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Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third
leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular
structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal
epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and
homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dys-
function, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC.4is review
summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl− channels, Cl−/HCO3

−

exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.

1. Introduction

Gastric cancer (GC) is one of the most aggressive types of
cancer and a major health threat and contributor to cancer-
related death worldwide [1]. 4erefore, clarification of its
etiology pathogenesis is important for the identification of
effective therapeutic targets for early diagnosis and pre-
vention. According to the classic “Correa sequence,” GC
develops via a stepwise progression through a sequence of
histopathologic changes [2, 3], including chronic atrophic
gastritis (CAG), metaplasia, dysplasia, and eventually neo-
plasia [2]. Parietal cell loss is the critical and initial step
necessary for GC development [4–12]. Too little acid se-
cretion promotes excessive bacterial growth in the gastro-
intestinal (GI) tract, which triggers the upregulation of
related inflammatory factors and leads to intragastric in-
fection and CAG, eventually progressing to GC [7, 8].
Additionally, loss of parietal cells results in deficiencies of a
series of important mucosal growth factors, including
transforming growth factor alpha (TGF-α), amphiregulin,

heparin-binding epidermal growth factor (HB-EGF), and
sonic hedgehog, thereby causing the transduction of chief
cells into spasmolytic polypeptide-expressing metaplasia
(SPEM) [9, 10], an important precancerous lesion of GC
[11, 12]. In the normal stomach, acid secretion by parietal
cells requires a functional H+/K+-ATPase, apical Cl− se-
cretion, and K+ recycling, as well as basolateral HCO3

− and
Cl− exchange (Figure 1(b)). Parietal cells actively pump out
H+ against a strong concentration gradient by the ATP-
driven exchange of one H+ for one K+ via the enzyme H+/
K+-ATPase [13]. Cl− is extruded concurrently with H+ across
the luminal membrane, and these ions combine to formHCl;
this process relies on the cooperation of various ion
transporters and channels in parietal cells of oxyntic mucosa
[14] (Figure 1; Table 1). Moreover, gastric surface cells
provide the first line of defense against acidic chambers and
establish an alkaline environment near the apical cell surface
to prevent acid damage to intestinal cells, the so-called
“epithelial-bicarbonate barrier,” which is an important
structure for gastric mucosal protection. During this process,
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some ion transporters, channels, and enzymes are involved
in supporting gastric bicarbonate secretion [15–18]. Taken
together, these observations reveal that ion transporters and
channels play an important role in regulating ion transport,
mucus barrier function, signaling pathways, and acid/base
homeostasis in the stomach. A previous study implicated
dysfunction of the “ion transport mechanism” (ITM), which
is involved in regulating GC cell proliferation, apoptosis,
differentiation, and progression via different signaling
pathways, in carcinogenesis [19–22]. 4erefore, this review
summarizes the physiological functions of different ion
transporters and channels, including Cl− channels,
Cl− /HCO3

− exchangers, sodium/hydrogen exchangers
(NHEs), and potassium (K+) channels, in parietal cells
(Figure 1(b); Table 1), and their pathophysiological rele-
vance in GC (Figure 2; Table 1) to provide new research
directions to understand the molecular mechanism of this
malignant disease.

2. Physiological Characteristics of Cl−

Channels in the Stomach and
Pathophysiological Relevance in GC

2.1. Role of CFTR in GC

2.1.1. Physiological Function of CFTR in the Stomach.
CFTR is a member of the membrane transporter ATP-
binding cassette (ABC) family that comprises 48 members in
humans subdivided into 7 subfamilies (ABCA–ABCG) [39].
Most ABC proteins act as active ATP-dependent trans-
porters that couple ATP binding and hydrolysis to

unidirectional transport across the matrix [40, 41]. Among
human ABC proteins, CFTR is considered unique because it
has no active transport function but rather acts as a phos-
phorylation-regulated ATP-gated anion channel [42]; it has
a physiological role in transporting salt and water in epi-
thelial cells [43] andmainly mediates the passive transport of
Cl− and HCO3

− [44–46]. CFTR is regulated by phosphor-
ylation [47–49] and ATP binding and hydrolysis [50–52]. It
is widely expressed throughout the body but is mainly lo-
calized on the apical (cavity) membrane of ductal and ductal
epithelial cells, where it is involved in transepithelial fluid
and electrolyte transport and intracellular pH (pHi) regu-
lation [53, 54].

