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Abstract
Incorporating atomistic and molecular information into models of cellular behaviour
is challenging because of a vast separation of spatial and temporal scales between
processes happening at the atomic and cellular levels. Multiscale or multi-resolution
methodologies address this difficulty by using molecular dynamics (MD) and coarse-
grainedmodels in different parts of the cell. Their applicability depends on the accuracy
and properties of the coarse-grained model which approximates the detailed MD
description. A family of stochastic coarse-grained (SCG) models, written as relatively
low-dimensional systems of nonlinear stochastic differential equations, is presented.
The nonlinear SCG model incorporates the non-Gaussian force distribution which is
observed in MD simulations and which cannot be described by linear models. It is
shown that the nonlinearities can be chosen in such a way that they do not complicate
parametrization of the SCG description by detailed MD simulations. The solution of
the SCG model is found in terms of gamma functions.

Keywords Multiscale modelling · Coarse-graining · Molecular dynamics · Brownian
dynamics

Mathematics Subject Classification 82C31 · 92C40 · 60H10 · 65C35 · 60G15

1 Introduction

With increased experimental information on atomic or near-atomic structure of bio-
molecules and intracellular components, there has been a growing need to incorporate
such microscopic data (coming from X-ray crystallography, NMR spectroscopy
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458 R. Erban

or cryo-electron microscopy) into dynamical models of intracellular processes.
A common approach is to use molecular dynamics (MD) simulations based on clas-
sical molecular mechanics. Such MD models are written as relatively large systems
of ordinary or stochastic differential equations for the positions and velocities of indi-
vidual atoms, which can also be subject to algebraic constraints (Leimkuhler and
Matthews 2015; Lewars 2016). Although all-atom MD simulations of systems con-
sisting of a million of atoms have been reported in the literature (Tarasova et al. 2017;
Farafonov and Nerukh 2019), such simulations are restricted to relatively small com-
putational domains, which are up to tens of nanometres long. It is beyond the reach of
state-of-the-art computers to simulate intracellular processes which include transport
of molecules over micrometers, because this would require simulations of trillions of
atoms (Erban and Chapman 2019).

An example is modelling of calcium (Ca2+) dynamics. On one hand, at the macro-
scopic level, Ca2+ waves can propagate between cells over hundreds of micrometres
and Kang and Othmer (2009) developed a model of Ca2+ waves in a network of astro-
cytes. It builds on previous modelling work by Kang and Othmer (2007) describing
intracellular Ca2+ dynamics as a system of differential equations for concentrations
of chemical species involved, including inositol 1,4,5-trisphosphate (IP3), a chemical
signal that binds to the IP3 receptor to release Ca2+ ions from the endoplasmic retic-
ulum. On the other hand, at the atomic level, Hamada et al. (2017) recently solved
IP3-bound and unbound structures of large cytosolic domains of the IP3 receptor by
X-ray crystallography and clarified the IP3-dependent gating mechanism through a
unique leaflet structure.

Although it is not possible to incorporate such a detailed information into Ca2+
modelling by using all-atom MD in the entire intracellular space, there is still poten-
tial to design multiscale (multi-resolution) models which compute Ca2+ dynamics
with the resolution of individual Ca2+ ions. Dobramysl et al. (2016) implement such
a methodology at the Brownian dynamics (BD) level to study Ca2+ puff statistics
stemming from IP3 receptor channels. Denoting the position of an individual Ca2+
ion by X ≡ (X1, X2, X3), its diffusive BD trajectory is given by

dXi = √
2D dWi , for i = 1, 2, 3, (1)

where D is the diffusion constant and Wi , i = 1, 2, 3, are three independent Wiener
processes. Since individual positions of Ca2+ ions are only needed in the vicinity
of channel sites, Dobramysl et al. (2016) model diffusion of ions far away of the
channel by a coarser model, utilizing the two-regimemethod developed by Flegg et al.
(2012). This method enables efficient simulations with the BD level of resolution by
coarse-graining the BD model in those parts of the simulation domain, where the
coarse-grained model can be safely used without introducing significant numerical
errors (Flegg et al. 2014, 2015; Robinson et al. 2015).

Although BD models or their multi-resolution extensions simulate individual
molecules of chemical species involved, the binding of Ca2+ ions to channel sites or
other interactions between molecules are only described using relatively coarse prob-
abilistic approaches. For example, the BDmodel of Dobramysl et al. (2016) describes
interactions in terms of reaction radii and binding probabilities as implemented
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by Erban and Chapman (2009) and Lipková et al. (2011). Atomic-level information is
not included in BD models. In order to use this information, multi-resolution method-
ologies have to consider MD simulations in parts of the simulation domain. In the case
of ions, such amulti-resolution scheme has been developed by Erban (2016), where an
all-atomMDmodel of ions in water is coupled with a stochastic coarse-grained (SCG)
description of ions in the rest of the computational domain.

The accuracy and efficiency of such multi-resolution methodologies depend on the
quality of the SCG description of the underlying MD model. In this paper, we present
and analyze a class of SCGmodels which can be used to fit non-Gaussian distributions
estimated from all-atomMD simulations.While the velocity distribution of the coarse-
grained particle can be well approximated by a Gaussian (normal) distribution in our
MD simulations, this is not the case of the force distribution. Non-Gaussian force
distributions have also been reported by Shin et al. (2010) and Carof et al. (2014) in
their MD simulations of particles in Lennard-Jones fluids. Thus our SCG model is
formulated in a way which incorporates a Gaussian distribution for the velocity and a
non-Gaussian distribution for the force (acceleration).

Given an integer N ≥ 1, a coarse-grained particle (for example, an ion) will be
described by (2N + 2) three-dimensional variables: its positionX, velocityV and 2N
auxiliary variables U j and Z j , where j = 1, 2, . . . , N . Denoting X ≡ (X1, X2, X3),
V ≡ (V1, V2, V3), U j ≡ (Uj,1,Uj,2,Uj,3) and Z j ≡ (Z j,1, Z j,2, Z j,3), the time
evolution of the SCG model is given by

dXi = Vi dt, for i = 1, 2, 3, (2)

dVi =
N∑

j=1

Uj,i dt, (3)

dUj,i = (−η j,1Vi + h j (Z j,i )
)
g′
j (g

−1
j (Uj,i )) dt, for j = 1, 2, . . . , N , (4)

dZ j,i = − (
η j,2 h j (Z j,i ) + η j,3Uj,i

)
dt + η j,4 dWj,i , (5)

where g j : R → R is an increasing differentiable function, g′
j is its derivative, g

−1
j is

its inverse, h j : R → R is a continuous function and η j,k are positive constants for
j = 1, 2, . . . , N and k = 1, 2, 3, 4. We note that some of our assumptions on g j can
be relaxed as long as g′

j (g
−1
j (Uj,i )) appearing in Eq. (4) can be suitably defined.

