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Increased incidence of type I and type II diabetes has been prevailed worldwide. Though
the pathogenesis of molecular mechanisms remains still unclear, there are solid evidence
that disturbed immune homeostasis leads to pancreatic b cell failure. Currently,
autoimmunity and uncontrolled inflammatory signaling pathways have been considered
the major factors in the pathogenesis of diabetes. Many components of immune system
have been reported to implicate pancreatic b cell failure, including helper T cells, cytotoxic
T cells, regulatory T cells and gut microbiota. Immune modulation of those components
using small molecules and antibodies, and fecal microbiota transplantation are
undergoing in many clinical trials for the treatment of type I and type II diabetes. In this
review we will discuss the basis of molecular pathogenesis focusing on the disturbed
immune homeostasis in type I and type II diabetes, leading to pancreatic b cell destruction.
Finally, we will introduce current therapeutic strategies and clinical trials by modulation of
immune system for the treatment of type I and type II diabetes patients.
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INTRODUCTION

Diabetes is a complex disorder caused by multiple genetic and environmental factors. For example,
sex differences in genetic and environmental factors such as sex hormones, sex chromosomes and
sex-specific epigenetic modification are associated with the development of diabetes (1–4).
Although there are numerous risk factors for diabetes, dysfunction of pancreatic b cells is a
common feature of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Pancreatic b cells play
crucial roles in the regulation of glucose homeostasis. They have molecular sensors to recognize a
rise in blood glucose and to produce insulin for the maintenance of blood glucose levels. While
destruction of pancreatic b cells leads to development of T1D, T2D occurs when b cells fail to
secrete sufficient insulin to compensate for insulin resistance. Numerous studies have shown that
multiple molecular mechanisms, including autoimmune, inflammation and metabolic stress are risk
factors for the development of b cell failure. Autoimmune-mediated b cell dysfunction is due to b
cell autoantigens and immune cell infiltration of the pancreatic islets (insulitis) (5). The
autoantibodies have been identified in the sera of T1D patients and these autoantibodies serve as
biomarkers for the prediction of T1D (6). Besides, a spontaneous animal model of T1D, non-obese
diabetic (NOD) mice has shown the presence of autoreactive T cells and antigen-presenting cells
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(APCs) in islets, implying that autoreactive T cells recognize b
cell autoantigen to infiltrate islets and contribute to b cell
destruction for the development of T1D (7). In addition to
T1D, islet inflammation also contributes to b cell dysfunction
in T2D. Infiltration of macrophages and increased expression of
pro-inflammatory cytokines have been observed in islets of
rodent models including high-fat diet (HFD)-fed mice, db/db
mice and GK rat (8, 9). Glucotoxicity and lipotoxicity have been
shown to induce b cell death in T2D. Chronic exposure of b cells
to high glucose altered glucose-stimulated insulin secretion
(GSIS) (10). Although short-term exposure to saturated free
fatty acids (FFAs) is able to stimulate insulin secretion,
prolonged exposure to saturated FFAs dramatically suppresses
GSIS by increasing oxidative stress in b cells (11).

Recent studies have reported that the gut microbiota is
associated with both T1D and T2D (12–14). The microbiota
plays a critical role to regulate energy metabolism by fermentation
of carbohydrates and production of metabolites such as bile acids,
short-chain fatty acids (SCFAs) including acetate, propionate,
and butyrate. The metabolites induced by gut microbiota are
involved in glucose homeostasis. For example, SCFAs stimulate
secretion of glucagon-like peptide 1 (GLP-1), an incretin to
potentiate insulin secretion for glucose homeostasis (15). Thus,
alteration of gut microbiota may contribute to disturbed incretin-
mediated insulin signaling in diabetes patients (16–18). And, it
has been reported that children with high genetic risks for
developing T1D have distinct features of microbiome compared
with a healthy control group (19). Though the underlying
molecular mechanisms are still unclear, the alteration of gut
microbiota in early life has been shown to correlate with the
presence of autoantibodies and autoimmunity in pancreatic islets,
suggesting that gut microbiota plays a pivotal role to modulate
immune responses in islets for the development of T1D (20).
Likewise, numerous studies using metagenomics and 16S rRNA-
based high-throughput sequencing have reported compositional
and functional changes of gut microbiota in T2D patients (17, 21,
22). Cohort studies from Europe and China commonly
demonstrated a decrease of butyrate-producing gut bacteria in
T2D patients compared to the normal group (21–23). The
reduction of butyrate-producing gut bacteria contributed to
both T1D and T2D development, implying that gut microbiota
alteration is crucial risk factor for the pathogenesis of diabetes.