CFTR is highly expressed in the apical lining of crypt
epithelial cells [55, 56] and functions as an important reg-
ulator of intestinal homeostasis [57]. Mutations in the CFTR
gene affect chloride channel function, resulting in the
dysregulation of epithelial fluids and salt transport in many
organs, including the lung, stomach, and intestinal digestive
system, ultimately causing cystic fibrosis (CF) [58]. In the
stomach, despite the detection of a low CFTR expression
level [59, 60], the CFTR channel inhibitor CFTR-inh172
abolishes acid secretion in mice [61–63]. A potential
mechanism for this effect is that CFTR may act as the ATP-
binding cassette transporter associated with Kir2.1 in pa-
rietal cells to modulate H+-K+-ATPase-mediated secreta-
gogue-induced acid secretion [63, 64].

2.1.2. Pathophysiological Role of CFTR in GC. Eberle et al.
showed that brush cells in the “gastric groove” may not be
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Figure 1: Ion transporters and channels related to acid/base homeostasis and their localization in parietal cells. (a) Normal structure of the
oxyntic gland and acid/base homeostasis in the stomach. (b) Multiple ion transporters and channels are located in the parietal cell and are
involved in the regulation of the HCl output; these include Cl− channels: CFTR, CLC2, CLIC6, and SLC26A9; Cl− /HCO3

− exchangers:
SLC26A7 and AE2; sodium/hydrogen exchangers (NHEs): NHE1, NHE2, and NHE4; potassium (K+) channels: KCNQ1 and Kir4.1/5.1; the
Na+-K+-2Cl− cotransporter: NKCC1; the Na+-HCO3

− cotransporter: NBCe1; and H+/K+-ATPase. 4e arrows indicate the direction of ion
transport.
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the source of the alkaline solution but rather promote
bicarbonate secretion and protect the gastric mucosa
from gastric acid through the paracrine production of
prostaglandins that activate nearby CFTR-positive cells
[65]. El-Zimaity et al. investigated this issue in the
stomach upon the loss of parietal cells due toHelicobacter
pylori infection, which results in an inflammatory re-
sponse and SPEM, another significant precancerous le-
sion of GC [11, 12]. CFTR mRNA expression is
upregulated under these conditions [23], suggesting that
CFTR may promote GC by affecting SPEM lesions.
However, later experiments showed that CFTR is closely
related to classical tumor biomarker carbohydrate anti-
gen 199 (CA199) in GC, and CFTR expression increases
with age and is associated with the clinical stage of GC.
4erefore, serum CFTR has a wide range of applications
for GC detection [24]. Additionally, some studies have
demonstrated that CFTR activity inhibition suppresses

the division of the human GC cell line MKN45 [66].
4erefore, CFTR may be a new target for the prevention
and treatment of GC.

2.2. Physiological Characteristics of CLC-2 and GC

2.2.1. Physiological Function of CLC-2 in the Stomach.
CLC-2 is a widely expressed Cl− channel that can be acti-
vated by hyperpolarization, extracellular (luminal) acidic
pH, and fatty acid-activated omeprazole in rabbits and
humans but not by mouse protein kinase A [67–76].
Moreover, CLC-2 can be activated by protein kinase C [77].
Secretagogue stimulation results in a major rapid mor-
phological transformation in parietal cells, which is essential
for maximal acid secretion; in this process, cytoplasmic
tubulovesicles containing H+/K+-ATPase (and perhaps Cl−
and K+ channels/transporters) fuse with the apical mem-
brane to form a greatly expanded secretory canaliculus with

Table 1: Expression, localization, and physiological and pathophysiological functions of ion transporters in the normal gastric epithelium
and GC.

