. Specifically, we used the
Hilbert transform to extract the energy envelope in the 80–250Hz
band of the signal (i.e., users can adjust the frequency range for
their own cases). The filter setting applied is a second-order IIR
notch digital filter with a quality factor set to be 30, followed
by a five-order Butterworth band-pass filter (Virtanen et al.,
2020). We calculated the median value of the whole envelope
(global, Sglobal) and the median value of each contact (local, Si).
Considering both of them, we set a synergistic threshold for each
contact as follows:

threi = 2×max(median (Si) , median(Sglobal))

The time range where the envelop exceeds the threshold is
marked as abnormal activity (Figure 6B). When the interval
between two adjacent abnormal activities is too small (<20ms),
they are considered to belong to the same event and merged,
and the abnormal activities of the very short duration (<50ms)
are excluded. Finally, the number of abnormal activities (HI)
calculated for each channel is used as an index to measure the
relative likelihood of each contact of being in the SOZ.

RESULTS AND VALIDATION

We processed all four functional modules using the MRI/CT
images and the SEEG data acquired from 8 epilepsy patients.
The time required for surface reconstruction was either around
0.5 h using FastSurfer or 3.5 h using FreeSurfer recon-all on the
public server (40 cores, 2.1 GHz, 64 GB RAM). The preprocessing
step in the electrode module for each subject is around 15min,
mostly spent on the image registrations of MRI and CT using the
FSL “flirt” command. Contact localization consumes only 30 s for
each subject on average. A 70-s interictal SEEG costs around 40 s
for EI calculation, and the 2-h interictal data costs around 20min
for HI calculation.

Electrode Module Validation
We processed 74 electrodes with 743 contacts implanted
in eight patients in total. During visual inspection, all 74
electrodes were perfectly matched with the highlighted electrode
shaft artifacts on CT images (Figures 7A,B). For quantitative
validation, we estimated two metrics, namely, axis-contact
distance and adjacent contact distance error, to measure whether
the distributions of recognized contacts obey the geometric rules
of the SEEG electrode. In statistics, 95% of the contacts were
<0.1mm, deviating from their estimated axes (Figure 7C). By
the subtraction of 3.5mm (real adjacent contact distance) mean,
the adjacent contact distance error was distributed around 0mm

with a Gaussian-like distribution. Notably, 95% of the contact
distance fell in the range of 3.5 ± 1mm, and 50% of the contact
distance fell in the range of 3.5 ± 0.3mm (Figure 7D). These
two estimates show comparable results with the Contact Position
Estimator (CPE) Module of 3D Slicer (Narizzano et al., 2017).

SEEG Analysis Validation
To evaluate the accuracy of predicting SOZ using EI and HI
methods, the selection of the clinician of the SOZ electrode
contacts of patients was used as the ground truth. The receiver
operator curve (ROC) and the corresponding area under the
curve (AUC) were further used to evaluate the consistency
between the index-based prediction and the clinical diagnosis.
The average AUC of EI and HI on five patients are 0.83 and 0.80,
respectively (with EI of S2 excluded) (Figures 8A,B). We could
observe that on patient S1, both EI andHI have achieved excellent
SOZ prediction results, which suggests a valid estimation of SOZs
using both methods. The AUC value of S2 based on EI is close
to 0.5 and has no predictive effect, due to the fact that the ictal
data of S2 displays similar seizure onset activities within every
single channel, and the EI method cannot tell the difference
from either their timing orders or energy strengths. In contrast,
the AUC of S2 based on interictal HI reaches 0.83, which is
highly consistent with the clinically annotated SOZs. The case
of S2 suggests that when the ictal data cannot provide sufficient
diagnostic information, the interictal data can be used to provide
extra information for SOZ location, showing the essential value
of the interictal SEEG data analysis. In addition, the AUC value
of S3 based on HI is 0.49, while its AUC based on HI reaches
0.99. The HI results of S3 performed poorly because those false-
positive channels recorded plentiful high-frequency noises. The
cases of S2 and S3 suggested the cross-reference value of EI
and HI. Finally, we displayed SOZ predictions on reconstructed
cortical volume for clinicians to verify the results with imaging
evidence (Figure 8C). For the case of S2, we marked the clinically
annotated contacts as larger spheres and the HI-based SOZs as
red spheres, which shows consistency between these two groups.
Moreover, we tried a similar EI module in a software, AnyWave
(Colombet et al., 2015), to our ictal dataset, and it shows that the
EI predictions of BrainQuake have higher ROCs in most cases
(Figures 9A,B). The comparisons also show that the AUC of
BrainQuake EI and HI both is significantly higher than that of
AnyWave EI (p= 0.0078 and p= 0.0391, respectively, two-sided
Wilcoxon signed-rank test, Figure 9C).