The SCG description (2)–(5) includes 2N functions g j and h j and 4N additional
parameters η j,k , which can be all adjusted to fit properties of the detailed all-atomMD
model. In particular the SCG model (2)–(5) can better match the MD trajectories of
ions than the BD description given by Eq. (1), which only has one parameter, diffusion
constant D, to fit to the MD results.

One of the shortcomings of Eq. (1) is that its derivation from the underlying MD
model requires us to consider the limit of sufficiently large times. In particular, we
need to discretize Eq. (1) with a relatively large time step, say a nanosecond, to use
it as a description of the trajectory of an ion. Since the typical time step of an all-
atom MD model is a femtosecond, it is difficult to design a multi-resolution scheme
which would replace all-atomMD simulations by Eq. (1) in parts of the computational
domain. The SCG model (2)–(5) can be used to fit not only the diffusion constant D
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460 R. Erban

but other important properties of all-atom MD models, which improves the accuracy
of the SCG model at time steps comparable with the MD timestep.

SCG models can be constructed using a relatively automated procedure by postu-
lating that an ion interacts with additional ‘fictitious particles’. Such a methodology
has been applied to coarse-grainedmodelling of biomolecules by Davtyan et al. (2015,
2016) to improve the fit between an MD model and the dynamics on a coarse-grained
potential surface. They use fictitious particles with harmonic interactions with coarse-
grained degrees of freedom (i.e. they add quadratic terms to the potential function of
the system and linear terms to equations of motions) and each fictitious particle is also
subject to a friction force and noise. An application of such an approach to ions leads
to systems of linear stochastic differential equations (SDEs) and can be used, after
some transformation, to obtain a simplified version of the SCG model (2)–(5), where
functions g j and h j are given as identities, i.e. g j (y) = h j (y) = y for y ∈ R and j =
1, 2, . . . , N . Using this simplifying assumption in the SCG model (2)–(5), we obtain

dXi = Vi dt, for i = 1, 2, 3, (6)

dVi =
N∑

j=1

Uj,i dt, (7)

dUj,i = (−η j,1Vi + Z j,i
)
dt, for j = 1, 2, . . . , N , (8)

dZ j,i = − (
η j,2Z j,i + η j,3Uj,i

)
dt + η j,4 dWj,i . (9)

This is a linear system of SDEs with 4N parameters. It has been shown by Erban
(2016) that such models can fit an increasing number of properties of all-atom MD
simulations as we increase N . For example, the linear SCGmodel (6)–(9) can be used
to fit the diffusion constant D and second moments of the velocity and the force for
N = 1, while the velocity autocorrelation function can better be fitted for larger values
of N , e.g. for N = 3. However, there are other properties of MD simulations which
cannot be captured by linear models even if consider arbitrarily large N . They include,
for example, all distributions which are not Gaussian. This motivates the introduction
of general functions h j and g j in the SCG model (2)–(5).

Considering the SCG model (2)–(5) in its full generality, it can capture more inter-
esting dynamics. However, coarse-grained models can only be useful if they can be
easily parametrized. Thus in our analysis, we focus on choices of functions g j and h j

which both improve the properties of the SCG description and do not complicate its
analysis and parametrization. The rest of the paper is organized as follows. In Sect. 2,
we consider the linear SCG model (6)–(9) for N = 1, which is followed in Sect. 3
with the analysis of the linear model for general values of N . To get some further
insights into the properties of this model, we study its connections with the corre-
sponding generalized Langevin equation. In Sect. 4, we consider the nonlinear SCG
model (2)–(5) for N = 1. We consider specific choices of nonlinearity g1, for which
the model can be solved in terms of incomplete gamma functions. This helps us to
design three approaches to parametrize the nonlinear SCG model, which are applied
to data obtained fromMD simulations. We conclude with the analysis of the nonlinear
SCG model (2)–(5) for general values of N in Sect. 5.
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2 Linear model for N = 1 and the generalized Langevin equation

We begin by considering the linear SCG model (6)–(9) for N = 1. To simplify our
notation in this section, we will drop some subscripts and denote X = Xi , V = Vi ,
U = U1,i , Z = Z1,i , W = W1,i and ηk = η1,k for k = 1, 2, 3, 4. Then Eqs. (6)–(9)
read as follows

dX = V dt, (10)

dV = U dt, (11)

dU = (−η1V + Z) dt, (12)

dZ = − (η2Z + η3U ) dt + η4 dW , (13)

where X is (one coordinate of) the position of the coarse-grained particle V is its
velocity, U is its acceleration, Z is an auxiliary variable, dW is white noise and η j ,
j = 1, 2, 3, 4, are positive parameters. In order to find the values of four parameters
η j suitable for modelling ions, Erban (2016) estimates the diffusion constants D and
three second moments 〈V 2〉, 〈U 2〉 and 〈Z2〉 from all-atom MD simulations of ions
(K+, Na+, Ca2+ and Cl−) in aqueous solutions. The four parameters of the SCG
model (10)–(13) can then be chosen as

η1 = 〈U 2〉
〈V 2〉 , η2 = 〈Z2〉

D

( 〈V 2〉
〈U 2〉

)2
, η3 = 〈Z2〉

〈U 2〉 , η4 =
√

2

D

〈V 2〉〈Z2〉
〈U 2〉 . (14)

Then the SCG model (10)–(13) gives the same values of D, 〈V 2〉, 〈U 2〉 and 〈Z2〉 as
obtained in all-atom MD simulations.

Since the model (10)–(13) only has four parameters, we can only hope to get the
exact match of four quantities estimated from all-atom MD. To get some insights into
what we are missing, we will derive the corresponding generalized Langevin equation
and study its consequences. The generalized Langevin equation can be written in the
form

dV

dt
= −

∫ t

0
K (τ ) V (t − τ) dτ + R(t), (15)

where K : [0,∞) → R is a memory kernel and random term R(t) satisfies the
generalized fluctuation-dissipation theorem, given below in Eq. (21). To derive the
generalized Langevin equation (15), consider the two-variable subsystem (12)–(13)
of the SCG model. Denoting y = (U , Z)T, where T stands for transpose, Eqs. (12)–
(13) can be written in vector notation as follows

dy = B y dt + b1V dt + b2 dW , (16)

where matrix B ∈ R
2×2 and vectors b j ∈ R

2, j = 1, 2, are given as

B =
(

0 1
−η3 −η2

)
, b1 =

(−η1
0

)
and b2 =

(
0
η4

)
.
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462 R. Erban

Let us denote the eigenvalues and eigenvectors of B as λ j andννν j = (1, λ j )
T, j = 1, 2,

respectively. The eigenvalues of B are the solutions of the characteristic polynomial
λ2 + η2 λ + η3 = 0. They are given by