Ions Related
transporters

Human
gene

symbol

Parietal
localization

Transporter
type

Physiological role in gastric
acid secretion Pathophysiological relevance in GC

Cl−

CFTR ABCC7 Apical O Pumps Cl− out of parietal
cells to form HCl with H+

CFTR expression is upregulated in GC
[23] and is closely related to CA199 [24].

CLC-2 CLCN2 Apical O Pumps Cl− out of parietal
cells to form HCl with H+

Loss of CLC-2 influences acid secretion
and causes precancerous changes [25].

CLIC-6 CLIC6 Apical O Pumps Cl− out of parietal
cells to form HCl with H+

H+
NHE1 SLC9A1 Basolateral E

Na+-H+ exchanger pumps
out redundant H+ and
pumps in Na+ at the

basolateral side

NHE1 expression is upregulated in GC,
and functional data show that loss of
NHE1 inhibits GC cell proliferation,

migration, and invasion [26].
NHE2 SLC9A2 Basolateral E
NHE4 SLC9A4 Basolateral E

K+

KCNQ1 KCNQ1 Apical O Pumps K+ into the lumen KCNQ1 is implicated in GC progression
[27, 28].

Kir2.2/4.1/5.1 KIR Apical O Pumps K+ into the lumen
Kir2.2 plays a role in the escape of cancer
cells from premature senescence and in

tumor formation [29].

Kv1.5/4.1/
7.1/11.1

KCNA/D/
Q/H Apical O Pumps K+ into the lumen

Kv1.5/4.1/7.1/11.1 promotes GC cell
proliferation and progression

[27, 28, 30–32].

NKCC1 SLC12A2 Basolateral C
Na+-K+-2Cl− cotransporter
pumps Na+, K+, and 2Cl−

into parietal cells

HCO3
−

AE1 SLC4A1 Basolateral E
Cl−-HCO3

− exchanger
pumps Cl− into and

HCO3
− out of parietal cells

AE1 may function as an oncogene in GC
[33].

AE2 SLC4A2 Basolateral E
Cl−-HCO3

− exchanger
pumps Cl− into and

HCO3
− out of parietal cells

4e cytoplasmic AE1/p16 complex plays
a key role in GC progression [33–35].

SLC26A7 SLC26A7 Basolateral E
Cl−-HCO3

− exchanger
pumps Cl− into and

HCO3
− out of parietal cells

AE2 may play a role in carcinogenesis
[36–38].

NBCe1 SLC4A4 Basolateral C
Na+-HCO3

− cotransporter
pumps Na+ and HCO3

−

out of parietal cells
C: cotransporter; E: exchanger; O: orphan transporter.
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increased elongated microvilli that are recycled during the
resting stage [13, 78, 79]. CLC-2 localized to gastric parietal
cells in isolated rabbit gastric glands showed similar local-
ization to H+/K+-ATPase and was important for gastric
parietal cell acid secretion [80]. CLC-2 was detected in
porcine gastric mucosa, and the CLC-2 agonist SPI-8811 was
reported to rescue gastric mucosal barrier function and
ameliorate acid-induced gastric injury [81]. However, other
studies concluded that CLC-2 is not involved in gastric acid
secretion [82]. 4us, further research is required to elucidate
the function of CLC-2 in the stomach.