Herein, we will provide an overview of the pathogenesis and
therapeutic strategies of diabetes in terms of immune modulation
using gut microbiota. Given that immune modulation strongly
contributes to the destruction of pancreatic b cells for the
development of diabetes, the crosstalk between the gut
microbiota and immune system would be promising
therapeutic strategy for the treatment of diabetes.
THE PATHOGENESIS OF DIABETES

Autoimmunity in Type I Diabetes
It has been widely accepted that T1D is an organ-specific
autoimmune disease. Autoantibodies in pancreatic islet serve as
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diagnosismarkers to predict the pathogenesis of T1D in bothNOD
mice and T1D human patients (24, 25). These autoantibodies
recognize specific self-antigens include insulin, glutamic acid
decarboxylase (GAD), zinc transporter (ZnT8), and insulinoma-
antigen 2 (IA-2) in pancreatic islets. Though the molecular
mechanisms of how autoantigens are processed remain still
unclear, endoplasmic reticulum (ER) stress-mediated misfolded
proteins in pancreatic b cells may contribute to the process of these
self-antigens (26–28). Antigen-presenting cells (APCs) such as
macrophages and dendritic cells (DCs) have been shown to
infiltrate in b cells and present autoantigens to naïve CD4+ T cell
for T cell activation. After recognizing autoantigens, naïve CD4+ T
cell differentiate into autoreactive CD4+ T cells, leading to promote
B cells to produce autoantibodies and activate CD8+ T cells to
differentiate into cytotoxic T cell (5). These autoreactive CD4+ T
cells and CD8+ T cells are key drivers of autoimmune reaction to
destroy pancreatic b cells.

Recently, it has been reported that polymorphism of Human
leukocyte antigens (HLA) class II encoding DQ and DR is a
genetic determinant of T1D (29). In NODmice, a peptide derived
from insulin was reported to serve as one of the autoantigens. This
peptide was able to bind major histocompatibility complex
(MHC) class II molecule H2-Ag7, resulting in activation of
CD4+ T cells (30). HLA DR4-restricted CD4+ T cells from T1D
patients are also able to respond to pre-proinsulin (PPI)-derived
epitope (31). Once activated by self-antigens, the activated CD4+

T cells then secrete interleukin-2 (IL-2) to provide ‘help’ CD8+

T cell activation.
In addition to CD4+ T cells, cytotoxic CD8+ T cells are

predominant lymphocytes infiltrating the pancreatic islets,
resulting in b cell destruction. HLA class I has been shown to be
overexpressed in pancreatic islets of early T1D patients, resulting in
infiltration of CD8+ T cells and insulitis (32). Thus, MHC class I-
deficient NOD. b2M−/− mice decreased infiltration of CD8+ T cells
into pancreatic islets, leading to ameliorate pathogenesis of T1D (33).

Recently, it has been reported that b cell peptides including
insulin B chain, GAD and Islet-specific glucose-6-phosphatase
catalytic subunit–related protein (IGRP) are prone to bind HLA-
A2 in T1D patients and autoreactive CD8+ T cell response tomany
HLA-A*0201–restricted b cell peptides (34). Once activated,
autoreactive CD8+ T cells release cytotoxic granules such as
perforin, granzyme B and proinflammatory cytokines, including
IFN-g leading to destruction of pancreatic b cells (35). These
proinflammatory cytokines increase the expression levels of MHC
class I and chemokine CXCL10which promote T cell infiltration in
human b cells (32).

On the other hand, FOXP3+ regulatory T cells (Tregs) are
known as immunosuppressive cells. Treg directly suppress the
proliferation and activation of effector T cells or dendritic cells
and secrete anti-inflammatory cytokines such as IL-10 (36).
However, the function of FOXP3+ Treg is altered in the onset
of T1D and the dysfunction of Treg may contribute to the
pathogenesis of T1D (37, 38).

Inflammatory Signaling in Type II Diabetes
Type 2 diabetes (T2D) is a multifactorial disease that resulted
from the combination of both genetic and environmental factors.
August 2021 | Volume 12 | Article 716692
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This disease is associated with hyperglycemia and is
characterized by insulin resistance and dysfunction or death
of b-cells, leading to insufficient insulin secretion for
glycemic homeostasis.