λ1 = −η2

2
+ μ and λ2 = −η2

2
− μ where μ =

√
η22

4
− η3. (17)

Since η2 and η3 are positive parameters,we conclude that real parts of both eigenvalues
are negative. In what follows, we will assume η22 �= 4η3. Then we have two distinct
eigenvalues and the general solution of the SDE system (16) can be written as follows

y(t) = Φ(t) c + Φ(t)
∫ t

0
Φ−1(s)b1V (s) ds + Φ(t)

∫ t

0
Φ−1(s)b2 dW , (18)

where c ∈ R
2 is a constant vector determined by initial conditions and matrix Φ(t) ∈

R
2×2 is given as

Φ(t) = (exp(λ1t)ννν1 | exp(λ2t)ννν2) =
(

exp(λ1t) exp(λ2t)
λ1 exp(λ1t) λ2 exp(λ2t)

)
,

i.e. each column is a solution of the ODE system dy = B y dt . Calculating the inverse
of Φ(t) and considering long-time behaviour, Eq. (18) simplifies to

U (t) = −
∫ t

0
K (τ ) V (t − τ) dτ + R(t), (19)

where memory kernel K (τ ) is given by

K (τ ) = η1

λ1 − λ2
(λ1 exp(λ2 τ) − λ2 exp(λ1 τ)) (20)

and noise term R(t) is Gaussian with zero mean and the equilibrium correlation func-
tion satisfying the generalized fluctuation-dissipation theorem in the form

〈R(t1)R(t2)〉 = η24

2η1η2η3
K (t2 − t1). (21)

Using (17), memory kernel (20) can be rewritten as

K (τ ) = η1 exp
(
−η2 τ

2

) (
cosh (μ τ) + η2

2μ
sinh (μ τ)

)
, (22)

where μ =
√

η22/4 − η3. We note that the auxiliary coefficient μ is a square root of a

real negative number for η22 < 4η3. However, formula (22) is still valid in this case: for
η22 < 4η3 it can be rewritten in terms of sine and cosine functions, taking into account
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Fig. 1 a Memory kernel K (τ ) given by Eq. (22) for η1 = 1, η2 = 4 and three different values of η3,
namely η3 = 3 (solid line, μ = 1), η3 = 5 (dashed line, μ = i) and η3 = 20 (dot-dashed line, μ = 4i).
bNormalized velocity autocorrelation function χ(τ)/χ(0) computed by using Eq. (25) for the same param-
eter values as in panel (a)

that μ = i |μ| is pure imaginary, sinh(i |μ| τ) = i sin(|μ|) τ and cosh(i |μ| τ) =
cos(|μ| τ).

Thememory kernel K (τ ), given by Eq. (22), is plotted in Fig. 1a for different values
of parameter μ. For simplicity, we use non-dimensionalized versions of our equations
with dimensionless parameters η1 = 1 and η2 = 4. We choose three different values
of η3 so that the values of μ are 1, i and 4i. In Fig. 1b, we plot the equilibrium velocity
autocorrelation function which is defined as

χ(τ) = lim
t→∞〈V (t) V (t − τ)〉,

for τ ∈ [0,∞). More precisely, we plot χ(τ)/χ(0) which is normalized so that its
value at τ = 0 is equal to 1. It is related to the memory kernel by

χ(τ)

χ(0)
= L −1

(
1

s + L
[
K

]
(s)

)
, (23)

where L
[
K

]
(s) = ∫ ∞

0 K (τ ) exp(−sτ) dτ is the Laplace transform of the memory
kernel K (τ ) and L −1 denotes Laplace inversion. Following Erban and Chapman
(2019), we evaluate the right hand side of Eq. (23) as follows. Substituting Eq. (22)
into (23), we obtain

χ(τ)

χ(0)
= L −1

(
s2 + η2s + η3

s3 + η2s2 + (η1 + η3)s + η1η2

)
. (24)

The polynomial in the denominator, p(s) = s3 + η2s2 + (η1 + η3)s + η1η2, has
positive coefficients. Since p(−η2) < 0 < p(0), it has one negative real root in
interval (−η2, 0), which we denote by a1. The other two roots (a2 and a3 say) may be
real or complex, but if they are complex they will be complex conjugates since p(s)
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464 R. Erban

has real coefficients. Assuming that the real part of each root is negative, we first find
the partial fraction decomposition of the rational function in (24) as

s2 + η2s + η3

s3 + η2s2 + (η1 + η3)s + η1η2
= c1

s − a1
+ c2

s − a2
+ c3

s − a3
,

where ci ∈ C are constants (which depend on η1, η2 and η3). Then we can rewrite
Eq. (23) as

χ(τ)

χ(0)
= c1 exp(a1τ) + c2 exp(a2τ) + c3 exp(a3τ). (25)

The results computed by (25) are shown in Fig. 1b.We note that although Eq. (25) may
include complex exponentials, the resulting χ(τ) is always real. Since the diffusion
constant, D, and the second moment of the equilibrium velocity distribution, 〈V 2〉,
are related to χ by

D =
∫ ∞

0
χ(τ) dτ = η24

2 η21 η22
and 〈V 2〉 = χ(0) = η24

2 η1 η2 η3
,

the parametrization (14) guarantees that both the value of χ(0) and the integral of
χ(τ) are captured accurately. However, the simplified SCG description (10)–(13) is
not suitable to perfectly fit the velocity autocorrelation function or the memory kernel
for all values of τ ∈ [0,∞). In order to do this, we have to consider the SCG model
(6)–(9) for larger values of N as it is done in the following section.

3 General linear SCGmodel and autocorrelation functions

Considering the linear SCG model (6)–(9) for general values of N , we can solve Eqs.
(8)–(9) for each value of j = 1, 2, . . ., N to generalize our previous result (19) as

Uj,i (t) = −
∫ t

0
K j (τ ) Vi (t − τ) dτ + R j,i (t), (26)

where kernel K j (τ ) is given by [compare with (22)]

K j (τ ) = η j,1 exp
(
−η j,2 τ

2

) (
cosh

(
μ j τ

) + η j,2

2μ j
sinh

(
μ j τ

))
(27)

with

μ j =
√

η2j,2

4
− η j,3 (28)
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and noise term R j,i (t) is Gaussian with zero mean and the equilibrium correlation
function satisfying

〈R j,i (t1)R j,i (t2)〉 = η2j,4

2 η j,1 η j,2 η j,3
K j (t2 − t1).

