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Scroll waves are three-dimensional vortices which occur in excitable media. Their formation in the heart results in the onset of
cardiac arrhythmias, and the dynamics of their filaments determine the arrhythmia type. Most studies of filament dynamics were
performed in domains with simple geometries and generic description of the anisotropy of cardiac tissue. Recently, we developed
an analytical model of fibre structure and anatomy of the left ventricle (LV) of the human heart. Here, we perform a systematic
study of the dynamics of scroll wave filaments for the cases of positive and negative tension in this anatomical model. We study
the various possible shapes of LV and different degree of anisotropy of cardiac tissue. We show that, for positive filament tension,
the final position of scroll wave filament is mainly determined by the thickness of the myocardial wall but, however, anisotropy
attracts the filament to the LV apex. For negative filament tension, the filament buckles, and for most cases, tends to the apex of the
heart with no or slight dependency on the thickness of the LV. We discuss the mechanisms of the observed phenomena and their
implications for cardiac arrhythmias.

1. Introduction

Spiral and scroll waves are rotating patterns of activity in
excitable media [1]. They are found in physical and chemical
systems such as oscillating chemical reactions [2, 3] and het-
erogeneous catalysis [4]. Biological examples of such patterns
include populations of Dictyostelium discoideum amoebae
[5], retina [6], and xenopus oocytes [7]. Some of the most
important applications are scroll waves occurring in cardiac
tissue [8], as they underlie the onset of dangerous cardiac
arrhythmias [9, 10]. It is extremely important to understand
the factors affecting the dynamics of scroll waves in the heart,
as they determine the type of cardiac arrhythmia [11]. For
example, it has been shown that the drift of scroll waves
underlies the onset of polymorphic ventricular tachycardia
[12].

Several factors can induce drift of scroll waves in the
heart. Among them are the anisotropy of cardiac tissue
and the shape of the cardiac wall. It was shown for two-
dimensional spiral waves on curved anisotropic surfaces [13]

that the combination of shape and anisotropy factors results
in a drift at a fixed angle with respect to the gradient of the
intrinsic curvature of the surface.

For scroll waves, there are additional purely three-
dimensional effects which are also likely to contribute to their
dynamics in the heart. In particular, it has been shown that
the scroll waves drift if their filaments are curved in space
and, moreover, the filament length changes monotonically
[14], yielding two distinct regimes [15]. Inmedia with positive
filament tension, filament shortens and guarantees the linear
stability of the filament shape, whereas inmediawith negative
filament tension, filament length increases [14]. Such dynam-
ics of filaments are very important, as they can potentially
lead to the onset of turbulence [16]. Theoretical approaches
have also demonstrated that the three-dimensional filament
shape is an important determinant of its drift [17]. However,
the drift of a scroll wave filament has so far only been
studied in simple rectangular geometries. The only studied
complex dynamical effect of anisotropy on three-dimensional
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dynamics is the possible break-up of scroll waves in a discrete
[18] or continuous case [19].

Recently, we have developed a model of the human
heart LV. This model correctly describes the shape and
myofibre rotation of the LV [20]. The model is formulated
analytically, allowing researchers to modify the LV shape and
fibre orientation in a continuous and controlled way. Using
it, we can study the effects of shape and anisotropy and
the thickness of the cardiac wall on various types of wave
dynamics in the heart.

In this paper, we apply our anatomical LV for the
study of scroll wave dynamics. We investigate how scroll
wave filament dynamics is affected by the anisotropy ratio,
thickness of myocardial wall, LV shape, and filament tension.
We identify the attractors of filament motion and discuss
the possible mechanisms which can account for the observed
phenomena.

2. Methods

2.1. Reaction Kinetics. We used the APmodel [21] for cardiac
cells and a monodomain description for three-dimensional
cardiac tissue:

�̇� = −𝑘𝑢 (𝑢 − 𝑎) (𝑢 − 1) − 𝑢V + div (𝐷 grad 𝑢) , (1)

V̇ = 𝜂 (𝑢) (8𝑢 − V) , (2)

where 𝜂(𝑢) = 0.1 if 𝑢 > 𝑎 and 𝜂(𝑢) = 1; otherwise, 𝑘 = 8. To
model anisotropic conduction along the cardiac myofibres,
a uniaxially anisotropic diffusion tensor 𝐷 is included, with
Cartesian components𝐷𝑖𝑗( ⃗𝑟) = 𝐷

𝑎
𝛿

𝑖𝑗
+ (𝐷

𝑓
− 𝐷

𝑎
)V𝑖( ⃗𝑟)V𝑗( ⃗𝑟),

𝑖, 𝑗 = 1, 2, 3. Thereby, the diffusion is maximal and equal to
𝐷

𝑓
= 12 along themyofibre directionwith unit tangent V⃗, and

equal to𝐷
𝑎
< 𝐷

𝑓
in the transverse direction. At the medium

boundaries, no-flux conditions ⃗𝑛⋅𝐷⋅grad 𝑢 = 0were imposed
with the local normal vector ⃗𝑛.