Insulin resistance is highly associated with diet-induced
obesity (39, 40). In the condition of obesity, dysfunction of
adipose tissue which is characterized by enlarged adipocytes
and abnormal secretion of adipokines and inflammatory
cytokines promotes the progression of insulin resistance (41,
42). Adipocyte hypertrophy generally increase the expression of
pro-inflammatory cytokines including tumor-necrosis factor-a
(TNF-a), IL-6, and IL-1b in the human patients with insulin
resistance. Furthermore, the adipocytes release macrophage
chemoattractant protein-1 (MCP-1) to promote macrophage
infiltration in adipose tissue (43). The infiltration of
macrophages with secretion of proinflammatory cytokines
contribute to insulin resistance, leading to increase of lipolysis
and plasma FFA in the T2D patients (44).

Similar with adipose tissues, dysfunction of pancreatic b cells
in T2D is involved in islet inflammation through increased
proinflammatory cytokines and infiltration of immune cells.
The islet inflammation has been observed in several T2D
mouse model including Psammomys obesus rat, HFD-fed mice,
db/db mouse and GK rat (45). Chronic hyperglycemia induces
the production of IL-1b in pancreatic b cells which is implicated
in insulin resistance as well as b cell dysfunction (46). Treatment
of IL-1 receptor antagonist to HFD-fed mice resulted in
protection from apoptotic b cell death and improved GSIS
secretion by blocking IL-1b signaling (47). IL-1 receptor
antagonisms inhibited macrophage infiltration into b cell,
leading to improved hyperglycemia in GK rats (48). In
addition, exposure of isolated human islets to high glucose
levels resulted in an increase of IL-1b secretion to activate
NF-kB, a key regulator of inflammation, and Fas (CD95)
signaling to induce dysfunctional b cell (49). These findings
suggest that glucotoxicity implicates an islet inflammatory
process in T2D.

Likewise, lipotoxicity also has physiological impacts on the
function of b cells. FFAs as well as TAG and cholesterol levels
have been shown to be elevated in HFD-fed mice (47). Increase
of plasma FFAs contributes to insulin resistance and impaired
insulin secretion by inducing ER stress and oxidative stress.
Moreover, excessive level of FFAs in skeletal muscle serves as
toxic lipids such as ceramide and diacylglyceride, leading
to incomplete fatty acid oxidation (50). These toxic FFA
metabolites and incomplete fatty acid oxidation contribute to
ER stress, oxidative stress and the generation of reactive oxygen
species (ROS). Metabolic products of FFAs activate pro-
inflammatory signaling pathways such as PKC and JNK
leading to impaired insulin signaling. Saturated FFA also can
activate toll-like receptor (TLR) signaling in b cells, followed by
immune responses (51). FFA-induced TLR-mediated signaling
has been shown to promote infiltration of macrophages through
the secretion of chemokines such as CCL2 and CXCL1 in b cells
(51). TLR4-mediated signaling also induced inflammation
through increased production of pro-inflammatory cytokines
Frontiers in Endocrinology | www.frontiersin.org 3
such as IL-1b and IL-6. Thus, insulin resistance-mediated
hyperglycemia and lipotoxicity induce inflammatory signaling
to disturb pancreatic b cell homeostasis, leading to b cell failure
in T2D patients (Figure 1).

Immune Modulation by Microbiota
Recently, several studies have reported compositional changes of
gut microbiota in both T1D and T2D and the alteration may
contribute to the development of diabetes (52–54). The gut
microbiota interacts with the host immune system via multiple
mechanisms involved in TLR-mediated signaling and microbial
products such as SCFAs (55, 56). In a rodent study, knock out of
Myd88, an adaptor protein for multiple TLRs, has been shown to
protect NOD mice from the development of T1D in specific
pathogen free (SPF) condition. However, these Myd88-deficient
NOD mice (NOD.Myd88−/−) in germ free condition developed
T1D, implying that gut microbiota plays a pivotal role in
pathogenesis of T1D in NOD mice (57). These findings
propose that Myd88-dependent TLR signaling is crucial to
T1D development and microbiota is required for the protective
effects in the absence of TLR signaling in Myd88-deficient
NOD mice.