Substituting (26) to (7), we obtain the generalized Langevin equation

dVi
dt

= −
∫ t

0
K (τ ) Vi (t − τ) dτ + Ri (t), (29)

where

K (τ ) =
N∑

j=1

K j (τ ) and Ri (t) =
N∑

j=1

R j,i (t). (30)

In particular, we have 3N parameters to fit memory kernel K (τ ), which can be
estimated from all-atom MD simulations. There have been a number of approaches
developed in the literature to estimate the memory kernel from MD simulations. Shin
et al. (2010) use an integral equation with relates memory kernel K (τ ) with the auto-
correlation function for the force and the correlation function between the force and
the velocity. Estimating these correlation functions from long time MD simulations
and solving the integral equation, they obtain memory kernel K (τ ). Other methods
to estimate the memory kernel, K (τ ), of the corresponding generalized Langevin
equation (29) have been presented by Gottwald et al. (2015) and Jung et al. (2017).

An alternative approach to parametrize the linear SCG model (6)–(9) is to estimate
the velocity autocorrelation function, χ(τ), from all-atom MD simulations. This can
be done by computing how correlated is the current velocity (at time t) with velocity
at previous times. Since Eqs. (10)–(13) are linear SDEs, we can follow Mao (2007) to
solve them analytically, using eigenvalues and eigenvectors of matrices appearing in
their corresponding matrix formulation. Using this analytic solution, Erban (2016) use
an acceptance-rejection algorithm to fit the parameters of linear SCG model (6)–(9)
for N = 3 to match the velocity autocorrelation functions of ions estimated from
all-atom MD simulations of Na+ and K+ in the SPC/E water.

Since the parameter μ j given by (28) is a square root of a real number, it can be
both positive or purely imaginary. In particular, kernels K j (τ ) given by Eq. (27) can
include both exponential, sine and cosine functions as illustrated in Fig. 1a. Since
memory kernel K (τ ) is given as the sum of K j (τ ) in Eq. (30), typical memory kernels
and correlation functions estimated from all-atomMD simulations can be successfully
matched by linear SCGmodels for relatively small values of N . However, as shown by
Mao (2007), analytic solutions of linear SDEs also imply that the process is Gaussian
at any time t > 0, provided that we start with deterministic initial conditions. Thus
the linear SCGmodel (6)–(9) for abtitrary values of N can only fit distributions which
are Gaussian. This motivates our investigation of the nonlinear SCGmodel in the next
two sections.
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466 R. Erban

4 Nonlinear SCGmodel for N = 1

We begin by considering the nonlinear SCG model (2)–(5) for N = 1. As in Sect. 2,
we simplify our notation by dropping some subscripts and denoting X = Xi , V = Vi ,
U = U1,i , Z = Z1,i , W = W1,i , g = g j , h = h j and ηk = η1,k for k = 1, 2, 3, 4.
Then Eqs. (2)–(5) read as follows

dX = V dt, (31)

dV = U dt, (32)

dU = (−η1V + h(Z)) g′(g−1(U )) dt, (33)

dZ = − (η2 h(Z) + η3U ) dt + η4 dW , (34)

where X denotes (one coordinate of) the position of the coarse-grained particle, V is
its velocity,U is its acceleration, Z is an auxiliary variable, dW is white noise, η j , for
j = 1, 2, 3, 4, are positive parameters and functions g : R → R and h : R → R are
yet to be specified.

Equation (31) describes the time evolution of the position, while Eqs. (32)–(34)
admit a stationary distribution. We denote it by p(v, u, z). Then p(v, u, z) dv du dz
gives the probability that V (t) ∈ [v, v + dv), U (t) ∈ [u, u + du) and Z(t) ∈ [z, z +
dz) at equilibrium. The stationary distribution, p(v, u, z), of SDEs (32)–(34) can be
obtained by solving the corresponding stationary Fokker-Planck equation

η24

2

∂2 p

∂2z
(v, u, z) = ∂

∂v

(
u p(v, u, z)

)
+ ∂

∂u

(( − η1v + h(z)
)
g′(g−1(u)) p(v, u, z)

)

+ ∂

∂z

(( − η2h(z) − η3u
)
p(v, u, z)

)
,

which gives

p(v, u, z) = C

g′(g−1(u))
exp

[
−2η2

η24

(
η1η3

v2

2
+ η3 G

(
g−1(u)

) + H(z)

)]
, (35)

whereC is the normalization constant, and functionsG and H are integrals of functions
g and h, respectively, which are given by

G(y) =
∫ y

0
g(ξ) dξ and H(y) =

∫ y

0
h(ξ) dξ. (36)

We note that for the special case where g and h are given as identities, i.e. g(y) =
h(y) = y for y ∈ R, the nonlinear SCG model (31)–(34) is equal to the linear
SCG model (10)–(13) and functions G and H are G(y) = H(y) = y2/2. Then the
stationary distribution (35) is product of Gaussian distributions in v, u and z variables.
In particular, we can easily calculate the second moments of these distributions in
terms of parameters η j . Estimating these moments from all-atom MD simulations,
we can parametrize the resulting linear SCG model (10)–(13) as shown in Eq. (14).
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However, if we want to match a non-Gaussian force distribution, we have to consider
nonlinear models. A simple one-parameter example is studied in the next section.

4.1 One-parameter nonlinear function

Consider that g is a function depending on one additional positive parameter η5 as
follows

g(y) = |y|1/η5signy, (37)

where we use sign to denote the sign (signum) function

signy =
⎧
⎨

⎩

−1, for y < 0,
0, for y = 0,
1, for y > 0.

(38)

The function defined by (37) only satisfies our assumptions on g for η5 ∈ (0, 1] as it
is not differentiable at y = 0 for η5 > 1, but we will proceed with our analysis for
any positive η5 > 0. Consider that function h is an identity, i.e. h(y) = y for y ∈ R,
then Eqs. (31)–(34) reduce to

dX = V dt, (39)

dV = U dt, (40)

dU = (−η1V + Z) η−1
5 |U |1−η5 dt, (41)

dZ = − (η2 Z + η3U ) dt + η4 dW , (42)

where we would have to be careful, if we used this model to numerically simulate
trajectories for η5 > 1, because of possible division by zero for U = 0 in Eq. (41). If
η5 ∈ (0, 1], then we do not have such technical issues. Using Eq. (35), the stationary
distribution is equal to

p(v, u, z) = C |u|η5−1 exp

[
−η2

η24

(
η1η3 v2 + 2η3η5

1 + η5
|u|1+η5 + z2

)]
, (43)

where the normalization constant C is given by

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p(v, u, z) dv du dz = 1.

