Briefings in Bioinformatics, 18(6), 2017, 1044-1056

doi: 10.1093/bib/bbw080
Advance Access Publication Date: 1 September 2016
Paper

Exploring and visualizing multidimensional data in
translational research platforms

William Dunn, Jr, Anita Burgun, Marie-Odile Krebs and Bastien Rance

Corresponding author: Bastien Rance, Biomedical Informatics and Public Health Department, University Hospital Georges Pompidou, AP-HP, Paris, France
and INSERM, Centre de Recherche des Cordeliers, team 22: Information Sciences to support Personalized Medicine, Université Paris Descartes, Sorbonne
Paris Cité, Faculté de médecine, Paris, France. Tel.: +33 1 56 09 59 85; Fax: +33 1 56 09 20 52; E-mail: bastien.rance@egp.aphp.fr

Abstract

The unprecedented advances in technology and scientific research over the past few years have provided the scientific commu-
nity with new and more complex forms of data. Large data sets collected from single groups or cross-institution consortiums
containing hundreds of omic and clinical variables corresponding to thousands of patients are becoming increasingly common-
place in the research setting. Before any core analyses are performed, visualization often plays a key role in the initial phases of
research, especially for projects where no initial hypotheses are dominant. Proper visualization of data at a high level facilitates
researcher’s abilities to find trends, identify outliers and perform quality checks. In addition, research has uncovered the import-
ant role of visualization in data analysis and its implied benefits facilitating our understanding of disease and ultimately im-
proving patient care. In this work, we present a review of the current landscape of existing tools designed to facilitate the visual-
ization of multidimensional data in translational research platforms. Specifically, we reviewed the biomedical literature for
translational platforms allowing the visualization and exploration of clinical and omics data, and identified 11 platforms:
cBioPortal, interactive genomics patient stratification explorer, Igloo-Plot, The Georgetown Database of Cancer Plus, tranSMART,
an unnamed data-cube-based model supporting heterogeneous data, Papilio, Caleydo Domino, Qlucore Omics, Oracle Health
Sciences Translational Research Center and OmicsOffice™ powered by TIBCO Spotfire. In a health sector continuously witnessing
an increase in data from multifarious sources, visualization tools used to better grasp these data will grow in their importance,
and we believe our work will be useful in guiding investigators in similar situations.
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Introduction

Background biology, business and government [1]. Big data in general is typ-
ically challenged by five Vs (sheer volume, velocity data are

The continued digitization of our world along with recent ad- received and sent, variety of formats and types, questions of

vances in technology are providing researchers with data at an veracity and ability to turn raw data into valuable information),

unprecedented rate in a variety of fields such as molecular and medical research data are no exception. The technological
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advances that have followed in the wake of the next-generation
sequencing (NGS) experiments at the turn of the 21st century [2]
have given rise to the production of ‘big-data’ at a scale never
seen before. As a result of this recent abundance of data, some
have proposed that fundamental paradigms in a variety of do-
mains—especially molecular biology—have shifted to data-
driven analysis and visualization leveraging computational
power and computer science [3, 4].

Growing need for multidimensional visualizations in
health research

In a research environment focused increasingly on high
throughput, a common challenge is the comprehensive visual-
ization of data, an important step for any extensive exploration
of the data. In Heer et al. [1], apart from providing a thorough re-
view of emerging visualization techniques for big data, the au-
thors outlined several benefits of quality visualization such as
facilitating our ability to see patterns, trends and outliers, im-
proving comprehension, memory, and decision-making and fi-
nally adding aesthetic appeal to engage a wider audience in
data exploration and analysis.

In health care or clinical research settings, visual analytics is
especially useful in studying parameters across patients when no
clear hypotheses are immediately available [5]. Whereas trad-
itional analysis of heterogeneous or multidimensional cohort data
with partial overlap usually involves limiting attention to certain
subsets (inevitably leading to loss of the overall sense of relation-
ships between different modalities), a thorough visualization can
provide a more complete picture, ultimately allowing a more com-
prehensive study of the data that improves hypothesis and re-
search workflow [6]. As a result, systematic organization of
research data can facilitate translational science and jump-start
drug discovery [7], contribute to patient stratification and person-
alized medicine [8] and ultimately improve quality health care [9].