2.2.2. Pathophysiological Role of CLC-2 in GC. Initially,
some groups investigated whether genetic ablation of CLC-2
affects the gastric mucosa with a focus on parietal cell
abundance, H+/K+-ATPase expression, morphology, and
acid secretion using CLC-2+/+ and CLC-2-/- mice. 4e re-
searchers reported that CLC-2 colocalizes with H+/K+-
ATPase in gastric parietal cells. Deletion of CLC-2 resulted
in a series of morphological changes in the gastric mucosa, as
observed by electron microscopy: gastric gland dilation,
reduced height of the gastric gland region, parietal cell loss,
reduced parietal cell H+/K+-ATPase expression, and tubu-
lovesicles without expanded canaliculi [25]. 4us, CLC-2
influences gastric acid secretion to a certain extent. 4e
morphological changes in the gastric mucosa were exactly
the same as the precancerous changes mentioned above.
Although no relevant studies have examined the relationship
between CLC-2 and GC directly, CLC-2 may play a crucial
role in the maintenance of gastric mucosal homeostasis and,
thus, may play a role in the development of CAG and GC.

3. Physiological Characteristics of Cl−/HCO3
−

Exchangers in the Stomach and
Pathophysiological Relevance in GC

3.1. Physiological Function of the SLC4 Family in the Stomach.
4e human SLC4 family consists of 10 genes encoding
secondary transporters for bicarbonate and/or carbonate

[83, 84]. 4e SLC4 family is divided into three major
branches: electrically neutral Na+-independent Cl−/HCO3

−

antiporters, including SLC4A1 (AE1), SLC4A2 (AE2), and
SLC4A3 (AE3); Na+-dependent SLC4 HCO3

− transporters,
including electricity-producing SLC4A4 (NBCe1) and
SLC4A5 (NBCe2), electrically neutral Na+/HCO3

−

cotransporters SLC4A7 (NBCn1) and SLC4A10 (NBCn2),
and a Na+-2HCO3

−/Cl− exchanger; and a branch with one
unusual member (SLC4A9) that has been described as being
capable of most of the above actions [83, 85–87]. Here, we
discuss the most significant Cl−/HCO3

− antiporters, AE1
and AE2, in the stomach.

SLC4A1 (AE1) is the major glycoprotein of the eryth-
rocyte membrane, with more than 1 million copies per cell
[88–90]. 4is protein is an important member of the solute
carrier SLC4 series of bicarbonate transporters [91]. 4e
human AE1 protein is not expressed in the normal stomach
[92]. 4e AE2 gene (also known as SLC4A2) encodes a Na+-
independent, electroneutral Cl−/HCO3

− exchanger [93] that
localizes to the membrane and is relevant for pHi regulation
and bicarbonate secretion in several cell types. AE2 appears
to primarily increase intracellular acidification since its
activity is responsive to increased pHi. In addition, AE2
regulates the intracellular chloride concentration, bicar-
bonate metabolism, and cell volume in a wide variety of cell
types [94–96]. AE2-null mice were reported to have severe
defects in acid secretion; however, morphological studies of
these mice revealed abnormal gastric morphology, and most
mice died around the time of weaning, making the data
difficult to interpret [97]. As Cl−/HCO3

− exchangers, AE1
and AE2 play important roles in maintaining gastric acid/
base homeostasis and secreting gastric acid.