Integrating (43), we get

C = η2
√

η1η3

πη24

(
η2η3η5

η24

)η5/(1+η5)(
1 + η5

2

)1/(1+η5) 1

�
(

η5
1+η5

) ,
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where � is the gamma function defined as

�(s) =
∫ ∞

0
ξ s−1 exp(−ξ) dξ. (44)

Let α ≥ 0. Integrating (43), we get

〈|U |α〉 =
(

η24 (1 + η5)

2η2η3η5

)α/(1+η5) �
(

α+η5
1+η5

)

�
(

η5
1+η5

) . (45)

Using (45) for α = 2 and α = 4, we obtain the following expression for kurtosis

Kurt[U ] = 〈U 4〉
〈U 2〉2 = �

(
η5

1 + η5

)
�

(
4 + η5

1 + η5

) (
�

(
2 + η5

1 + η5

))−2

. (46)

In particular, the kurtosis is only a function of one parameter, η5. It is plotted in Fig. 2a
as the blue solid line, together with the kurtosis obtained for a more general two-
parameter SCG model studied in Sect. 4.2. We observe that the distribution of U is
leptokurtic for η5 < 1 and platykurtic for η5 > 1. If η5 is equal to 1, then our SCG
model given by Eqs. (31)–(34) reduces to the linear SCG model given by Eqs. (10)–
(13), i.e. the stationary distribution is Gaussian and its kurtosis is 3. This is shown by
the dotted line in Fig. 2a.

Since Eq. (46) only depends on parameter η5, we can use the kurtosis of the accel-
eration distribution (which is equal to the kurtosis of the force distribution) esimated
from MD simulations to find the value of parameter η5. To calculate the kurtosis,
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Fig. 2 a Kurtosis Kurt[U ] given by Eq. (59) as a function of parameter η5 for three different values of
parameter η6. The result for η6 = 0 (blue solid line) corresponds to the case of one-parameter function
g, defined by (37), where the kurtosis is given by (46). b Distribution of U estimated from a long-time
MD simulation (blue circles) compared with the results obtained by the linear SCG model (10)–(13) (black
dotted line), nonlinear SCG models (31)–(34) with one-parameter function g, defined by (37), fitting 〈U2〉
and 〈U4〉 (red dot-dashed line) and 〈|U |〉 and 〈U2〉 (green dashed line), and the nonlinear SCGmodel (31)–
(34) with two-parameter function g defined by (52), matching all three moments 〈|U |〉, 〈U2〉 and 〈U4〉
(cyan solid line) (color figure online)
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we estimate the fourth moment 〈U 4〉 in addition to the second moment, 〈U 2〉, used
before in our estimating proceduce (14) for the linear model. In particular, we not only
get Eq. (46) for calculating the value of parameter η5, but also a restriction on other
parameters η2, η3 and η4. Using (45) for α = 2, it can be stated as follows

η24

2 η2 η3
= η5

1 + η5

(
1 + η5

π
sin

(
π

1 + η5

)
〈U 2〉

)(1+η5)/2(
�

(
η5

1 + η5

))1+η5

, (47)

where we have used properties of the gamma function, including �(1 + y) = y �(y)
and Euler’s reflection formula, �(1− y)�(y) sin(π y) = π , to simplify the right hand
side. We note that in the Gaussian case, η5 = 1, the right hand side of Eq. (47) further
simplifies to

η24

2 η2 η3
= 〈U 2〉, (48)

which is indeed the formula for the second moment of U given by the linear SCG
model (10)–(13). Equation (47) provides one restriction on four remaining parameters,
η1, η2 η3 and η4, which need to be specified. This can be done by estimating three
additional statistics fromMD simulations, as in the case of the linear SCGmodel (10)–
(13) in Eq. (14). Indeed, the stationary distributions of V and Z are Gaussian with
mean zero. Their second moments and the diffusion constant, D, for the nonlinear
SCG model (31)–(34) can be calculuted as

D = η24

2 η21 η22
, 〈V 2〉 = η24

2 η1 η2 η3
and 〈Z2〉 = η24

2 η2
. (49)

Therefore, assuming that D, 〈V 2〉, 〈Z2〉 are obtained from MD simulations and
η24/(2η2η3) is given by (47), we can calculate parameters ηk by

η1 = 1

〈V 2〉

(
η24

2 η2 η3

)
, η2 = 〈Z2〉 〈V 2〉2

D

(
η24

2 η2 η3

)−2

, (50)

η3 = 〈Z2〉
(

η24

2 η2 η3

)−1

, η4 =
√

2

D
〈Z2〉 〈V 2〉

(
η24

2 η2 η3

)−1

. (51)

We note that in the Gaussian case, η5 = 1, we can substitute Eq. (48) for η24/(2η2η3)
and the parametrization approach (50)–(51) simplifies to Eq. (14) used in the case of
the linear SCG model (10)–(13). In the next subsection, we generalize formula (37)
to a two-parameter function and show that the parametrization approach (50)–(51) is
still applicable to the case of more general SCG models.
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4.2 Two-parameter nonlinear function

Consider that g is a function depending on two positive parameters η5 and η6 as follows

g(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for |y| ≤ η
η5
6 (1 − η5),(

η6

(
1 − 1

η5

)
+ η

1−η5
6

η5
|y|

)
signy, for η

η5
6 (1 − η5) < |y| ≤ η

η5
6 ,

|y|1/η5 signy, for |y| > η
η5
6 ,

(52)
where sign function is defined by (38). In particular, our expression for function g
is equal to the formula (37) for sufficiently large values of |y|. As discussed in the
previous section, if we used formula (37), there would be some issues for y close to
zero [for example, the division by zero for U = 0 and η5 > 1 in Eq. (41)], so our
generalized formula (52) replaces (37) with a linear function for smaller values of |y|.
On the face of it, it looks that there could also be some issues with the generalized
formula (52), because it is not strictly increasing for |y| ≤ η

η5
6 (1 − η5). However,

function (52) is increasing and invertible away of this region with its inverse given by

g−1(u) =
⎧
⎨

⎩
η5η

η5−1
6

(
|u| − η6

(
1 − 1

η5

))
sign u, for 0 < |u| ≤ η6,

|u|η5 sign u, for |u| > η6.