Driving motivation for the review

Quality visualization can be applied to any of the numerous do-
mains where big data has recently affected the health-care
arena such as, among others, managing cost, improving quality
improvement, monitoring patients for clinical deterioration and
improving treatment efficiency in emergency care [10-13]. In
clinical research, multidimensional data can be used to help
segment patients or elucidate disease pathway. This has most
notably been seen in oncology with large data sets containing
various genomics and clinical data for thousands of cancer pa-
tients such as The Cancer Genome Atlas (TCGA [14]) or the
International Cancer Genome Consortium ([15]). However,
multi-omics research has extended into a wide variety of fields
such as dementia and Alzheimer’s disease (Alzheimer’s Disease
Neuroimaging Initiative [16]), autism spectrum disorder
(National Database for Autism Research [17]), psychiatric dis-
eases (Psychiatric Genomics Consortium [18]), as well as for rare
diseases (RD-Connect [19]). To better explore and take advan-
tage of these rich, diverse data sets, a comprehensive explor-
ation of data using efficient visualization that allows experts to
seamlessly explore heterogeneous data on demand is required.

Multidimensional visualization basics

While basic statistics visualizations such as histograms, bar
charts, line graphs or scatter plots typically suffice for one- or
two-dimensional data, complex multidimensional data pose
more challenges to researchers. The central question is usually
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how to better grasp the rich multivariable data and their rela-
tions contained in data sets with hundreds or thousands of pa-
tients or variables.

A variety of techniques ranging from simple box plots to com-
plex radial tree layout diagrams [20] exist to better visualize mul-
tiple variables of a multidimensional data set. We have provided
a brief sampling of these techniques based on several variables
from a local study in Figure 1. For example, interactive, filterable,
dynamic pivot tables can allow for a variety of visualizations for
multidimensional data. Correlation matrices using multiple scat-
ter plots show an additional insight into the interaction between
variables. In addition, heatmaps are commonly used for multidi-
mensional data, especially in genetic research with expression,
pathway or molecular abundance data and involve a matrix
where each cell is colored according to a gradient and is often
clustered by samples [22]. Heatmaps and other visualizations are
available in a wide variety of software such as R, Matlab®, SAS®,
as well as to users without programming knowledge through pro-
grams with intuitive user interfaces (e.g. ClustVis [23], Heml [24]).

Another increasingly common technique for visualizing the
relationships between variables in multidimensional data sets is
parallel coordinates. Here, vertical axes corresponding to each
variable scaled to a common height are placed next to each other
and connected with lines representing different samples [25].
This technique has been enhanced by tools such as scatter plot
matrix overlay [26], proximity-based shading [27] and clustering
methods that eliminate overplotting [28]. One particular applica-
tion of parallel coordinate visualization in current research is
Dynamics Visualization based on Parallel Coordinates, which
uses multidimensional methods to visualize complex and dy-
namic biochemical networks to better understand disease mech-
anism and ultimately to derive effective treatment strategies [29].

In many cases, multidimensional visualizations can be com-
bined with each other. For example, visualizations can be con-
structed to provide elegant high-level representations of large
multi-omics studies containing billions of data points arising
from multiple genetic experiments and clinical and demo-
graphic data from hundreds of patients [30-32]. For instance,
OmicCircos [33] is an R package that produces circular plots cap-
able of integrating expression, copy number variations (CNV)
and protein fusions as well as visualizations of statistics that
compare data across these sources. This allows researchers a
high-level view that may facilitate the understanding of com-
plex diseases such as cancer or psychiatric diseases. Two other
interesting R packages that integrate multi-omics with visual-
izations are coMET [34], which incorporates epigenetic results
and other types of genomic data such as expression profiles,
and caOmicsV [35], which also provides several options of view-
ing various genomic data side-by-side other phenotypic data.