To investigate the effect of filament tension 𝛾

1
, the value

of the parameter 𝑎 was varied. Note that 𝛾
1
can be easily

measured in silico by adding the small convection term ⃗

𝐸 ⋅

grad(𝑢) to (1) in two dimensions and measuring the spiral
wave drift. For the values of 𝑎 = 0.03 and 𝑎 = 0.08 (see
Figure 1 for action potential plots), we, respectively, found
𝛾

1
= 0.29 and 𝛾

1
= −0.49, corresponding to the positive and

negative filament tension regimes.

2.2. Geometrical Model. Our anatomical LV model exhibits
axisymmetry and uses a variant of spherical coordinates,
where 𝜙 ∈ [0, 2𝜋] indicates longitude and 𝜓 ∈ [0, 𝜋/2]

is the downward inclination angle (latitude) with respect to
the equatorial plane. The cardiac apex lies at 𝜓 = 𝜋/2. The
transmural position is parameterized by 𝛾 ∈ [𝛾endo, 𝛾epi] ⊂

[0, 1]. Explicitly, the curvilinear coordinates (𝛾, 𝜓, 𝜙) relate to
the cylindrical coordinates (𝜌, 𝜑, 𝑧) as [20]

𝜌 (𝛾, 𝜓) = (𝑟

𝑏
+ 𝛾𝑙) (𝜖 cos𝜓 + (1 − 𝜖) (1 − sin𝜓)) ,

𝜑 = 𝜙,

𝑧 (𝛾, 𝜓) = (𝑧

𝑏
+ 𝛾ℎ) (1 − sin𝜓) ,

(3)
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Figure 1: The time course of a variable 𝑢 representing the scaled
transmembrane voltage for 𝑎 = 0.03 (the solid line) and 𝑎 = 0.08

(the dashed line). Simulations for a periodical stimulationwith a fre-
quency of 1Hz. Time is represented in the dimensionless time units.

where 𝑟
𝑏
is the LV internal (endocardial) radius at the cardiac

base, 𝑙 is the basal ring thickness, 𝑧
𝑏
is the LV cavity depth, and

ℎ is the wall thickness at the apex (Figure 2). The dimension-
less 𝜖 ∈ [0, 1] determines the LV sphericity between conical
(𝜖 = 0) and ellipsoidal (𝜖 = 1). Further details of the geometry
and the construction of myofibre direction can be found in
[22]. The geometrical model includes rotation of the fibre
directions from the endocardium to the epicardium with the
angle 170∘ at the base and 100∘ at the apex.

2.3. Parameter Sets. Every time unit in our model corre-
sponds to 20ms, and diffusion coefficients are chosen such
that one space unit in our model corresponds to 1mm.
Throughout the simulations, the following geometry param-
eters were kept constant: longitudinal diffusion𝐷

𝑓
= 12, full

LV height 𝑧
𝑏
+ ℎ = 60mm, and equatorial wall thickness

𝑙 = 12mm. We used two forms of the LV: sphere-like with
𝜖 = 0.99, 𝑟

𝑏
+ 𝑙 = 𝑧

𝑏
+ ℎ = 60mm, and the normal form with

𝜖 = 0.85, 𝑟
𝑏
= 21mm (see Figure 3).

In different simulations, we varied apical thickness ℎ

between 6 and 18mm in steps of 2mm. The transverse
diffusion𝐷

𝑎
was chosen from {1.33, 4, 12}, such that the ratio

of longitudinal and transverse wave velocities varied between
3 : 1 and 1 : 1.

To initiate a spiral wave, we set the potential 𝑢 equal to 1 in
nodes with𝜓 ≤ 𝜓

0
, 0 ≤ 𝜙 ≤ 0.7, and we set the conductivity V

equal to 𝑘 in nodes with𝜓 ≤ 𝜓

0
, 0.7 < 𝜙 ≤ 1.4.We considered

two cases of the initial conditions, namely, when𝜓
0
was equal

to 0.4𝜋/2 (the case “𝜓4”) and when 𝜓

0
was equal to 0.8𝜋/2

(the case “𝜓8”).