Gut microbiota-mediated TLR signaling pathways also
regulate the development of T2D. Lipopolysaccharides (LPS), a
component of Gram-negative bacteria are known to promote
inflammation by induction of pro-inflammatory cytokines (58).
In a rodent study, it has been observed that HFD can change the
composition of gut microbiota and increase plasma LPS
concentration, resulting in low grade chronic inflammation
(59). Microbiota-induced LPS binds to CD14/TLR4 complex
and activates pro-inflammatory pathways leading to insulin
resistance and b cell dysfunction (60, 61). In addition, HFD
feeding reduced the expression of genes related to intestinal tight
junction proteins and increases intestinal permeability, leading
to impaired gut epithelial barrier (62). This impaired gut barrier
also increases plasma LPS levels leading to LPS-induced
inflammation and insulin resistance (63, 64). Thus, the gut
microbiota-mediated LPS signaling pathways can modulate
pro- or anti-diabetogenic pathways through multiple
inflammatory signaling pathways.

The gut microbiota produces SCFAs by fermentation of
nondigestible carbohydrates. The SCFAs including acetate,
propionate and butyrate have an influence on immune systems
in both T1D and T2D. Acetate can prevent T1D by reducing the
population of autoreactive T cells in the pancreatic lymph node
(65). The concentration of IL-21, an inflammatory cytokine
contributing to T1D pathogenesis was also reduced in acetate-
fed NOD mice. In addition to acetate, butyrate can also increase
IL-10RA expression and potentiate integrity of intestinal
epithelial cell (IEC) barrier through IL-10 signaling, leading to
reduction of gut permeability (12, 66). Butyrate has also been
reported to promote the generation of regulatory T cells which
may be involved in autoimmunity suppression in T1D
and lactate can be converted to butyrate by intestinal
microbiota (67, 68). Thus, a low abundance of lactate- and
butyrate-producing bacteria was observed within the gut
August 2021 | Volume 12 | Article 716692
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microbiota of children with islet autoantibodies (20). As
consistent, rodent study reported that the concentration of
acetate and butyrate in germ free NOD.Myd88g−/− is much
lower than in SPF ones (65). Altogether, these results clearly
proposed that microbiota modulates autoimmunity through
metabolites, such as acetate and butyrate in T1D.

SCFAs also play pivotal roles during pathogenesis of T2D.
SCFA binds to FFAR2 or FFAR3, G protein-coupled receptors
which are expressed in gut, pancreas, white adipose tissue, and
immune cells (69). SCFA-mediated FFAR2 and/or FFAR3
signaling stimulate the secretion of glucagon-like peptide-1
(GLP-1), a well-known incretin from the intestinal L cells, to
potentiate insulin secretion from pancreatic b cells. Thus, SCFA-
mediated GLP-1 secretion leads to decrease the incidence of T2D
by ameliorating glucose homeostasis. In addition to SCFAs, the
secretion of GLP-1 can be stimulated by other gut microbial
metabolic products, such as hydrogen sulfide(H2S), a gas
metabolite (70).

Gut microbiota regulates host bile acid metabolism through
farnesoid x receptor (FXR) and TGR5 receptor. In general,
primary bile acids are synthesized in the liver from cholesterol
by CYP7A1, rate-limiting enzyme in the bile acid biosynthetic
pathway, followed by conjugation to glycine and taurine for the
secretion into intestinal lumen upon food intake (71). In the
intestinal tract, gut microbiota converts primary bile acids to
secondary bile acids. While primary bile acids prefer to bind FXR
suppresses the hepatic synthesis of bile acids, secondary bile acids
tend to bind TGR5 receptor and stimulates GLP-1 secretion from
intestinal L-cells (72) (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 4
THERAPEUTIC STRATEGIES USING
IMMUNE MODULATION IN T1D

Anti-CD3 Antibody
CD4+T andCD8+ effectorT cells are key factors of pancreatic b cell
destruction and overt T1D development. Therefore, targeting T
cells has been considered the most effective approach to the
progression of T1D. Anti-CD3 monoclonal antibody (mAb) is a
one of promising therapeutic approaches targeting T cells.
Although the exact mechanism of anti-CD3 mAb is not clear, it
has been considered to deplete autoreactive T cells and preserve
regulatory T cell activity (73). In NOD mouse, treatment of anti-
CD3 mAb induced long-lasting remission to ameliorate diabetic
pathogenesis including restoration of normoglycemia (74). Thus,
numerous human clinical studies using humanized anti-CD3mAb
has been reported for the treatment of pancreatic b cell destruction
(74). In 1986, muromonab-CD3(Orthoclone OKT3), the first
antibody recognizing CD3 molecules on human T cells, was
approved in the US, but it is currently not available cause its side
effects such as cytokine storm. Therefore, two humanized anti-CD3
antibodies engineered to improve the side effect of OKT3 called
teplizumab and otelixizumab were developed. These antibodies
retained binding regions of OKT3 have been investigated in
numerous clinical studies for the prevention of T1D and resulted
in preserved b cells (75–78).