The field of data visualization is immense. Dedicated tools
and libraries have been developed and exist through a rising
number of open-source and fee-based platforms. For example,
many scientists rely on various programming languages or statis-
tics packages with data-visualization capabilities such as R [36] or
Python Matlibplot [37]. More and more researchers are turning to
JavaScript graphics libraries to enhance visualization with dy-
namic capabilities. Such libraries include Highcharts [38], Chart.js
[39], Dygraphs [40], JavaScript InfoVis Toolkit [41] and D3.js (Data-
Driven Documents [42]) (for comprehensive overview and side-
by-side comparison of these libraries see [43]). In sum, impressive
techniques have been developed to answer to the clear need for
strong data visualization in health-care research.

However, such tools and techniques are not easily accessible
to the clinician or biologist end users. R packages or Python
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Figure 1. A sampling of commonly used visualization techniques for multidimensional data using a subset of data in our data set compiling data from three groups of
patients Varl, Var2 and Var3 are neurocognitive dimensions, Var4 and Var5 are psychopathological dimensions and Varé is a global genetic index. Specific visualiza-
tions used are (A) dynamic pivot table (using R ‘rpivotTable’ package), (B) correlation matrix (using R ‘PerformanceAnalytics’ package), (C) Heatmap clustered by rows
and columns (using R ‘gplots’ package), (D) 3D scatterplot using color and size (using R ‘scatterplot3d’ package) and (E) parallel coordinates showing all data (using d3
Javascript library ‘d3.parcoords.js’ [21]). A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

library are easy to leverage for a bioinformatician, but the know-
ledge gap is often too wide for biologists and clinicians without
a background in bioinformatics or biostatistics. A common chal-
lenge is finding these visualizations seamlessly incorporated
within a translational research platform without the need for
complicated backend programming. Such systems would open
the door to all members of the clinical research team, not only
those with programming backgrounds, a common theme in
contemporary translational bioinformatics [44].

In this work, we will review the tools available to researchers
and clinicians that fill this gap and provide intuitive visualiza-
tion solutions for multidimensional clinical and omics data to
advance health science and translational research.

Materials and methods
Literature review methods

Our literature review can be seen as a follow-up to our previous
article reviewing translational research platforms integrating

heterogeneous data [45]. In the current project, we searched for
systems (i) that accept a variety of data types (and at least clin-
ical and omics data), (ii) that feature data visualization function-
alities and (iii) that provide researchers with data analysis or
statistical functionalities. We are interested in characterizing a
comprehensive current landscape of tools that can be used in
translational research to provide visualizations for multidimen-
sional medical research data with easy-to-use graphical user
interfaces. Therefore, we have strived to include a wide variety
of tools with slightly different dedicated domains, structure and
capacities and availabilities. The first three platforms identified
that respected these inclusion criteria were three platforms
from the previous review [cBioPortal, The Georgetown Database
of Cancer (G-DOC) Plus and tranSMART]. We then searched sci-
entific literature available through PubMed® [46] using Medical
Subject Headings terms and free-text search, and subsequently
identified 367 articles potentially describing visualization for
heterogeneous data (PubMed queries and literature search, de-
tails are available in Supplementary Table S1). We identified
three new platforms through this step, and one from citations
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for one of the corresponding publications. To completely cover
the field of translational platforms, we decided to also include
commercial products in our review. We identified candidates
through Google® search and discussion with colleagues. The
web search and discussions lead to the addition of one open-
source platform and of three commercial products respecting
the inclusion criteria. Overall, 11 platforms with advanced visu-
alization capacities were included in the review: cBioPortal,
interactive genomics patient stratification explorer (iGPSe),
Igloo-Plot, G-DOC Plus, tranSMART, an unnamed data-cube-
based model supporting heterogeneous data, Papilio, Caleydo
Domino, Qlucore Omics, Oracle Health Sciences Translational
Research Center and OmicsOffice powered by TIBCO Spotfire.
The first eight programs are open source, whereas the last three
are commercial products.

We next identified the main features of each program ana-
lyzed along five major axes: general information, licensing, in-
formation content supported, visualization and data
exploration. This information was based on publicly available
resources (i.e. original articles published in PubMed describing
the systems and dedicated Web sites) and direct correspond-
ence with authors of the original papers or representatives for
commercial products. In addition, we also include our personal
experience using the program where available (based on using
the five in-use open-source programs cBioPortal, Igloo-Plot,
G-DOC Plus, tranSMART and Caleydo Domino as well as demo
versions of Qlucore Omics and OmicsOffice).