2.4. Numerical Methods. The mesh used was a rectan-
gular lattice in the coordinates (𝛾, 𝜓, 𝜙) with the size
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Figure 2: A meridional section of the geometrical LV model. The
case of the normal LV shape. Parameter values are ℎ = 10mm and
𝜖 = 0.85. The red line shows the endocardial and the blue line shows
the epicardial surfaces of the heart. An oblique solid line illustrates
the 𝜓 coordinate (𝜓 = 45

∘
).

𝑁

𝛾
× 𝑁

𝜓
× 𝑁

𝜙
= 13 × 94 × 256. Time integration was

implemented using the Euler method [22] with time step
𝑑𝑡 = 1.666 × 10

−3 ms. Since the mesh is highly nonuniform
in Cartesian coordinates, we gradually decreased the number
𝑁

𝜙
of circumferential grid points when approaching the apex

as detailed in [22]. Therefore, the mesh we used had non-
constant distances between adjacent nodes. We numerically
integrated the system until time 𝑇 = 80 s or longer, until we
saw the established dynamics of the filament.

The program was written in C language, with OpenMP
parallelization, compiled with GCC. Simulations were per-
formed on two supercomputers under Scientific Linux 6.

During the simulations, the position of the scroll wave tip
was recorded by finding the intersections of the iso-surfaces
𝑢 = 0.5, V = 0.5 in every layer of constant 𝛾 using the method
of [19]. To obtain a 2D representation of a filament for 2D
figures and to calculate the drift velocity, we found a mean
filament position using averaged value over 𝛾. To represent
average filament position, we calculated a sliding average
over two rotations of a scroll wave. Then, we computed the
velocity using V = 𝑑𝑥/𝑑𝑡 in finite differences, converted V
from Cartesian to the special coordinates and assigned phase
𝜙 = atan2(V

𝜓
/V
𝜙
). Finally, to find position for phase 𝜙

0
, we

averaged positions between phases 𝜙
0
− 2𝜋 and 𝜙

0
+ 2𝜋.

Visualization of the results was done in Paraview, Sharp-
Eye, and Matlab.

3. Results

We generated heart geometries of two shapes: elliptical (𝜖 =
0.85), based on themeasurement of the humanheart [23], and

spherical (𝜖 = 0.99), which mimics the change of heart shape
in the case of eccentric and concentric cardiac hypertrophy
(see chapter 8 in [24]). We have also varied the thickness
at the apex of the heart and the degree of anisotropy and
excitability. We studied how each of these factors affected the
dynamics of a scroll wave.

Figure 4 shows typical examples of the dynamics of a
scroll wave in our model. The scroll wave was initiated at
a central location slightly closer to the apex of the heart
(Figure 4(a)). Depending on the geometry of our model and
the anisotropy of cardiac tissue, we observed drift of the
scroll wave either towards the base of the heart (Figure 4(b),
left) or towards the apical region (Figure 4(b), right). In both
cases, the vertical motion stabilizes at some distance from the
base (apex) and the scroll wave continues a circumferential
rotation.

In the next section, we discuss in detail the type of this
motion and its dependency on themodel geometry and tissue
anisotropy.

3.1. Filament Attractors and Their Relation to the Geometry
and Anisotropy. We will characterize the position of the
filament by a thickness-averaged (i.e., mean) position and
represent it as a point in𝜓, 𝜙 coordinates. Furthermore, since
our LV model is axisymmetric, we deal with a system

̇
𝜓 = V

𝜓
(𝜓) ,

̇

𝜙 = V
𝜙
(𝜓) . (4)

Therefore, the zeros of V
𝜓
(𝜓) determine vertical positions

𝜓

∗
(latitude) where filaments stabilize. In our simulations,

we found that filaments after stabilization of their 𝜓 coor-
dinate exhibit residual circumferential drift, since generally
V
𝜙
(𝜓

∗
) ̸= 0.

3.1.1. Drift for Positive Filament Tension. Figure 5 shows the
mean filament position after stabilization for the case of
positive filament tension (𝑎 = 0.03). In all cases, we saw that
the filament stabilized at some distance from the apex (or
base), after which it continued to drift circumferentially.

The vertical axis of Figure 5 shows the latitude of this
attractor, with 𝜓 = 0 corresponding to the base of the heart
and 𝜓 = 𝜋/2 ≈ 1.57, to the apex of the heart. We performed
simulations for a heart of a spherical shape (panel a) and
normal LV form (panel b) for two initial conditions. The
apical thickness ℎ is shown on the horizontal axis. The basal
thickness is always 12mm; thus, when ℎ < 12mm, the base
is thicker than the apex, and when ℎ > 12mm, the apex is
thicker than the base.