DISCUSSION AND CONCLUSION

The intracranial SEEG data provide abundant
electrophysiological information from the human brain for
surgical planning and brain research. With the prevalence of
SEEG recording in recent years, a large number of neurodata
have been generated while researchers are exploring a way to
make the best use of it. The challenge lies in both the fusion
of multimodal neurodata and intensive computation during
the SEEG analysis. In this study, we have introduced a self-
sustained Python toolbox, i.e., BrainQuake, integrating multiple
approaches to form a complete solution. For the structural

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2022 | Volume 15 | Article 773890

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Cai et al. SEEG Analysis Toolbox

FIGURE 7 | Validation of electrode localization accuracy. Visual checking of the electrodes and contacts of an example subject projected onto the CT image of an

individual. The raw CT brain (A) shows electrode positions as highlighted line-shaped voxels. Our recognized electrodes (red spheres) are plotted on (B), showing that

they are overlapped with each other. Contact positions are quantitatively estimated by two metrics, namely, axis-contact distance and adjacent contact distance error.

(C) Axis-contact distance estimates the distribution of deviation distance between each contact and its regressed electrode shaft line. Of note, 95% of the contacts

were less than 0.1mm, deviating from their estimated shaft line. (D) Adjacent inter-contact distance error estimates the distribution of the distance between each pair

of adjacent contacts. The actual adjacent contact distance size, 3.5mm, is subtracted from the estimated distances, so here we have shown the distribution of the

adjacent contact distance error. Notably, 95% of the contact distance fell in the range of 0 ± 1mm, and 50% of the contact distance fell in the range of 0 ± 0.3mm,

i.e., the adjacent contact distance distribution is 3.5 ± 1mm (95%) and 3.5 ± 0.3mm (50%).

data, the electrode module and the surface module provide
fast and automated pipelines for surface reconstruction and
electrode localization, with only raw MRI T1 and CT images
needed for processing. For the functional data, both ictal and
interictal modules exploit the long range of SEEG data and
provide a presurgical estimation of SOZs. Blending structural
and functional results, we provided neurosurgeons with a
comprehensive tool for surgical planning. Neuroscientists who

are using SEEG to study human brains will also be benefited
from our toolbox.

The electrode localization approach implemented in
BrainQuake divides the problem into two parts, namely, a
global level of electrode clustering and a local level of contact
segmentation. BrainQuake innovates in the level of automatic
electrode voxel clustering. The semiautonomous methods
require either additional input messages or a graphical user
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FIGURE 8 | Validations of the SOZ prediction results of BrainQuake comparing with clinically annotated SOZs. (A) The receiver operator curve (ROC) and area under

the curve (AUC) results of SOZ prediction, based on EI. Case S2 shows a low AUC of 0.51 (low predictive effect), while HI-guided prediction of S2 is 0.83, which is

highly consistent with the clinically annotated SOZs. That is because the ictal data of S2 displays similar seizure onset activities within each channel, and the EI

method cannot tell the difference from either their timing orders or their energy strengths. The case of S2 suggests that when the ictal data cannot provide sufficient

diagnostic information, the interictal data can be used to provide extra information for SOZ location, showing the essential value of interictal SEEG data analysis. (B)

The ROC and AUC results of SOZ prediction, based on HI. Case S3 shows a low AUC of 0.49 based on HI but a high AUC of 0.99 based on EI. The HI results of S3

performed poorly because those false positive channels recorded plentiful high-frequency noises. EI and HI methods provide prediction results from different

perspectives of views, so we recommended surgeons take a comprehensive consideration on both of them. (C) The HI results of S2 (marked with larger scales of

contacts) and cortical reconstruction are displayed at the same time with clinically annotated SOZs (marked with red color).

FIGURE 9 | Comparisons between AnyWave EI method and the EI and HI of BrainQuake. (A) The ROC and AUC results of SOZ predictions, based on BrainQuake EI.

(B) The ROC and AUC results of SOZ prediction, based on AnyWave EI. In most cases, BrainQuake EI shows a greater prediction effect than AnyWave EI. (C)

Comparisons of AUC values between AnyWave EI and BrainQuake EI and HI. A Wilcoxon signed-rank test was performed between the prediction results of AnyWave

and BrainQuake. The AUC of BrainQuake EI and HI are both significantly higher than that of AnyWave EI (p = 0.0078 and p = 0.0391, respectively, two-sided

Wilcoxon signed-rank test, *p < 0.05, **p < 0.01).

interface (GUI) to complete this process, i.e., the efficiency
and user experience of which highly depends on the quality of
images and preprocessing steps. Our algorithm, which is the
combination of 3D Hough Transform and Gaussian Mixture
Model, managed to take advantage of both geometric prior and
graphical information embedded in CT images. The Hough
Transform helps to detect the geometric characteristic of the
objects in the image. Whatever the image resolution is high or
low, electrode shafts are always straight and highlighted from
the background. From this perspective, a pattern recognition
algorithm can, in fact, be used to exploit the image instead of
scanning it slice by slice. To our knowledge, this valid and useful
geometric property has never been utilized in any other SEEG
electrode localization method before. The Hough Transform
makes electrode shafts be recognized automatically, although it
may not return us a precise result. The recognized directions
may deviate slightly from the shaft, or a recognized centroid

may not be in the exact center of the actual electrode. However,
the result can be much close to the true state, which is a good
starting point for initializing the clustering algorithm. Thus, we
removed the complicated manual intervention, that is, to replace
the procedure of telling a software where the electrodes locate
with automatic splicing of algorithms, and the pipeline consumes
much less time than previous tools.