Moreover, what we really need in Eqs. (31)–(34) is g′(g−1(u)) which can be defined
as the following continuous function

g′(g−1(u)) = 1

η5
×

{
η
1−η5
6 , for |u| ≤ η6,

|u|1−η5 , for |u| > η6,
(53)

where the removable discontinuity at u = 0 has disappeared because we have defined
g′(g−1(0)) = η

1−η5
6 /η5. Integrating (52) and substituting (53), we get

G
(
g−1(u)

) =

⎧
⎪⎪⎨

⎪⎪⎩

η5η
η5−1
6

2
u2, for |u| ≤ η6,

η5(η5 − 1)η1+η5
6

2(1 + η5)
+ η5

1 + η5
|u|1+η5, for |u| > η6,

(54)

where G is the integral of function g defined by (36). Consider again that h is an
identity, i.e. h(y) = y for y ∈ R. Then the stationary distribution (35) is again
Gaussian in V and Z variables with their second moments given by Eq. (49). Let us
denote the marginal stationary distribution of U by

pu(u) =
∫ ∞

−∞

∫ ∞

−∞
p(v, u, z) dv dz.
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Using (35) and (54), we have

pu(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cu η
η5−1
6 exp

[
−η2η3η5η

1+η5
6

η24

(
u2

η26
+ 1 − η5

1 + η5

)]
, for |u| ≤ η6,

Cu |u|η5−1 exp

[
− 2η2η3η5

η24(1 + η5)
|u|1+η5

]
, for |u| > η6,

(55)
where Cu is the normalization constant given by

∫ ∞

−∞
pu(u) du = 1.

Let us define

κ1 = η2η3η5η
1+η5
6

η24
and κ2 = 1

1 + η5
. (56)

Integrating (55), we get, for any α ≥ 0,

〈|U |α〉
ηα
6

= F(κ1, κ2, α)

F(κ1, κ2, 0)
, (57)

where function F(κ1, κ2, α) is defined by

F(κ1, κ2, α) = (2κ1κ2)
(1−α)κ2 exp (2κ1κ2) �

(
1 + (α − 1)κ2, 2κ1κ2

)

+ κ
(1−α)/2
1 exp(κ1) γ

(
α + 1

2
, κ1

)
(58)

and � (resp. γ ) is the upper (resp. lower) incomplete gamma function defined by

�(s, y) =
∫ ∞

y
ξ s−1 exp(−ξ) dξ, γ (s, y) =

∫ y

0
ξ s−1 exp(−ξ) dξ.

Substituting α = 2 and α = 4 in Eq. (57), we get

Kurt[U ] = 〈U 4〉
〈U 2〉2 = F(κ1, κ2, 4) F(κ1, κ2, 0)

(F(κ1, κ2, 2))2
. (59)

This formula for the kurtosis is visualized in Fig. 2a as a function of parameter η5 for
three different values of parameter η6. We note that the case η6 = 0 corresponds to the
case studied in Sect. 4.1. If η6 = 0, then Eq. (56) implies κ1 = 0. Since γ (s, 0) = 0
and �(s, 0) = �(s), where �(s) is the standard gamma function given by (44), we
can confirm that Eq. (59) converges to our previous result (46) as η6 → 0.
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Substituting α = 1 into (58), we obtain F(κ1, κ2, 1) = exp (κ1) . Consequently,
using α = 1 in Eq. (57), we obtain

〈|U |〉
η6

= exp (κ1)

F(κ1, κ2, 0)
. (60)

Using α = 2 in Eq. (57), we get

〈U 2〉
〈|U |〉2 = F(κ1, κ2, 2) F(κ1, κ2, 0)

exp(2κ1)
. (61)

Consequently, if we use MD simulations to estimate not only the second and fourth
moments, 〈U 2〉 and 〈U 4〉, but also the first absolute moment 〈|U |〉, we can substitute
the estimated MD values into Eqs. (59) and (61) to obtain two equations for two
unknowns κ1 and κ2. Solving these two equations numerically, we can get κ1 and κ2.
Then we can use (56) and (60) to get the original parameters η5 and η6 by

η5 = 1 − κ2

κ2
and η6 = 〈|U |〉 F(κ1, κ2, 0)

exp (κ1)
. (62)

Moreover, Eq. (56) also implies the following restriction on other parameters η2, η3
and η4

η24

η2η3
= 1 − κ2

κ1 κ2 exp (κ1/κ2)

(
〈|U |〉 F(κ1, κ2, 0)

)1/κ2
. (63)

This restriction is equivalent to restriction (47). Therefore, assuming again that D,
〈V 2〉, 〈Z2〉 are obtained from MD simulations and η24/(2η2η3) is given by (63), we
can calculate parameters η1, η2, η3 and η4 by Eqs. (50)–(51).

We note that the two additional parameters η5 and η6 can be used to satisfy both
Eqs. (59) and (61), while in Sect. 4.1 we could only use one equation (Eq. (46) for
kurtosis) to fit one parameter η5. However, in the case of one-parameter function
(37), we could (instead of fitting the kurtosis) match the quantity 〈U 2〉/〈|U |〉2 with
MD simulations, i.e. we could replace Eq. (46) by Eq. (61) simplified to the one-
parameter case corresponding to function (37). Passing to the limit η6 → 0 in Eq. (61)
and using Euler’s reflection formula, �(1 − y)�(y) sin(π y) = π , we obtain that the
one-parameter nonlinearity (37) implies the following formula

〈U 2〉
〈|U |〉2 = π

1 + η5

(
sin

(
π

1 + η5

))−1

. (64)

Thus, in Sect. 4.1, we could use 〈|U |〉 and 〈U 2〉 estimated from long-time MD simu-
lations to calculate the left hand side of Eq. (64), which could then be used to select
parameter η5. Other parameters could again be chosen by Eqs. (50)–(51).
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4.3 Application to MD simulations

In Sects. 4.1 and 4.2, we have presented three approaches to fit nonlinear SCGmodels
which have non-Gaussian force distributions to data obtained from MD simulations.
In this section, we apply them to the results obtained by an illustrative MD simulation
of a Lennard-Jones fluid, where we consider a box of 512 atoms which interact with
each other through the Lennard-Jones force terms for parameters given for liquid
argon (Rahman 1964), i.e. particles interact in pairs according to the Lennard-Jones
potential 4ε ((σ/r)12 − (σ/r)6), where ε/kB = 120K, σ = 0.34 nm and r being the
distance between particles. We use standard NVT simulations where the temperature
(T = 94.4K) is controlled using the thermostat of Nosé (1984) and Hoover (1985)
and the number of particles (N = 512 in a cubic box of side 2.91 nm) is kept constant
by implementing periodic boundary conditions.

Using a long time MD simulation (time series of lentgh 10 ns), we estimate three
moments 〈|U |〉, 〈U 2〉 and 〈U 4〉 as averages over all three coordinates, i.e.

〈|U |α〉 = 〈|U1|α〉 + 〈|U2|α〉 + 〈|U3|α〉
3

, for α = 1, 2 and 4,

where (U1,U2,U3) is the acceleration of one specific atom (tagged particle) to
which our SCG model is applied. Rounding all computational results to three sig-
nificant figures, we obtain 〈|U |〉 = 0.753 nmps−2, 〈U 2〉 = 1.10 nm2 ps−4 and
〈U 4〉 = 7.03 nm4 ps−8.