General theoretical considerations predict that, in the
case of positive filament tension, which we have for 𝑎 = 0.03,
the filament tends to approach the region with the smallest
wall thickness [14].

From Figure 5, we indeed see that, for almost all param-
eter values, the filaments tend to approach the region of
smaller thickness: when ℎ < 12mm, it moves towards the
apex, and if ℎ > 12mm, it drifts towards the base. However,
in all cases, the filament does not approach the thinnest
region and stops at some distance from it. We also see a large
transition zone around ℎ = 12mm. Here, the filament stops
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Figure 3: Meridional sections of the geometrical LV model for various values of the parameters. The cases of the normal ((a), (c)) and the
spherical LV shape ((b), (d)). ((a), (b)) shows the geometry for the cases with the minimal apical thickness (ℎ = 6mm); ((c), (d)) shows the
geometry for the cases with the maximal apical thickness (ℎ = 18mm).The axes are marked in cm.The abscissa axis is 𝜌; the ordinate axis is
𝑧.

at a substantial distance from the region with the minimal
thickness.

Figure 5 also shows the dependency of the final position
of the filament on the initial position of the scroll: the red lines
show results for a scroll initially located close to the apex and
blue lines for a scroll initially located close to the base.We see
that, in most of the cases, the final position of the scroll wave
does not depend on the initial conditions; however, for ℎ = 16

or 18mm and 𝐷
𝑎
= 1.33, we have a substantial change of the

position: in those cases, if the scroll is initiated close to the
apex, it stays near the apex, independently on its thickness,

and this result holds for both a spherical and normal shape
of the LV. We performed additional studies for this case and
found that scroll waves initially located at latitude 𝜓 < 0.7

were drifting to the base, and for 𝜓 > 0.9, they stayed near
the apex (not shown).

Now, let us try to separate the effects of different compo-
nents of filament dynamics. First, we characterize the effect of
the shape of the ventricle on the final position of the filament.
If we compare the final position of the filament for both
geometries, we find that, in a spherical shape, the filament is
closer to the region of smaller thickness; for example, for ℎ =
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(a)

(b)

Figure 4: Drift of a scroll wave in a model of human ventricles
represented by trajectories of filament on a midmyocardial surface.
(a) Initial position of a scroll wave at the midmyocardial surface.
Different colors represent different values of the transmembrane
voltage (variable 𝑢) with the red color corresponding to 𝑢 = 1 and
the blue color corresponding to 𝑢 = 0. (b) instantaneous (black)
and averaged (yellow) filament positions. The arrows show the drift
direction. The left panel shows the drift for the geometry with an
apical thickness of ℎ = 6mm; the right panel shows the same for
ℎ = 18mm. Simulations for the normal LV shape (𝜖 = 0.85), with
anisotropy𝐷

𝑎
= 4 and high excitability (𝑎 = 0.03).

16mm for all anisotropy ratios, the filament for a spherical
LV shape is located closer to the base than for a normal shape
(𝜓 = 0.35 versus 𝜓 = 0.4), and for ℎ = 6mm, the filament for
the spherical LV shape is located closer to the apex than for a
normal shape (𝜓 = 1.45 versus 𝜓 = 1.2). We also see that the
transition from the apical to basal location was more gradual
for the normal shape than for the spherical shape.

Secondly, let us consider the effect of anisotropy. We see
that, for both shapes and all anisotropy ratios, an increase in
the anisotropy ratio results in shifts of the filament towards
the apex. Once again, the effect is more substantial for a
normal shape, especially for 8mm ≤ ℎ ≤ 12mm. For a
spherical shape, we also see a shift of the position to the apex,
but the effect here is minimal. Thus, anisotropy in our case
tends to move the filament towards the apex.

Next, we characterize the trajectory of a scroll wave
after approaching the attractor. In all cases, the scroll wave
stabilizes at some latitude 𝜓 = 𝜓

∗
and then performs a rota-

tional motion around the axisymmetric LV. Figure 6 shows
the velocity of this motion for a spherical (Figure 6(a)) and
normal shape (Figure 6(b)) with negative velocity accounting
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Figure 5: Final position 𝜓

∗
of the filament for the spherical and

normal LV shape in the case of positive filament tension (𝑎 =

0.03). The blue line shows the results of simulations for initial scroll
location at the centre of the LV and the red line for the initial location
close to the apex.The𝑋-axis shows the apical thickness ℎ, the𝑌-axis
is the 𝜓 coordinate. The LV base has 𝜓 = 0, the apex has 𝜓 = 𝜋/2.
Different lines styles correspond to different anisotropy ratios.