Anti-CD20 Antibody
B cells act as APC and have a pathogenic role in T1D. Therefore,
approaches targeting B cells also have been taken to alter
FIGURE 1 | Schematic view of Immune modulation contributing to the destruction of pancreatic b cells in diabetes. Genetic and environmental factors contribute
to generation of islet autoantigens. Intra islet macrophage or DC recognize the autoantigen and present it to naïve CD4+ T cells. Activated CD4+ T cells further
activate CD8+ T cells to directly damage b cells and further induce the infiltration of other immune cells, leading to progression of T1D. Obesity is a risk factor of
pathogenesis of T2D. Increased glucose, plasma FFA, and IL-1b promote oxidative stress and ER-stress in pancreatic b cells to induce insulin resistance as well as
b cell destruction. Inflammatory cytokines recruit other immune cells into pancreatic islets and b cells and trigger further inflammation.
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T1D progression. Anti-CD20 or anti-CD22 therapy showed
prevention or reversal of T1D in NOD by depleting B (79, 80).
Especially, treatment of rituximab, anti-CD20 mAb, transiently
depleted B cells and delayed the rate of C peptide decline in T1D
compared with a placebo group, although these effects were
diminished after 2 years (81).
Anti-Thymocyte Globulin (ATG)
Anti-thymocyte globulin (ATG) is another approach to target T
cells for the prevention of pancreatic b cell destruction. ATG is
rabbit-derived IgG against human T cells and thymocytes. ATG
has been reported to deplete T cells through apoptosis and
expand regulatory T cells (79, 82). Indeed, in a clinical trial,
low-dose ATG has been shown to reduce glycated hemoglobin
(Hb1Ac), a clinical marker of glycemic control, up to 2 years
compared to placebo (80).
Fusion Proteins: Alefacept and Abatacept
Fusion proteins, alefacept and abatacept also can deplete T cells
and preserve b cell function. Alefacept consists of LFA-3
molecules and Fc portion of IgG and binds CD2 of effector
memory T cell (83). Administration of alefacept led to increase of
Treg/Teff ratio compared with placebo treatment (84). Abatacept
is a CTLA4-IgG fusion protein that inhibits APC function to
prevent T cell activation by blocking CD80 and CD86 on APC
(85). In a clinical trial, the group of abatacept maintained lower
HbA1c level compared with placebo after 3 years from T1D
diagnosis (86). In addition, decreased level of follicular helper T
cells involved in proliferation and isotype switching of B cells,
was found in abatacept-treated T1d patients (87). These findings
suggest that targeting T cells can modulate autoimmunity to
Frontiers in Endocrinology | www.frontiersin.org 5
prevent pancreatic b cell failure, although most of the above
clinical trials failed to reach the endpoints in T1D.

Autoantigen-Specific Therapies
b cell autoantigen-specific therapies is promising strategies to
suppress autoimmune responses by selectively suppressing
autoreactive T cell activation or expanding Treg (88, 89). One
of these approaches has been applied with a peptide vaccine. For
example, vaccination with insulin mimotope, an antigen-
mimicking peptide, resulted in the prevention of T1D in NOD
by converting naïve T cells into FOXP3+ Treg (90). Other novel
insulin mimotopes also promoted induction of insulin-specific
FOXP3+ Treg in humanized mice (91).

Furthermore, APC-based therapies with DCs and
immunosuppressive macrophages and have attracted clinical
interests in T1D. Administration of tolerogenic DC loaded
with encoding autoantigen can suppress autoreactive T cells.
T1D patients treated tolerogenic DCs which can induce
proinsulin-specific Treg maintained C peptide level for 6
months (92, 93). Adaptive transfer of immunosuppressive
macrophages prevented T1D in NOD through anti-inflammatory
responses (94).