As for the subsequent step of contact segmentation for every
single electrode, the algorithm of the center-of-mass convergence
(Arnulfo et al., 2015) has shown interpretable principles and
valid results. In our pipeline, we applied this algorithm to each
electrode one by one after electrode clustering and acquire
the final contact coordinates. We used axis-contact distance
and adjacent contact distance error to estimate the geometric
characteristics of the segmentation results. However, those two
parameters are, in fact, the indirect ways of validating whether the
contacts are properly located. Several factors may influence the
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error distributions. An electrode can bend slightly in the brain,
in which case there is a possibility that fluctuations occur in the
distributions of both parameters. It can generate some outliers
in the distribution of axis-contact distance since the contacts are
no longer scattered along a straight line and the deviations of
contacts from the regressed line, in fact, exist. Moreover, due to
the bending, the adjacent contact distance may shrink slightly
as the contacts bear the force to be compressed to each other.
Reflecting on Figure 7D, there are more distance errors lying
in the negative half range than in the positive half range. In
other cases, failures do exist due to the quality of the raw CT
images. There are possibilities that the algorithm cannot find a
local center-of-mass in a region and keep looking for highlights
along the direction and finally converge to the next contact. This
can explain the positive outliers in Figure 7D. We encountered a
worse situation that the two regions of highlights were too close
to each other and so the converging point just kept jumping from
one optimal to another.We fixed this problem by implementing a
counting index of convergence in the algorithm setting a forcing
scheme to stop the infinite loop and choosing a voxel with higher
voxel values just in case. We could notice that the design of
the center-of-mass convergence algorithm does have its deficits
and may not give us highly precise results. The recommended
redeeming method is still visual checking. As for the essentiality
of precise contact locations and then the locations of potential
SOZs, one must not skip the procedure of manual checking. By
projecting the contact results onto the registered CT image on
a NIfTI image reading software such as “Freeview” (Figure 7B),
we could go through the slices to check if the contacts recognized
are matched with the highlighted voxels in the image. If an error
is detected, surely one can erase a misplaced contact and add a
new one by hand.

The automatic SOZ prediction methods usually use the onset
order of high-frequency activity at each contact during the
seizure or the specific distribution of abnormal activity during the
interictal period as pathological features (Bartolomei et al., 2008;
Barkmeier et al., 2012; Navarrete et al., 2016) These methods
have already been integrated into some software independently
(Tadel et al., 2011; Colombet et al., 2015). We tried a similar
EI module in a software, AnyWave (Colombet et al., 2015), to
our ictal dataset, and the comparison results show that the EI
predictions of BrainQuake have higher ROCs in most of the cases
(Figures 9A,B). Although the seizure data are considered to be
more relevant to SOZ prediction, it may be difficult to capture
or it may not provide enough information for the diagnosis,
resulting in a relatively low AUC. Meanwhile, a large amount
of interictal SEEG has not been fully utilized. The pathological
information extracted from the long-term data may also have
good predictive power on SOZ and is more immune to noises
than the ictal data. As shown in our results (Figure 9C), HI
derived from the interictal data is a good supplement to the EI
method, and clinicians can compare the consistency between
them. BrainQuake may serve as a platform for exploring the
causal relationships between these two kinds of predictions and
ultimately lead to better clinical diagnoses.

The processing of the long-term interictal data also gives
rise to the challenge of computing power. The progress in deep
learning has led to the development of high-performance parallel

computing, and meanwhile, the acceleration capability of GPUs
may be a solution to massive SEEG data and its high-load
computing. At present, the mechanisms of seizures and interictal
discharges are still unclear, and they may reflect different aspects
of the epileptic network (Jiruska et al., 2017; Grinenko et al.,
2018). In the future, we plan to implement a GPU module for
the long-term interictal SEEG analysis in BrainQuake, and the
prediction methods from the perspective of epileptic networks
are to be explored.

BrainQuake is designed to be an auxiliary tool for epilepsy
neurosurgeons and technicians, trying to convey a presurgical
evaluation solution with blended functional and structural
neurodata. Most current software or toolboxes focus on one or
a few steps, developing splendid algorithms or techniques for
data processing, but in clinical practice, it is a cumbersome task
to merge all kinds of results into one system or coordinate.
Also, several steps consume a lot of time and effort to do
repeated work, resulting in an inefficient working procedure.
BrainQuake commits to freeing surgeons and technicians
from tedious and time-consuming work, allowing them to
concentrate on the steps that rely more on common sense
and medical expertise short in machine algorithms. In the
upcoming era of big neurodata, this kind of human-computer
synergy is an efficient approach to data utilization, and we
believe that it will eventually promote the fields of both
neurology and neuroscience.
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