for a counterclockwise direction. Note that, in all simulations,
the rotation of scroll wave itself was always counterclockwise
(as shown in Figure 4), and if the rotation direction of the
scroll was changed, all velocities shown in Figure 6 would
also change their signs. We see that, for a thick apex ℎ >

14mm (i.e., when the scroll approaches the base of the
heart) in both cases, the rotation is counterclockwise and its
velocity increases with the increase in the anisotropy. For a
thin apex ℎ < 8mm (i.e., when the scroll approaches the
apex of the heart), the velocity is slower and it exhibits a
more complex dependency on the anisotropy. For the normal
shape, we see that, in the isotropic case, the scroll wave rotates
clockwise around the LV. When the anisotropy increases, the
velocity of motion decreases and becomes negative for strong
anisotropy; that is, the drift motion of a spiral wave around
the LV changes to counterclockwise. For the spherical shape
in most of the cases, rotation is always clockwise and the
dependency on the anisotropy is much smaller.
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Figure 6: Residual circumferential speed of the drifting filament
after stabilization at the attractors 𝜓 = 𝜓

∗
shown in Figure 5 for the

cases of the spherical (a) and the normal LV shape (b).The𝑋-axis is
the apical thickness ℎ, the 𝑌-axis is the speed, mm/s. Different lines
correspond to different anisotropy ratios.

3.1.2. Drift for Negative Filament Tension. Figure 7 shows
the mean filament position after stabilization for the case of
negative filament tension (𝑎 = 0.08). General theoretical
considerations predict that, in the case of negative filament
tension, the length of the filament grows and it may lead to
the onset of a spatio-temporal chaos [16].

From Figure 7, we see that we almost never obtain a
break-up of the scrolls for these parameter values, and inmost
cases, the filament stabilizes either at the apex or base. Let
us consider first the results for the spherical geometry. We
see that the filament drifts to the regions with the thicker
wall, and the situation here is somewhat opposite from that
for Figure 5. Indeed, for the apical thickness ℎ > 14mm,
the scroll for most of the cases approaches the apex, and for
ℎ > 8mm, it most often approaches the base. However, we
note a substantial dependency on the initial conditions. If the
initial position of the scroll wave is close to the apex (red
lines), they aremore likely to drift to the apex. If, however, the
initial scroll wave is closer to the base (blue lines), the filament
may drift to the base even if the base is thinner (see, e.g., the
case ℎ = 14mm,𝐷

𝑎
= 12, blue line).
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Figure 7: Final position𝜓
∗
of the filament for the spherical LV shape

(a) and normal LV shape (b) in the case of negative filament tension
(𝑎 = 0.08). The blue line shows the results of simulations for initial
scroll location at the centre of the LV and the red line for the initial
location close to the apex. The 𝑋-axis shows the apical thickness ℎ,
and the 𝑌-axis is the 𝜓 coordinate. The LV base has 𝜓 = 0, and the
apex has 𝜓 = 𝜋/2. The different line styles correspond to different
anisotropy ratios.

Secondly, for the normal shape, we see almost no depen-
dency on the LV thickness. For most parameter values, the
scroll wave approaches the apex. However, for 𝐷

𝑎
= 12 (blue

line), it stays at the base for all values of ℎ. It is also difficult
to find a clear dependency of the attractor location on the
shape of the ventricle. Overall, in most of the cases shown in
Figure 7, the scroll wave tends to approach the apex.However,
in few cases, as for example, ℎ = 18mm, 𝐷

𝑎
= 12, we

observe that, in the spherical geometry, the filaments tend
to move towards the apex, while for the normal geometry, it
approaches the base (blue line). As we have never seen the
opposite situation,we can conclude that, for a spherical shape,
there is a slight preference for the scroll wave to move to the
apex compared to the normal shape.

We, however, observe a clear effect of anisotropy. In all
cases, an increase in the anisotropy ratio resulted in a shift
of the attractor to the apex. Thus, as for the positive filament
tension, increased anisotropy tends to push the filament
towards the apex.
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Figure 8: Residual circumferential speed of the drifting filament
after stabilization at the attractors𝜓 = 𝜓

∗
(see Figure 7) for the cases

of the spherical (a) and the normal LV shape (b). The 𝑋-axis is the
apical thickness ℎ, and the 𝑌-axis is the speed, mm/s. Different lines
correspond to different anisotropy ratios.