Results

Overview of multi-visualization tools

Our search results identified several flexible analytic tools or
software programs with easy-to-use front-end graphic user
interfaces (GUI) that have been developed to help researchers
visualize complex data without needing deep data analytics or
programming backgrounds. Tables 1 and 2 summarize general
information, licensing, information content supported, visual-
ization and data exploration features for each system (Tables 1
and 2). The text below summarizes the systems in general with
particular focus on visualization.

cBioPortal

cBioPortal, originally developed at the Memorial Sloan-
Kettering Cancer Center, provides an interactive platform to
visualize the data for over 120 different cancer studies [47, 48].
In a typical workflow, a researcher will accept a cancer study,
select data type priority such as mutation and copy number al-
teration data, enter a list of genes of interest and then visualize
various graphics summarizing the data slice. For example, re-
searchers can investigate the frequency of specific mutations at
each gene for the study, see scatter plots and box plots showing
interaction between genomic events from different platforms
and explore survival analyses where available. Advanced visu-
alization features include an interactive Cytoscape graph that
allows users to explore genes of interest within the larger net-
work context and a MutationMapper graphic that allows inter-
active exploration population-wide genetic events linked to
tables and three-dimensional (3D) visualizations. Some notable
advantages of the tool are that it allows for easy integration
with Integrative Genomics Viewer (IGV [49]) for more detailed
genetic exploration and also provides a convenient REST-based
web APl (Application Programming Interface) that allows
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researchers an even wider range of analysis options. While the
public online version is based on TCGA data sets, users can cus-
tomize their instances by editing the code available through
GitHub [50].

iGPSe

iGPSe is a proof of concept visual analytic system designed to
allow users to perform complicated feature selection, clustering
and subgroup comparison of genomic and clinical data without
the need of deep programming or scripting knowledge [8]. Users
begin by loading mRNA, microRNA (miRNA) and clinical data, as
well as lists of genes of interest. The clustering analysis section
allows patients to select clustering parameters and visualiza-
tion results with heatmaps, silhouette plots and interactivity
sparsity graphs. The final, integrative patient stratification, sec-
tion contains interactive parallel sets based on clustering ana-
lysis linked to survival plots that allow real-time survival
comparison of mRNA or miRNA clusters [51]. The principle ad-
vantage of this software was that, while applicable to other
fields, it was developed with the input of domain experts in on-
cology to seamlessly integrate relevant features such as the
various clustering algorithms, options to refine clusters and use
of interactive summary pages.

Igloo-Plot

Igloo-Plot is an interactive visualization tool for multidimen-
sional data in general developed by TATA Consultancy Services
[52, 53]. Users download the application, upload their data ac-
cording to predefined data formats and are presented with sev-
eral, normalization, statistical analysis and clustering [54] and
data visualization options. Options allowing for the selection of
subgroups of samples or features are available through user-
provided regular expressions. Principle visualization features
include line graphs displaying variation across variables to aid
in the normalization steps as well as the characteristic semicir-
cular, or ‘igloo’ plot that facilitates the identification of clusters
within the data and the identification of markers that define
the clusters.

G-DOC Plus

G-DOC Plus is an updated version of the original G-DOC data
management platform designed in 2011 to integrate structured
clinical research with high-throughput data to advance preci-
sion medicine, translational research and population genetics
[55, 56]. General visualization features include survival curves,
Venn diagrams and heatmaps as well as those more specific for
high-throughput analyses such as tools to visualize copy num-
ber instability, interaction networks and 3D representations of
molecular targets. A principle feature of G-DOC Plus is its inher-
ent comprehensive structure based on plug-ins to further its
commitment to stay up-to-date with emerging omic technolo-
gies; the current version supports a wide variety of formats to
accept mRNA, copy number variation, metabolite mass spec-
trometry and whole genome sequencing data. As of the date of
manuscript drafting, G-DOC Plus allows users to explore data
for >10 000 patients from over 50 public data sets from a wide
variety of domains such as pediatric and adult oncology and
wound healing. Data can also be loaded with the assistance of
the support team by following a detailed data loading standard
operating procedure.
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Figure 2: Overview of tranSMART. In a typical workflow, users define subsets of patients based on a drag and drop method of variables from the right column to the ap-
propriate boxes (A). In this example, the summary statistics view (B) shows age difference between patients with genotypes (subsets 1 and 2, respectively) in a candi-
date gene. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