Administration of cytokines such as IL-2 also prevents
autoimmunity in T1D. IL-2 is essential not only to the
activation of T cells but also the expansion of FOXP3+ Treg. It
has been reported that FOXP3+ Treg preferentially responds to
low-dose of IL-2 versus T cells (95). In NOD studies, low-dose of
IL-2 increased Treg population to prevent the progression
of diabetes (95). Furthermore, administration of low dose
of aldesleukin, a recombinant IL-2, increased the population of
Treg without drug-relative adverse effects in T1D patients versus
placebo (96). Currently, a phase 2 clinical trial evaluating the
FIGURE 2 | Schematic view of gut microbiota dysbiosis contributing to both type 1 and type2 diabetes. Dysbiosis leads to increased intestinal permeability and LPS
level in blood. Elevated LPS level activates CD8+ T cells to produce proinflammatory cytokines to further activate immune signaling pathways in many peripheral
tissues including pancreatic beta cells. LPS-induced TLR signaling in pancreatic beta cells promotes inflammation to reduce insulin secretion.
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effect of ultra-low dose aldesleukin on the preservation of b cell
function is ongoing (NCT03782636) (96) (Table 1).
ANTI-INFLAMMATORY THERAPEUTIC
STRATEGIES FOR T2D

T2D is a chronic metabolic disorder associated with obesity.
Abnormal fat accumulation in adipose tissue and non-adipose
organs including liver and pancreatic b cells promotes
inflammatory responses such as the production of pro-
inflammatory cytokines and chemokines, resulting in insulin
resistance and b cell dysfunction. Therefore, anti-inflammatory
approaches have been considered as a therapeutic strategy for the
prevention of T2D.

Metformin
Metformin is one of the most common drugs for the treatment of
T2D. Metformin reduces blood glucose levels by suppressing
hepatic glucose production and improving insulin sensitivity. In
addition, metformin has a pivotal role in anti-inflammatory
responses through inhibition of NF-kB signaling (105).
Although the mechanisms of metformin remain unclear, it has
been widely accepted that metformin acts via activation of
AMP-activated protein kinase (AMPK). AMPK plays a potent
anti-inflammatory effect by inhibiting NF-kB and regulating
redox balance (106). Treatment of metformin increases
phosphorylation of AMPK, enhances insulin sensitivity, and
decreased ceramide and DAG related to saturated FFA in
HFD-fed mice (107). Another study also demonstrated that
metformin treatment increased Treg population and decreased
Th17 by inducing FGF21 production in HFD-fed mice (108).

GLP-1 Receptor Agonist & DPP4i
GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4
inhibitors (DPP-4is) have been widely prescribed for the T2D
patients in clinic. GLP-1 RA such as liraglutide and exendin-4
binds to GLP-1 receptor in pancreatic b cell to stimulate Ca2+

influx and insulin secretion (109). Furthermore, GLP-1 RA has
anti-inflammatory effects by suppressing expression of
proinflammatory cytokines and chemokines. Exendin-4
treatment to human islet cells suppressed the expression of
Frontiers in Endocrinology | www.frontiersin.org 6
inflammatory genes and protected b cells from cytokine-
induced apoptosis (110, 111). In addition, GLP-1 RA reduced
inflammatory macrophage activation and inflammatory
cytokines such as IL-1b and IL-6 in T2D patients (112).

DPP-4is are anti-hyperglycemic drugs that increase insulin
secretion and reduce glucose level by preventing the activity of
DPP-4 degrading incretins such as GLP-1. These drugs also have
anti-inflammatory potential. DPP-4i including sitagliptin
suppresses nod-like receptor family, pyrin domain containing 3
(NLRP3) inflammasome in human macrophages via inhibition
PKC pathway and reduced inflammatory cytokines including
TNF-a , IL-6, IL-1b in WAT (113, 114). In human
studies, sitagliptin treatment reduced levels of Hb1Ac and
inflammatory cytokines in T2D patients (115).

IL-1 Receptor Antagonist
Hyperglycemia increases the production of IL-1 which drives
dysfunction of b cells. Therefore, blocking IL-1 signaling
pathway can reduce islet inflammation and delay T2D
development. In rodent studies, IL-1 receptor antagonist (IL-
1Ra) reduced hyperglycemia and enhanced function of b cells by
reducing expression of TNF-a, MCP-1 and IL-6 in liver and islet
(47, 48). In a clinical trial, administration of anakinra, IL-1R
blockade, increased insulin secretion and improved glycemia in
T2D patients versus placebo (116). Canakinumab, an anti-IL-1b
antibody, also reduced plasma IL-6 level, leading to
improvement of glycemia in T2D patients (117) (Table 2).