The velocities of a scroll wave after approaching the
attractor for negative filament tension shown in Figure 8
substantially differ from the case of the positive tension. We
see that velocities here are 50–100 time smaller; that is, the
circumferential motion of the filament is almost absent. In
most cases, the direction of this motion is counterclockwise.

We have also observed filament break-up for large
anisotropy ratio and large apical thickness; that is, 𝐷

𝑎
=

1.33 and ℎ = 16 or 18mm. (For these parameters, data are
absent in Figure 7(a).) A typical excitation pattern is shown
in Figure 9. We see a break-up pattern, which in this case
comprises 4–8 wavelets on the surface of the LV. In some
cases, the break-up was transient.

3.2. Mechanisms of Filament Dynamics. To understand the
mechanisms of the observed phenomena, we performed a
series of two-dimensional simulations in which we studied
the drift of a spiral wave on a two-dimensional surface for
the following cases: (a) a paraboloidal surface 𝑧 = (𝑥

2
+

𝑦

2
)/120mm close to the endocardial shape of the normal

model without anisotropy, (b) a two-dimensional square
resembling the anisotropy of the mid-wall endocardium, and

(c) the paraboloidal surface of case (a) with the anisotropy
of case (b). The initial condition for 2D simulations was a
spiral with the same reaction kinetics in an isotropic domain
of size 800mm × 800mm created by evolving a rectangular
stimulus in 𝑢 and V for 100 time units (2000ms). The results
of these simulations are shown in Figure 10. We see that, for
the case of 𝑎 = 0.03, the spiral is attracted to the apex for
all three situations, and its characteristic velocity of motion
at a distance 𝜌 = 45mm from the cardiac apex for the
isotropic paraboloid is V

𝜌
= −1mm/s, 𝜌V

𝜑
= −1mm/s and

V
𝜌
= −0.3mm/s, and 𝜌V

𝜑
= −0.2mm/s for an anisotropic

plane with circumferential fibres.
For 𝑎 = 0.08, both surface shape and anisotropy repel the

spiral from the apex, and its characteristic velocity of motion
at 𝜌 = 70mm for the isotropic paraboloid is V

𝜌
= 2mm/s,

and 𝜌V
𝜑
= −4mm/s and V

𝜌
= 2mm/s, 𝜌V

𝜑
= −3mm/s for an

anisotropic plane with circumferential fibres. Let us consider
how these results can be used to explain the observed filament
dynamics.

The drift of the filaments studied in the previous section
is a combination of three factors which can potentially
contribute to the filament dynamics: the thickness of the
medium, the anisotropy and the shape of the LV.

First, we consider the effect of wall thickness. From [14],
it is known that filaments with positive tension 𝛾

1
(𝑎 = 0.03

in our case) tend to decrease their length. In such a case,
the filaments are expected to stabilize in a region where a
local minimum of wall thickness is reached. To compute
wall thickness for the given parameters of the shape, we
took 10𝑁

𝜓
= 940 points on the epicardial and endocardial

surfaces. For each𝜓
1
value on the endocardium, we found the

closest point on the epicardium, occurring at latitude 𝜓
2
. The

Euclidean distance between these two points was then logged
as the wall thickness at latitude 𝜓 = (𝜓

1
+ 𝜓

2
)/2. Figure 11

shows the resulting wall thickness as a function of latitude 𝜓,
together with the stable loci 𝜓 = 𝜓

∗
of filaments for different

anisotropy ratios.
For the spherical LV model (𝜖 = 0.99, panel a), wall

thickness is monotonous and exhibits a minimum at the
apex when ℎ < 12mm and at the base when ℎ > 12mm.
In the isotropic case, the final filament state comes close to
these expected values. For the normal LV shape (𝜖 = 0.85),
however, wall thickness exhibits a local minimum in the
mid-wall region when ℎ > 6mm. Therefore, if the filament
moves to the position with minimal length, it is expected to
equilibrate at moderate values of latitude 𝜓. The numerical
results in Figures 11(b) and 7(b) confirm this view, since we
observe that when ℎ is increased, the stable filament position
gradually changes from basal to apical.

Next, we turn to the effect of LV shape and anisotropy. It
was previously shown [13] that on two-dimensional surfaces
(i.e., thin layers with constant thickness), spiral waves drift
according to the gradient of the Ricci curvature, which
encompasses both anisotropy and shape. With finite thick-
ness, it can be hypothesized that scroll waves behave like a
spiral wave in each layer of constant depth and are therefore
sensitive to the anisotropy and curvature in these layers. From
our two-dimensional observations in Figure 10, we know
that, for 𝑎 = 0.03, positive curvature attracts spiral waves.