TranSMART

TranSMART is a rapidly growing web-based robust research man-
agement and analysis platform based on N-tier (data, business,
presentation tiers in this case) architecture and Java schema de-
signed to integrate disparate data sources to close the gap be-
tween basic science and clinical practice currently used by >100

organizations around the world. It features a simple user interface
involving drag-and-drop movements that allows for an interactive
analysis of a wide variety of data (demographic, diagnosis, medi-
cation, genetic, etc.) [57, 58] (Figure 2). The default installation pro-
vides a wide variety of basic, noninteractive, R-based plotting
options such as scatterplots, bar charts, histograms, as well as


https://academic.oup.com/bib

more complex waterfall plots, Manhattan plots and frequency
plots for genomic analysis. TranSMART benefits from a growing
worldwide community dedicated to improving its data processing
and analytic features as well as its visualization features. For ex-
ample, one project in our group involves the expansion of visual-
ization capabilities of a plug-in called SmartR, a grails plug-in
designed to improve the visual analytics tranSMART through
advanced visualization libraries such as d3.js [59].

Data-cube-based model supporting heterogeneous data

The next tool in which we were interested was a proof of concept
developed by Angelelli et al. [6] based on a data-cube-based model
and designed for the visual exploration and analysis of large het-
erogeneous medical cohort studies. This software allows re-
searchers to upload various data sets such as radiology results
and cognitive scoring, slice patient groups based on specific fea-
tures and then visualize how the data correlate with each other.
The principle visualization component consists of a multiple-
view dashboard featuring scatterplots, histograms and a 3D brain
atlas color-coded by fiber bundle. These visualizations are all
coordinated with each other based on interactive drag and drop
or highlighting functions that allow users to select variables or
data points of interest. The main advantages of this system are
the flexibility of accepting incomplete, partial overlapping data
reflective of real-world situations as well as the structure of the
data storage, which allow fast, flexible calculations describing the
relationships between different pieces of data.

Papilio
Papilio is another interactive tool that leverages visual analytics
developed to explore heterogeneous medical cohort data to
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guide medical researchers and facilitate hypothesis generation,
especially when no evident hypotheses are initially favored.
After loading data, a first module called PrePap prepares the
data. Next, the visualization module, VisPap, offers an inter-
active data exploration environment where users interact with
a dashboard showing scatterplots, parallel coordinates and line
diagrams all coordinated so as to maintain relationships and
dependencies of data. Users also have the ability to visualize
statistical analyses such as confidence-weighted principal com-
ponent ellipses overlaid onto the data. Its principle features in-
clude a thorough image-processing pipeline that prepares raw
images for downstream analysis as well as its robust conceptual
framework based on domains, features and mappers that en-
hance the flexibility of the database while maintaining relation-
ships between data.

Caleydo domino

Domino is a flexible data-visualization tool that improves the
extraction, manipulation and comparison of interconnected
heterogeneous subsets of multidimensional data sets in general
[60, 61]. Users position draggable blocks in a workspace to rap-
idly assemble complex coordinated graphical schema repre-
senting the data and relationships between subsets. The
software features a wide variety of simple and complex visual-
izations to incorporate into the schema ranging from histo-
grams and scatterplots to parallel coordinate plots, mosaic plots
and Sankey diagrams [62] (Figure 3). Two principle features in-
clude an intuitive GUI featuring placeholders and live previews
that indicate possible drop locations and possible visualization
to use as well as its library of innovative visualization tech-
niques such as flexible linked axis (‘Flexible linked axes for

Figure 3: A demonstration of Caleydo Domino using exploration of a set of multiple tabular data sets for a music data set containing song and musician information.
This figure displays the main user interface of the program where users can drag and position data subsets and chose which calculations or visualizations to use to ex-
plore data and relationships between data [63]. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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multivariate data visualization’) and StratomeX, used for inter-
active visualization in cancer subtype analysis [64] (Figure 4).