3.2. Pathophysiological Role of the SLC4 Family in GC.
Wang et al. analyzed 182 cases of advanced GC and found
that AE1 expression in the cytoplasm of GC cells increased
in the late stage of GC. 4e C-terminal 112 residues of AE1
interact with the tumor suppressor p16 [98], indicating that
AE1 is an indicator of malignant GC [33]. Moreover, the
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cytoplasmic AE1/p16 complex enhances the stability of both
proteins and plays a key role in GC progression; thus, this
complex is associated with a decreased patient survival time
[33–35]. Recent studies have reported that AE2 is down-
regulated in GC cells, and this downregulation correlates
with carcinogenesis and is blocked by gastrin [36]. Recently,
researchers suggested that gastrin might suppress GC cells
by increasing AE2 expression and that gastrin may stimulate
AE2 expression in GC cells via early growth response 1
(EGR1) in a cholecystokinin B receptor (CCKBR)-depen-
dent manner [37], demonstrating that AE2 plays a role in
carcinogenesis. Furthermore, Wu et al. reported that ec-
topic expression of AE2, AE1, and p16 is an important
pathogenic factor in the development of GC and that
dysfunctional AE2 can be degraded by a ubiquitin-de-
pendent pathway [38]. Destruction of AE2 leads to cell
alkalization and gastric acid deficiency [97], while AE1/p16
expression leads to the downregulation of AE2, which
aggravates cell alkalization and gastric acid deficiency, both
of which are characteristics of GC. Similarly, knockdown of
AE1 expression with synthetic small interfering RNA
(siRNA) significantly inhibited GC growth and reduced the
tumor formation rate in a mouse GC model. In addition,
the rate of GC formation at the end of the experiment
decreased simultaneously with the incidence of gastric
atypical hyperplasia, suggesting that AE1 RNA interference
(RNAi) therapy may inhibit the formation of gastric tu-
mors by blocking GC progression [99]. In summary, AE1
may function as a cancer-promoting gene for GC and AE2
plays a role in carcinogenesis, indicating that these proteins
are potential targets for the treatment of GC.

4. Physiological Characteristics of NHEs in the
Stomach and Pathophysiological
Relevance in GC

4.1. Physiological Function of the NHE Family in the Stomach.
4e mammalian NHE family has 10 members, and each
member has its own cellular localization and tissue dis-
tribution. NHEs have broad physiological functions, in-
cluding pHi homeostasis, cell volume regulation, acid-base
regulation, and electroneutral NaCl transport [100, 101].
Multiple NHE isoforms are expressed in the stomach;
NHE1, NHE2, and NHE4 are expressed in the stomach and
play important roles in gastric cell volume and pHi reg-
ulation [102]; thus, we will discuss NHE1, NHE2, and
NHE4 in the stomach.

NHE1 is the most direct pH regulator and has become a
focus of research in recent years [103]. NHE1 expression and
function in the stomach have been demonstrated in healthy
humans [104].4is protein determines pHi by catalyzing the
electroneutral exchange of extracellular Na+ and intracel-
lular H+ [105]. Epithelial NHE2 is encoded by the SLC9A2
gene, has 812 amino acids, and is localized on the basolateral
membrane of the stomach [106, 107]. Parietal cells are
missing in Slc9a2 knockout mice, consistent with the in-
volvement of NHE2 in preventing or responding to damage
[108]. NHE4 is highly expressed in the stomach, where it is

localized on the basolateral membrane of parietal cells [100].
Deletion of NHE4 causes morphological changes in the
gastric mucosa, including a loss of parietal cells and mature
chief cells and an increase in the number of undifferentiated
cells, necrotic cells, and apoptotic cells. 4e researchers
concluded that NHE4 functionally couples with AE2
(SLC4A2) to maintain cell volume and intracellular ion
concentrations for acid secretion [109]. However, the
functions and molecular mechanisms of NHE1, NHE2, and
NHE4 in regulating gastric cell volume and pHi are not fully
understood.

4.2. Pathophysiological Role of NHEs in GC. NHE1 can de-
termine pHi by transporting electroneutral extracellular Na+
and intracellular H+ [105]. Some experiments have shown
that NHE1 expression is higher in GC tissues and cell lines
than in normal tissues and cell lines. Loss of NHE1 inhibits
GC cell proliferation, migration, and invasion in vitro, and
NHE1 inhibition reduces GC tumor growth in nude mice.
Moreover, NHE1 regulates these events through changes in
the pHi and the expression of corresponding genes, and
modulation of NHE1 and its downstream signaling path-
ways could be a novel therapeutic strategy for human GC
[26]. 4erefore, NHE1 may be a potential target in the
treatment of GC. However, more research should be per-
formed to clarify the pathophysiological functions of NHE2
and NHE4 in GC because of their important roles in the
normal stomach.