8 BioMed Research International

(a) (b)

(c) (d)

Figure 9: Break-up of a scroll wave due to negative filament tension. Simulations are for ℎ = 18mm, 𝜖 = 0.99, 𝐷
𝑎
= 1.33, and 𝑎 = 0.08.

Snapshots times are (a) 100ms, (b) 1800ms, (c) 1880ms, and (d) 1940ms.

Moreover, when circumferential fibres are present in the LV
wall, they effectively reduce the circumference of the LV at
a fixed latitude 𝜓 if distance is measured according to the
arrival time of the excitation waves. Therefore, increasing the
anisotropy ratio of circumferential fibres makes a spherical
or ellipsoidal shape effectively more elongated. Since such a
shape has the increased Ricci curvature close to the apex,
it has an attracting effect on spiral waves for 𝑎 = 0.03,
based on our two-dimensional observations in Figure 10. In
conclusion, we expect that circumferential fibres around the
apex will push the spiral towards the apex. In Figure 11(b), we
see that, for an increasing anisotropy ratio, the equilibrium
position for filaments indeed shifts closer to the apex.

Now let us consider the case of the negative filament
tension. The absence of a break-up for the negative filament
tension can be explained by the dependency of this effect
on the thickness of the tissue. In [25], it was shown that if
the thickness of cardiac tissue is small, the break-up of a
scroll wave due to negative filament tension disappears. This
phenomenon was further studied in [26], where it was shown
that filament rigidity increases the effective filament tension
in thin media. Although the study [25] uses a different model
for cardiac tissue (i.e., the LuoRudy-1 ionic model), it shows
that the critical thickness for the onset of instability there is

around 1 cm. In our case, we see a break-up only in the case of
a spherical LV shape and when its maximal thickness is above
14mm. Given the big differences between the models used in
our simulations, this value can be considered reasonably close
to that obtained in that study [25].

When the break-up is absent, we observe a drift of
transmural filaments. However, in most of the cases, its final
position is at the cardiac apex, and for stronger anisotropy,
this tendency to go to the apex becomes stronger. Those
results are opposite to the results of our two-dimensional
simulations, which indicate that, in this case, both geometry
and anisotropy repel two-dimensional spiral waves from the
apex.This discrepancy can be understood by the observation
that, for moderate wall thickness and negative filament
tension, filaments will “buckle” and deform into an S-shape,
after which they undergo precession [26]. We noted in our
simulations that, for 𝑎 = 0.08, the (Euclidean) length
of the filament is always bigger than the wall thickness
(see Figure 12), and a visual inspection of the end-state
shows that the resulting filament is buckled (see Figure 13).
During one rotation period (depicted in Figure 13(b)), the
vector connecting the filament endpoints at epicardial and
endocardial boundaries also performs a full rotation, albeit
in the opposite sense.Therefore, the precession of buckling is



BioMed Research International 9

O
nl

y 
sh

ap
e

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

a = 0.03

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

a = 0.08

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

O
nl

y 
an

iso
tro

py

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

A
ni

so
tro

py
+

sh
ap

e

−250 −125 0 125 250
−250

−125

0

125

250

X

Y

Figure 10: Spiral wave drift on two-dimensional surfaces of different shape and anisotropy. Simulations in the Aliev-Panfilov model with
parameter 𝑎 = 0.03 (left column) and 𝑎 = 0.08 (right column). Top row represents the results for the paraboloidal shape 𝑧 = (𝑥

2
+𝑦

2
)/120mm.

The middle row shows drift on an anisotropic plane with circumferential fibres: →𝑒
𝑓
=

→

𝑒

𝜑
, 𝐷
𝑓
= 12, and 𝐷

𝑎
= 4. The bottom row combines

circumferential fibres with paraboloid shape. Simulations run on a domain of size 200mm for 30 s. The red line indicates tip positions close
to the end of the simulation. Numerical methods are described in [13].

phase-locked to scroll wave rotation. This, however, does not
explain the tendency of filaments towards the apex. Another
factor may be the full three-dimensional anisotropy effects,
which deserve further study.

4. Discussion

In this chapter, we have presented results on the drift of scroll
wave filaments in an anatomical model of human ventricles
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and have studied the effect of shape, thickness and anisotropy
of the ventricle on the drift pattern. We found that the results
are substantially affected by the filament tension of the scroll
wave.

In the case of the positive filament tension, one of the
main determinants of the drift was the thickness of the
myocardial wall and the filament tended to drift to the region
of minimal thickness. However, in all cases, it never arrived

to the point of minimal thickness and rotated at some small
distance from it.