Qlucore omics

As we believe, it is important to survey the widest variety of
visualizations used to promote translational research using
multidimensional data sets, we decided to additionally review
available commercial solutions, the first of which is Qlucore
Omics, a platform started in 2007 in Lund, Sweden optimized to
explore biological data sets through interactive analysis and
visualization features [66]. Data are loaded using a wizard, pre-
processed and analyzed using a GUI workspace where users can
select data and specific graphics and analyses to perform. The
wide assortment of visualization supported range from scatter-
plots and histograms to heatmaps and network visualizations
all based on data and parameters selected from a tool bar. Users
additionally have options to annotate data by features or statis-
tics results, specify specific data or data slices to be plotted and
synchronize visualizations such as by color codes to meet spe-
cific requirements. Like most commercial products, the soft-
ware comes with complete documentation, support and
comprehensive tutorials. An advantage of this program is the
sheer amount of features available including calculations rang-
ing from simple t-test statistics to advanced machine learning
classifier builders.

Oracle health sciences translational research center

Oracle Health Sciences translational research center (TRC) pro-
vides a standardized industrial architecture that helps store, in-
tegrate and analyze multi-omic and clinical data and is

specifically designed to facilitate biomarker discoveries, valid-
ation and application to clinical care [67]. The software’s top
layer component is a cohort explorer used to identify and strat-
ify clinical cohorts based on various normalization and filtering
criteria. A principle advantage of the system is that it contains a
rich omics data bank compiled from a large number of public
studies that helps fit the project at hand into the context of up-
to-date literature as well as promote cross-study omics data
analysis. Of note, while the TRC supports direct integration with
statistical and visualization software or even natural language
processing functionality for test reports, these features are not
included in the basic system package.

Omicsoffice® powered by TIBCO Spotfire

Our final commercial product to review is OmicsOffice, a com-
prehensive genomics data analysis tool backed by the TIBCO
Spotfire data visualization and analytics software [68, 69]. Users
work almost entirely within the GUI environment to perform
genomic experiments and analyze data with almost no data
preprocessing required start to finish. Visualization is based on
a coordinate dashboard view where users can visualize all
graphs and data as well as choose which data are displayed in
real time wusing mouse-guided data slicing features.
Visualization techniques span the gamut ranging from inter-
active bar and pie charts to pathway viewers and volcano plots
for genomic results. OmicsOffice recognizes a wide range of pro-
prietary omics data formats and includes workflows for inte-
grating and running group comparisons on cross-platform data.
Several benefits of the program are the comprehensive, peer-
reviewed ‘click and go’ analytic pipelines for specific experi-
ments such as quantitative polymerase chain reaction (qPCR),

|Fie Outs Window View Heip
- i
Ri“xE 0
“amsm
B seection e o
- g
= MowsaOver | 8% Fr e
Bron joba -
a Briney Soears
L5 Madonna
N fomale Rinanna
-] Wy o
w
= + | Evon o [
= u [
i) Dotmet efe -] ﬂ male —
em - L
Dituset: dp280 4l e
Coustres: u —
Wy820_caberme 7 A
S - PR
I |
§ Courtras.

.7 B ol Wates Bk - Linellp 11| Bl Pavtitioned Blochs - Linelip

DataSot Type tiom Typ SRncorts #Dmensom -
W first album {year) umercal Actain, 12 1
B i business (yeans) Nomarca ey 12 1
B " business at first album (years) Nemeecs At 12 1
I number one hits [ Artain Counines 12 12
W population {million) Hsrarial Constirm 12 1

Figure 4: A demonstration of StratomeX using exploration of a set of multiple tabular data sets for the TCGA clear cell renal carcinoma data set. This figure displays the
main user interface of the program where users can drag and position data subsets and chose which calculations or visualizations to use to explore data and relation-
ships between data. Above, users can visualize the relation between patients with subtypes based on two different genomic clustering experiments [65]. A colour ver-

sion of this figure is available at BIB online: https://academic.oup.com/bib.
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microarrays and NGS that take in raw data and produce full re-
ports containing publication-ready graphics and information on
quality control.