In Fig. 2b, we plot the equilibrium MD distribution of the acceleration (average
over all three coordinates) using blue circles. The resulting distribution is leptokurtic
(with positive excess kurtosis). Its kurtosis has been estimated as Kurt[U ] = 5.85.
The numerical values on the u-axis in Fig. 2b are expressed in [nm ps−2]. Since
the acceleration, U , is proportional to the force exerted on the tagged particle (with
the scaling factor equal to the atomic mass of argon), the plot of the acceleration
distribution in Fig. 2b can also be interpreted as the plot of the force distribution,
which has the same kurtosis, provided that we suitably rescale the units on the u-axis.

If we only attempt to fit the value of 〈U 2〉, we could parametrize the linear SCG
model (10)–(13), which leads to the Gaussian acceleration distribution (plotted as the
black dotted line in Fig. 2b). Using the one-parameter nonlinear function (37) from
Sect. 4.1, we can use Eq. (46) to find parameter η5 = 0.550 so that the nonlinear SCG
model gives the same kurtosis as observed in MD simulations (Kurt[U ] = 5.85). The
resulting distribution is given as the red dot-dashed line in Fig. 2b. It matches both
second and fourth moments, 〈U 2〉 and 〈U 4〉.

Using all-atom MD simulations, we can not only estimate the kurtosis, but other
dimensionless ratios of moments of U . For example, we obtain 〈U 2〉/〈|U |〉2 = 1.93.
This estimate can be substituted in Eq. (64), which provides an alternative approach to
obtain the value of parameter η5 of the one-parameter nonlinear function (37). Using
〈U 2〉/〈|U |〉2 = 1.93 and solving Eq. (64) numerically, we obtain η5 = 0.692. The
resulting distribution, which matches 〈|U |〉 and 〈U 2〉, is plotted as the green dashed
line in Fig. 2b. We note that the parameter η5 is dimensionless, because both Eqs. (46)
and (64) only depend on dimensionless quantities estimated from MD simulations.
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Since both distributions (for η5 = 0.550 and η5 = 0.692) are given by (43), they
are unbounded for u close to zero. This motivates the choice of our two-parameter
nonlinear function g used in Sect. 4.2.

Substituting Kurt[U ] = 5.85 and 〈U 2〉/〈|U |〉2 = 1.93 in Eqs. (59) and (61)
and solving them numerically, we obtain κ1 = 0.149 and κ2 = 0.771. Substitut-
ing into (62), we get the two parameters of model from Sect. 4.2 as η5 = 0.297
and η6 = 0.472 nmps−2. The resulting distribution, given by Eq. (55), is plotted in
Fig. 2b as the cyan solid line. We observe that the distribution is now bounded. It is a
piecewise defined function which is Gaussian for the values of u satisfying |u| ≤ η6,
which removes the singularity at u = 0. At the same time, the distribution given by
Eq. (55) matches all three moments estimated from MD simulations, 〈|U |〉, 〈U 2〉 and
〈U 4〉. As we can see in Fig. 2b, this distribution does not perfectly fit the acceleration
distribution estimated from MD simulations. If our aim is to obtain a SCG model
which better fits the whole distribution, we can use SCG models for larger values of
N as we will discuss in the next section.

5 Nolinear SCGmodel for general values of N

We have already observed in Sects. 2 and 3 that the linear SCG model (6)–(9) can
match the MD values of a few moments for N = 1, while we need to consider larger
values of N to match the entire velocity autocorrelation function. Considering the
nonlinear SCG model (2)–(5), we have two options to capture more details of the
non-Gaussian force distribution observed in MD simulations. We could either keep
N = 1, as in Sect. 4, and introduce additional parameters into nonlinearity g = g1, or
we could consider larger values of N . In Sect. 4, we have shown that by going from
one-parameter to two-parameter function g, we improve the match with MD results.
In this section, we will discuss the second option: we will use larger values of N .

Consider equations corresponding to the i-coordinate, i = 1, 2, 3, of the nonlinear
SCG model (2)–(5). Let us denote the stationary distribution of Eqs. (3)–(5) by

p(v,u, z) ≡ p(v, u1, u2, . . . , uN , z1, z2, . . . , zN ).

Then p(v,u, z) dv du1 du2 . . . duN dz1 dz2 . . . dzN gives the probability that Vi (t) ∈
[v, v+dv),Uj,i (t) ∈ [u j , u j+du j ) and Z j,i (t) ∈ [z j , z j+dz j ), for j = 1, 2, . . ., N , at
equilibrium. The stationary distribution can be obtained by solving the corresponding
stationary Fokker-Planck equation

η2j,4

2

∂2 p

∂2z j
(v, u, z) = ∂

∂v

⎛

⎝p(v, u, z)
N∑

j=1

u j

⎞

⎠

+
N∑

j=1

∂

∂u j

(( − η j,1v + h j (z j )
)
g′
j (g

−1
j (u j )) p(v, u, z)

)

+
N∑

j=1

∂

∂z j

(( − η j,2h j (z j ) − η j,3u j
)
p(v, u, z)

)
. (65)
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Our analysis in Sect. 4.1 shows that parameters η j,2, η j,3 and η j,4 appear on the left
hand side of Eq. (47) as a suitable fraction, which in the Gaussian case corresponds
to the second moment of the acceleration (see Eq. (48)). Considering general N , we
define this fraction as new parameters

σ j = η2j,4

2 η j,2 η j,3
, for j = 1, 2, . . . , N ,

and we again assume that the second moment of the velocity distribution, 〈V 2〉 =
〈V 2

i 〉, can be estimated from long-time MD simulations. In order to find the stationary
distribution, we will require that parameters η j,1, η j,2, η j,3 and η j,4 satisfy (compare
with Eq. (49) for N = 1)

〈V 2〉 = η2j,4

2 η j,1 η j,2 η j,3
= σ j

η j,1
, for all j = 1, 2, . . . , N .

Then the stationary distribution, obtained by solving (65), is given by

p(v,u, z) = C

⎛

⎝
N∏

j=1

1

g′
j (g

−1
j (u j ))

⎞

⎠ exp

[
− v2

2 〈V 2〉 −
N∑

j=1

1

σ j
G j

(
g−1
j (u j )

)

−
N∑

j=1

2η j,2

η2j,4
Hj (z j )

]
, (66)

where C is the normalization constant and functions G j and Hj are integrals of
functions g j and h j , respectively, which are given by

G j (y) =
∫ y

0
g j (ξ) dξ, Hj (y) =

∫ y

0
h j (ξ) dξ , for j = 1, 2, . . . , N .