Another important determinant of filament drift was the
anisotropy of the tissue. Its main effect in our simulations was
the attraction of the scroll wave to the apex. The LV shape
had a small effect on the results in terms of the direction of
the drift. However, it affected the location of the attractor,
especially when the gradient in the thickness was not large.
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Figure 13: Buckled filament state after 60 s for ℎ = 12mm, 𝜖 = 0.85, and 𝐷
𝑎
= 4. (a) Three-dimensional view of the buckled filament. (b)

Top view of the endocardial and epicardial tip trajectories between 62.16 s and 62.84 s (3108 and 3142 time units of the AP model). The arrow
indicates drift direction, and the cross marks the cardiac apex.

As cardiac tissue has a high excitability in normal con-
ditions, one would expect that in normal conditions, the
filament would be located close to the region of minimal
thickness with a slight preference towards the apex, due to
anisotropy effects. This information might be important for
identifying sources of arrhythmias in the heart, with applica-
tions in the planning of successive clinical intervention.

Wehave also studied the case of negative filament tension.
In that case, filaments generally behave chaotically, and this
normally results in the break-up of scroll waves [16]. In
our case, we find that such a break-up can only occur in
a small parameter range. In most other cases, the filament
was drifting to a stable attractor, and its location was close
to the region of maximal thickness in a few cases. However,
we observed that scroll waves were much more likely to
approach the apex of the ventricle than its base. We again
found that the anisotropy of the heart substantially affects
the motion by attracting the scroll to the apex; this effect
cannot be explained by simple two-dimensional simulations
and theory. The LV shape also had a small affect on the scroll
wave motion, but for the normal shape, we saw more motion
to the apex than for a spherical shape. Thus, in this case, we
can say that the elliptic shape induced some attraction force
towards the apex of the heart.

The mechanisms underlying the observed phenomena
in the regime of positive filament tension can be partially
explained by the existing theories of filament dynamics. As
such filaments strive to minimize their length, they move
to regions of minimal wall thickness. However, we found in

our simulations that even in the isotropic case, the filaments
did not exactly reach that minimum. Possible disturbing
factors are filament twist [19], curvature of the endocardial
and epicardial boundaries, and discretization effects. In two-
dimensional simulations, it was seen that spiral waves in the
high excitability regime are attracted to regions of positive
curvature, such as the cardiac apex, in contrast to a previous
study in Barkley’s model [13]. Since positive curvature is
amplified by the anisotropy of circumferential myofibres, we
understand that an increased anisotropy ratio pushes the
filaments closer to the cardiac apex.

In the regime of negative tension, the wall thickness
proved in most cases to be insufficient for the development
of a full three-dimensional break-up. Instead, we identified
buckled filaments which also equilibrate at a given latitude,
due to the axial symmetry of our LV model. A further the-
oretical consideration of the effects of shape and anisotropy
on scroll wave dynamics would be nontrivial. Possible ways
to approach this problem are to consider shapes with a small
thickness and to use averaging methods as in [27]. For thick
shapes, one can use the equations of filament dynamics in
a general anisotropic medium derived in [28]. However,
incorporating the effect of curved domain boundaries on the
filament and reconciling those with bulk motion remains a
difficult task.

We performed our simulations using the AP model,
which provides a simplified description of cardiac tissue.
Two-variable models allow researchers to easily obtain var-
ious regimes of filament tension, and they are much more
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efficient for large-scale numerical simulations. Therefore,
two-variable models of cardiac tissue are widely used in
studies of two-dimensional and three-dimensional dynamics
of spiral waves in the heart (see, e.g., [29]). The next logical
step would be to extend these simulations to an ionic model
for human cardiac tissue and to find out how the present
results are affected.

We have studied only filaments extending from the epi-
cardial to the endocardial surface. It would also be interesting
to study the dynamics of the intramural filaments. Such
filaments can occur during the normal excitation of cardiac
tissue and may have a complex shape and therefore complex
dynamics [30].

In this chapter, we have studied themotion of scroll waves
in a homogeneous model of cardiac tissue. It was shown that
the heterogeneity of cardiac tissue substantially affects the
motion of vortices and their dynamics [31]. The presence of
heterogeneity can shift the locations of found attractors and
can also result in the onset of new vortices [32]. It would be
interesting to study the effect of the transmural heterogeneity
and apex base heterogeneity [33, 34] on the results obtained in
this chapter. In addition, the presence of the Purkinje network
and pectinate muscles may also affect filament dynamics and
should be studied in the future.
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