GUT MICROBIOTA AS NOVEL
THERAPEUTIC APPROACH
FOR DIABETES

Recently, several studies have demonstrated that gut microbiota
has important roles in the development of diabetes. Therefore,
targeting gut microbiota has been considered as therapeutic
approaches for diabetes.

Probiotics
Probiotics are live microorganisms regarded as beneficial to host
gut microbiota homeostasis. Several studies demonstrated that
adequate consumption of probiotics can improve immune
responses, insulin resistance, and insulin secretion by
TABLE 1 | Summary of major clinical trials for anti-inflammatory therapies on T1D.

Agent Mechanism of Action Phase, ID Main Findings Reference

Teplizumab Anti-CD3 mAb Phase III, NCT00385697 Slowed reduction of C peptide (97)
Phase II, NCT00129259 Slowed reduction of C peptide (98)
Phase II, NCT01030861 Delayed progression (76)
Phase III, NCT03875729 Ongoing (99)

Otelixizumab Anti-CD3 mAb Phase III, NCT00678886 Failed to meet primary end point (77)
Phase III, NCT01123083 Failed to meet primary end point (100)

Alefacept Anti-CD2 fusion protein Phase II, NCT00965458 Slowed reduction of C peptide (101)
Abatacept CTLA4-Ig Phase II, NCT00505375 Slowed reduction of C peptide (102)
Rituximab Anti-CD20 mAb Phase II, NCT00279305 Slowed reduction of C peptide (81)

Phase II, NCT03929601 Delay (103)
Aldesleukin Low-dose of IL-2 Phase I/II, NCT01827735 Dose-dependently enhanced Treg function (104)
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modulation of gut microbiota (124–126). For example,
Lactobacillus johnsonii N62 support maintain IEC barrier by
modifying intestinal microbiota and Lactobacillus rhamnosus
GG is known to attenuate LPS-induced inflammation by
reducing TRL4 expression (127–129). Lactobacillus reuteri also
has been reported that enhance intestinal barrier function and
have anti-inflammatory effects by suppressing T cell response or
inducing Treg (130). In NOD mouse model, administration of a
probiotic combination including Lactobacillus acidophilus and
Bifidobacterium lactis inhibited T1D development by reducing
gut permeability, CD8+ T cells polarization and increasing Treg
population (131). In humans, numerous clinical studies using
probiotics for T1D patients are ongoing. Probiotics has been also
considered for the prevention of T2D. Treatment of 14 probiotics
decreased Hb1Ac level and increased C peptide level in db/db
mice by increasing SCFA-producing bacteria and reducing levels
of Escherichia and inflammatory cytokines (132). This
compositional change of gut microbiota contributes to
improving intestinal permeability and b cell function by
increasing GLP-1 secretion. In clinical studies, administration
of Lactobacillus acidophilus or Bifidobacterium bifidum also
enhanced glycemic control and reduced inflammatory
cytokines and oxidative stress in T2D patients versus placebo
(133, 134).
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Recently, fecal microbiota transplantation (FMT) has
considered as a therapeutic strategy for diabetes. Oral transfer
of fecal bacteria from NOD.Myd88−/− altered gut microbial
composition of diabetes-prone NOD, leading to a delay in the
progression of T1D (135). In a randomized controlled trial, the
transfer of fecal bacteria from healthy donors improved b cell
function in T1D patients by reducing CXCR3+ T cells (136).
Furthermore, a FMT treatment to HFD and streptozotocin-
induced T2D mice model improved insulin resistance and
destruction of b cells by a decrease of inflammatory cytokines
(137). In humans, FMT from lean donors to obese recipients for
6 weeks increased levels of butyrate-producing intestinal
microbiota to improve insulin sensitivity (138). This result
implies that FMT treatment also promising therapeutic
strategy for the prevention of T2D (Table 3).
CONCLUSIONS

Diabetes is a multifactorial disease caused by genetic factors as
well as environmental factors that affect abnormal immune
modulation, leading to the dysfunction and destruction of
pancreatic b cells. Although the mechanisms stimulating the
TABLE 2 | Summary of major clinical trials for anti-inflammatory therapies on T2D.