Following (37), we assume that h j (z j ) = z j and each g j is a function of one additional
positive parameter η j,5, j = 1, 2, . . ., N , given as

g j (y) = |y|1/η j,5 signy. (67)

Then we have

g′
j (g

−1
j (u j )) =

∣∣u j
∣∣1−η j,5

η j,5
and G j

(
g−1
j (u j )

) = η j,5

1 + η j,5
|u j |1+η j,5 .

Then the stationary distribution (66) is Gaussian in Vi and Z j,i variables and we can
integrate (66) to calculate the marginal distribution of Uj,i by

p j (u j ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(v,u, z) dv du1 du2 . . . du j−1 du j+1 . . . duN dz .
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Consequently,

p j (u j ) = C j |u j |η j,5−1 exp

[
− η j,5

σ j (1 + η j,5)
|u j |1+η j,5

]
, (68)

where the normalization constant C j is given by

∫ ∞

−∞
p j (u j ) du j = 1.

Integrating (68), we can calculate

〈|Uj,i |α〉 =
∫ ∞

−∞
|u j |α p j (u j ) du j , for any α ≥ 0,

as

〈|Uj,i |α〉 =
(

σ j (1 + η j,5)

η j,5

)α/(1+η j,5) �
(

α+η j,5
1+η j,5

)

�
(

η j,5
1+η j,5

) . (69)

The acceleration of the coarse-grained particle is given by

Ui =
N∑

j=1

Uj,i .

Using the symmetry of (68), odd moments of Uj,i are equal to zero. In particular,
〈Uj,i 〉 = 0 and 〈U 3

j,i 〉 = 0 for j = 1, 2, . . ., N . Consequently,

〈U 2
i 〉 =

N∑

j=1

〈U 2
j,i 〉, (70)

〈U 4
i 〉 = 3〈U 2

i 〉2 +
N∑

j=1

〈U 4
j,i 〉 − 3〈U 2

j,i 〉2, (71)

which gives

Kurt[Ui ] = 〈U 4
i 〉

〈U 2
i 〉2 = 3 +

∑N
j=1〈U 4

j,i 〉 − 3〈U 2
j,i 〉2∑N

j=1〈U 2
j,i 〉

. (72)

Substituting Eq. (69) for moments on the right hand side of Eq. (72), we can express
the kurtosis of Ui in terms of 2N parameters σ j and η j,5, where j = 1, 2, . . ., N .
For example, if we choose the values of dimensionless parameters η j,5 equal to given
numbers and define new parameters

κ j = (
σ j

)2/(1+η j,5),
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then Eq. (69) implies that 〈U 2
j,i 〉 is a linear function of κ j and 〈U 4

j,i 〉 is a quadratic
function of κ j . Equations (70) and (71) can then be rewritten as the following system
of two equations for κ1, κ2, . . . , κN

N∑

i=1

c1, jκ j = 〈U 2
i 〉,

N∑

i=1

c2, jκ
2
j = 〈U 4

i 〉 − 3〈U 2
i 〉2,

where c1, j and c2, j are known constants, which will depend on our initial choice of
values of η j,5. Thus, using N > 2, we still have an opportunity to not only fit the
second and fourth moments of the force distribution, but other moments as well. For
example, the 6-th moment, 〈U 6

i 〉, would include the linear combination of the third
powers of κ j .We could also fit other properties of the force distribution estimated from
MD simulations. For example, we could generalize one-parameter nonlinearities (67)
to two-parameter nonlinear functions, as we did in Eq. (52). Then we could match the
value of the distribution at u = 0, if our aim was to get a better fit of the MD accel-
eration distribution obtained in the illustrative example in Fig. 2b. Another possible
generalization is to consider nonlinear functions h j , provided that we estimate more
statistics on the auxiliary variable Z from MD simulations.

6 Discussion and conclusions

We have presented and analyzed a family of SCGmodels given by Eqs. (2)–(5), which
can be parametrized to fit properties of detailed all-atomMDmodels. A special choice
of functions g j and h j in Eqs. (2)–(5) leads to the linear SCG model (6)–(9) which
is used in a multiscale (multi-resolution) method developed by Erban (2016) as an
intermediate description between all-atom MD simulations and BD models. The lin-
ear SCG model is studied in more detail in Sects. 2 and 3, where we highlight that 4N
parameters of this model can match some statistics estimated from all-atom MD sim-
ulations with increased accuracy as we increase N , but there are also statistics which
cannot be matched for any value of N . They include non-Gaussian force distributions.

In Sects. 2 and 3, we show that the linear SCG model (6)–(9) corresponds to the
generalized Langevin equation with the stochastic driving force being Gaussian. Such
systems have been analysed since the work of Kubo (1966). One approach to match
non-Gaussian MD force distributions could be to use the non-Gaussian generalized
Langevin equation which was analyzed by Fox (1977) usingmethods of multiplicative
stochastic processes. However, if we want to generalize the linear SCG model (6)–(9)
while keeping its structure as a relatively low-dimensional system of SDEs, then it can
be done by introducing nonlinear functions g j and h j as shown in Eqs. (2)–(5). The
advantage of the presented approach is that we can directly replace the linear model
by Eqs. (2)–(5) in multiscale methods which use all-atom MD simulations in parts of
the computational domain and (less detailed) BD simulations in the remainder of the
domain. Coupling MD and BD models is a possible approach to incorporate atomic-
level information into models of intracellular processses which include transport of
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molecules between different parts of the cell (Erban 2014, 2016; Gunaratne et al.
2019).

The nonlinear SCG model (2)–(5) is studied in Sect. 4 for N = 1. Describing the
nonlinearity as the one-parameter function given by (37), we can use its dimensionless
parameter η5 to match the kurtosis of the force distribution estimated from all-atom
MD simulations. Although the one-parameter case is easy to analyze in terms of the
gamma function, it has some undesirable properties for small forces. If η5 > 1, we
can obtain large terms in the dynamical equation (41) for small values of U ; this
corresponds to the zero value of stationary probability distribution (43) for u = 0.
If η5 < 1, we have small terms in the dynamical equation (41), but the stationary
probability distribution (43) is unbounded for u = 0. In Sect. 4.2, we have shown
that these issues can be avoided if the two-parameter nonlinear function (52) is used
instead of the one-parameter function (37). The resulting equations are solved in terms
of incomplete gamma functions. In Sect. 5, we study the nonlinear model for general
values of N where each g j is a one-parameter nonlinearity given by Eq. (67). However,
we could also consider two-parameter functions g j , like we did in Eq. (52) for N = 1,
to improve the properties of the SCG model for general values of N .
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