Discussion

In this manuscript, we have provided a detailed review investi-
gating current visualization tools for multidimensional, big clin-
ical research data sets used to promote translational research.
We believe thorough visualization that integrates diverse data
sources will become increasingly relevant in an environment
where digitalization of the health field continues to accelerate.

Limitations

For the purpose of this review, we limited the scope to plat-
forms controlled by intuitive graphical user interfaces that were
flexible in receiving user-provided data. However, one related
area that could have implications for visualization in transla-
tional research in general are tools developed to investigate
data from fixed input data sets, usually arising from large
multi-institutional research studies consisting of various data
from hundreds or thousands of patients. In addition, we discuss
additional techniques that have been used to visualize data in
the medical field not limited to those used in the translational
research applications we have described above.

Heterogeneity of the reviewed platforms

The use cases covered by the different platforms are heteroge-
neous (general cohort exploration, genomics analysis, general
translational research and so forth). However, most of the sys-
tems could be used for a variety of applications leveraging simi-
lar data. Although the analytical capacities of platforms are
complex to compare because of their difference in scope, we be-
lieve that the visualization features are relevant to explore to-
gether. In addition, we believe it was necessary to include
visualizations from a variety of use cases to include the most
comprehensive picture of contemporary visualization trends for
exploration of heterogeneous health-related data sets.

Tools designed to visualize data for specific data sets

Data visualization has been shown to be especially helpful in
oncology research where visualization is crucial for understand-
ing certain genomic events, verifying data quality and identify-
ing important aspects in cancer development (see [21] for
thorough review). For example, NetGestalt [70] allows for multi-
omic exploration of the colorectal cancer TCGA data set and
canEvolve [71] allows for integrated exploration of multiple
TCGA studies. Note that while the current version of cBioPortal
is dedicated primarily for the TCGA cancer data sets, we decided
to keep this platform in our review because of its code availabil-
ity and its strong presence in the translational research com-
munity. In addition, SysBioCube is an integrative data analysis
platform designed by the US Army Medical Research group to
study posttraumatic stress disorder [72], and Data Portal is a
tool for interactive exploration of cognitive and radiological
data for pediatric patients [73]. These tools allow researchers to
intuitively explore rich data sets to uncover important biological
pathways, regulation networks or drug targets.

Additional visualization techniques used in health research

A thorough review of emerging innovative visualization tech-
niques for high-dimensional, complex data through innumer-
ous ways of mapping of data variables to visual features such as

Exploring and visualizing multidimensional data | 1053

position, size, shape and color is presented by Heer et al. [1]. For
example, in visualizing time series data, various methods such
as stacked graphs or index graphs showing percentage of
change based on a selected point are available. Various tech-
niques have been proposed to convert time data and events
into optimal formats to facilitate quick interactive visualization
[74, 75]. KNAVE-II is a tool designed to analyze and visualize
time-oriented clinical data, whose principle feature is being
able to classify and characterized raw time data using a prede-
fined knowledge base [76]. In addition, a growing number of
methods exist to represent spatial data such as color encoding
(choropleth maps), overlaying graduated symbols or size distor-
tion (cartograms). Spatial representation and cartography are
also used in various medical research domains including brain
function mapping [77], exploration of topographical distribution
of skin molecules [78], identification of splice events in neurex-
ins [79] and of course the more traditional domain of epidemi-
ology [80]. Finally, a number of graph methods have been used
to visualize the relation between the different points in a net-
work such as force-directed layouts, arc diagrams and, as dis-
cussed previously, matrix views. In medical research, network
visualization is especially useful in exploration of genetic or
proteomic information and molecular pathways [81, 82], and
several tools exist to facilitate this process [83, 84].