Agent Mechanism of Action Phase, ID Main Findings Reference

Liraglutide GLP-1 receptor agonist Phase III, NCT01620489 Reduction of Hb1Ac and body weight (118)
Exendin-4 GLP-1 receptor agonist Phase III, NCT00637273 Reduction of Hb1Ac (119)

Phase III, NCT01554618 Ongoing (120)
Anakinra IL-1 receptor antagonist Phase II, NCT00303394 Reduction of glycated hemoglobin level and enhanced secretion of C peptide (116)

Phase IV, NCT02236481 Reduction of Hb1Ac (121)
Phase IV, NCT00711503 No effects on C peptide level and Hb1Ac levels (122)
Phase II, NCT04227769 Ongoing (123)

Canakinumab Anti-IL-1b mAb Phase II, NCT00947427 No effects on C peptide level and Hb1Ac levels (122)
August 2021 | Volume 12 | Art
GLP-1, Glucagon-like peptide-1; Hb1Ac, glycated hemoglobin; mAb, monoclonal antibody.
TABLE 3 | Summary of current clinical trials evaluating the efficacy of probiotics or FMT on diabetes.

Agent/Procedure Condition Phase, ID Main Findings Reference

probiotics
Lactobacillus johnsonii N6.2 T1D Phase I/II, NCT02349360 Feasibility of alleviating occurrence of T1D (139)
Lactobacillus johnsonii Probiotic T1D Phase II, NCT03961347 Ongoing (140)
Lactobacillus rhamnosus GG and
Bifidobacterium lactis BB12

T1D Phase IV, NCT03032354 No effects on maintaining b cell function (141)

Probiotics (Visbiome) T1D Phase II, NCT04141761 Ongoing (142)
Probiotics (VSL#3) T1D Not Applicable, NCT03423589 N/A but completed (143)
Lactobacillus Reuteri DSM 17938 T2D Not Applicable, NCT01836796 No effects on Hb1Ac levels, but high-dose of Lactobacillus

Reuter increased insulin sensitivity and 2nd BA
(144)

Alive multi-strain probiotic mixture T2D Not Applicable, NCT03434860 Reduction of HOMA-IR weight, and inflammatory cytokines (145)
Lactobacillus acidophilus NCFM
(DB15823)

T2D Not Applicable, NCT00413348 Unknown (146)

Fecal Microbiota Transplantation (FMT)
FMT through mid-gut T2D Phase II/III, NCT01790711 Unknown (147)
FMT T2D and obesity Not Applicable, NCT03127696 Increased the engraftment of lean-associated microbiota and

increased SCFA-producing bacteria
(148)

FMT T2D and obesity Phase II, NCT02346669 Unknown (149)
HOMA-IR, homeostasis model assessment for insulin resistance; BA, bile acid; SCFA, short chain fatty acid.
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change of the immune responses are diverse, and are not fully
understood yet, targeting effector CD4+ T cells and CD8+ T cells,
key mediators of b cell damage, has been the focus of
immunotherapeutic approaches to prevent diabetes. Indeed,
anti-CD3 mAb therapy such as teplizumab showed promising
results including the preservation of b cell function in clinical
studies. However, most of initial phase III trials using anti-CD3
mAbs in patients with T1D were failed because they did not meet
their primary endpoint. Moreover, several adverse effects were
revealed including rash or Epstein-Barr virus (EBV) reactivation.
Therefore, novel therapeutic strategies are required to prevent
adverse effects for the treatment of T1D.

The aberrant immune modulation via obesity is also crucial
for the development of T2D. Although the immunomodulatory
mechanisms of T2D progression remain unclear, it has been
believed that obesity-mediated metabolic stresses such as ER-
stress and oxidative stress contributed to T2D development by
induction of pro-inflammatory responses. Anti-inflammatory
agents such as metformin as well as GLP-1 RA and DPP-4i are
widely used to treat T2D patients. Blocking IL-1 signaling is also
one of the immunotherapeutic strategies for the treatment
of T2D.

Currently, the compositional change of gut microbiota has
been associated with T1D and T2D. Although the roles of gut
microbiota are still not fully understood, several studies have
demonstrated that the presence or absence of specific microbiota
can contribute to immune modulation, leading to the
Frontiers in Endocrinology | www.frontiersin.org 8
development of diabetes by abnormally regulating host
metabolisms. Interestingly, FMT has attracted attention as a
therapeutic strategy for diabetes. Several studies have reported
that FMT can improve b cell destruction and delay the
progression of T1D in mouse models or humans. Altogether,
numerous studies by immune modulation are ongoing for the
prevention and treatment for diabetes patients. And novel
therapeutic strategies to minimize adverse effects are still
required for the development of immune modulator to prevent
T1D and T2D.
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