5. Physiological Characteristics of K+

Channels in the Stomach and
Pathophysiological Relevance in GC

5.1. Role of K+ Channels in the Stomach. Potassium (K+)
channels are located in cell membranes and control K+ ion
efflux and influx [110] to play crucial roles in both excitable
and nonexcitable cells. Based on the structure, activation
mechanisms, and function, K+ channels are classified into
four main classes: calcium-activated K+ (KCa) channels,
voltage-gated K+ (Kv) channels, inward-rectifier K+ (Kir)
channels, and two-pore domain K+ (K2P) channels. 4e Kv
channel family can be subdivided into Kv1–4 channels
(Shaker-, Shab-, Shaw-, and Shal-like subunits); silent Kv5,
Kv6, Kv8, and Kv9 subunits (regulators); Kv7 channels
(KCNQ); and Kv10–12 channels (EAG-like) [111, 112]. K+

channels influence gastric acid secretion by mediating the
pumping in and out of K+ and maintaining the K+ con-
centration to help H+/K+-ATPases pump H+ into the lumen.
Multiple K+ channels have been reported to be involved in
gastric acid secretion, and dysfunction of K+ channels leads
to an imbalance in gastric mucosa ion homeostasis and
impaired gastric acid secretion [113–115], whichmay further
promote the development of CAG and GC [27–31].

5.2. Pathophysiological Function of K+ Channels in GC.
Numerous K+ channels have been shown to play an im-
portant role in the development and progression of GC
[27–31]. Deletion of Kir2.2 plays a role in the escape of
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cancer cells from premature senescence and in suppressing
tumorigenesis in vivo by increasing the levels of the tumor
suppressor p27 and ROS accumulation to inducing cellular
senescence [29]. In the Kv channel family, Kv4.1, Kv7.1
(KCNQ1), and Kv1.5 have been identified to be involved in
promoting GC cell proliferation and progression
[27, 28, 30, 31]. Furthermore, the KCNQ1 subunit KCNE2,
which is downregulated in GC, was demonstrated to sup-
press cell proliferation and tumorigenesis of the stomach
[116]. Additionally, although Kv11.1 was not detected in the
normal stomach, Kv11.1 expression was upregulated in GC
tissues [32], and Kv11.1 has been shown to enhance the
proliferation and tumorigenesis of GC both in vitro and in
vivo and modulate vascular endothelial growth factor 1
(VEGF-1) secretion through an AKT-dependent pathway
(Figure 2) [117, 118]. Moreover, Kv11.1 has been demon-
strated to be necessary for the cisplatin-mediated induction
of apoptosis in GC, suggesting that this channel may be a
new potential target for cisplatin chemotherapy [119]. 4us,
the correction of K+ channel disorders may be another ef-
fective therapeutic strategy for GC. 4e molecular mecha-
nism of the dysfunction of multiple ion transporters and
channels in GC onset is summarized in Figure 2.

6. Conclusion

Multiple ion transporters and channels in normal gastric
mucosal epithelial cells regulate gastric acid secretion, ion
transport, and fluid absorption and thus play an important
role in maintaining acid/base homeostasis. Dysfunction of
these ion transporters results in disordered ion transport,
mucosa barrier dysfunction, and impaired acid/base ho-
meostasis, leading to the development of gastric acid-related
diseases, including CAG and GC.We summarize the specific
localization, transport type, and function of ion transporters
that are involved in acid secretion and the role their dys-
function plays in GC in Figures 1 and 2 and Table 1. Al-
though the physiological and pathophysiological roles of
these ion transporters have been described, basic and genetic
research is still required to fully elucidate these functions to
provide promising therapeutic targets for CAG and GC. In
this review, we provide a basic and systemic description in
this field to prompt researchers to focus on the functional
diversity of ion transporters and channels in the stomach
and their role in GC onset, which will provide a novel
perspective not only for GC therapy but also for prevention.
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