Desiderata

Throughout our search of contemporary tools for multidimen-
sional data visualization as approached from scientific do-
mains, but also through additional searches spanning other
domains where big data also poses challenges and opportuni-
ties such as data journalism, security and human-machine
interface, we noticed several themes continually reemerging.
Going forward, we believe that tools for multidimensional data
visualization could be enhanced by adding capabilities for pa-
tient slicing, coordinated views, interactivity, flexibility, scal-
ability and statistical power. We briefly describe each feature
below.

Patient slicing, grouping or clustering

Multidimensional data sets with large numbers of samples or
features are typically difficult to fully grasp by humans without
some type of synthesis. As a result, various types of dimension
reduction techniques such as principal component analysis
(PCA) [85], self-organizing maps [86] and local linear embedding
[87] have been proposed to simplify the data to only the most
salient features. In addition, at the individual patient level, es-
pecially in studies with hundreds or thousands of patients, it is
important to be able to select only relevant samples according
to features or clusters of similar samples. This was important
for our project consisting of data from a wide variety of sources
and helped us, for example, separate out the effects of methyla-
tion (epigenetic) and genetic mutations for risk of transition to
psychosis.

Coordinated or linked views

Moreover, visualization tools for multidimensional visualiza-
tion are enhanced with multiple coordinated views, allowing
users to see the same data set from different perspectives at
once. This enables flexible exploration of various nuanced
hypotheses with interactive data selection, or ‘brushing’, and
can be applicable in a variety of domains outside of medicine
from international politics to baseball [88]. Two interesting ex-
amples are PRISMA, which allows users to see uploaded data
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represented by treemaps, scatterplots and parallel coordinates,
all coordinated with each other in terms of color, filter and se-
lection [89], and SEURAT, which combines linked views with ex-
ploratory analyses for microarray data visualization [90].

Interactivity

Often going hand in hand with patient slicing or coordinate
views, interaction is a key aspect of visualization tools that fa-
cilitates flexible searching and localizing of interesting features
in a data set through intuitive commands [91]. Many of the
popular visualization platforms mentioned in the introduction
consist of or support user interaction ranging from tooltips on
mouse hover/touch to triggering the reordering of data or other
complex actions.

Flexibility

Like many research groups, we are constantly changing what
types and formats of data we collect based both on changes
within the scientific community and the types of patients that
enter our research center. This ‘variability’ issue is likely the
most important challenge in analyzing big data [92]. It is, thus,
important that tools be flexible to accept data types from a wide
range of sources. We also understand that this may pose a limit,
as measures to increase flexibility to accept different data by
widening acceptable parameters or formats may force us to de-
crease the level of specificity and, thus, detail for a data source.

Scalability

Given the increasing data generated everyday by high-through-
put experiments and technologies, another feature typically
required for successful translational research is scalability [93].
In addition, it is important for visualizations to be able to effi-
ciently transition through scales of magnitude while keeping an
appropriate data granularity. For example, features should be
implemented that support ‘drilling down’, to find specific infor-
mation about outliers from high-level visualizations [5].

Statistical power

In our study, it was important not only to group or cluster patients
but also to understand or measure the strength of the clusters or
the differences between them. It is, thus, important that any pro-
gram we have would be backed by a powerful statistics package.
Much progress has been made in this domain in the past few
years allowing statistics packages such as R be easily integrated
into third-party software such as Web sites (‘embedded scientific
computing'—see OpenCPU [94], rApache [95]).

Conclusion

In this work, we have presented a comprehensive review of the
current tools in use for visualization of complex, multidimen-
sional data sets. As medical research shifts increasingly toward
a more data-driven approach, this need to comprehensively
visualize multivariate data will continue to grow, especially in
health-care research settings. We believe our work will serve a
wide variety of investigators performing similar research.

Key Points

¢ Thorough multidimensional visualization offers sev-

eral benefits with potential implications in under-
standing disease and ultimately improving patient
care.

* Translation research platforms in the clinical domain
provide an ideal setting for a wide range of multidi-
mensional visualization applications.

¢ In this work, we summarize the existing landscape of
these types of tools currently used as well as provide
our input on points to consider in advancing their
development.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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