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Abstract: Plants employ a diversified array of defense activities when they encounter stress. Contin-
uous activation of defense pathways that were induced by mutation or altered expression of disease
resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants
show continuous defense genes’ expression, reduced growth, and also manifest tissue damage by
apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be
attributed to a condition known as autoimmunity. The question is whether it is possible to develop
an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced pro-
tection against various biotic and abiotic stresses via secondary metabolic pathways’ engineering.
This review is a discussion about the common stress-fighting mechanisms, how the concept of
cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by
engineering secondary metabolic pathways.

Keywords: autoimmunity; stress tolerance; metabolic engineering

1. Introduction

Plants face many constraints in the continuously changing environment and have
evolutionarily gained the defensive mechanisms that are inevitable for their survival. Nu-
merous efforts have been taken for a better understanding of plant adaptive responses to
improve agricultural productivity and quality. When plants encounter particular stress,
numerous genes are induced, which results in elevated levels of diverse secondary metabo-
lites and proteins that would help plants to cope with the stress [1]. These metabolites aid
hypersensitive cell death, signal transduction, and downstream defense gene activation,
e.g., the pathogenesis-related (PR) genes, enzymes for phytoalexin biosynthesis, oxida-
tive stress, tissue repair, cell wall lignification, and several other cellular processes [2]. It
has been postulated that a cross-talk exists between the plant physiological, cellular, and
molecular responses, through which the plant reacts via phytohormones, transcription
factors, kinase cascades, and reactive oxygen species [3–5]. In certain conditions, the syn-
ergistic or antagonistic cross-talk can lead to another phenomenon called cross-tolerance,
which yields supplementary resistance against pathogens [6]. The continuously evolving
pathogen races are recognized by intracellular immune receptors belonging to the family of
polymorphic nucleotide-binding oligomerization, domain-containing leucine-rich repeat
(NB-LRR) proteins that trigger the typical, programmed cell death as a consequence of
hypersensitive response [7]. Plants that are exposed to one stress can acclimatize and
form a stress memory, which also helps them to impede the damage caused by other
stresses [8]. On the other hand, the loss of function, consecutive overexpression of certain
genes, or inappropriate activation of respective proteins associated with plant immunity
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promotes negative regulators, which induce macroscopic lesions, resembling symptoms of
the disease in the absence of pathogens. Such mutants can thereby be called autoimmune
phenotypes [9]. Numerous studies were carried out to unveil the mechanism of cross-
tolerance and induced autoimmunity in various plants [10,11]. Metabolic engineering and
transcription-factor-based technologies are apparently suitable and promising for the next
generation of multiple-stress-tolerant crop plants [12,13]. Several candidate genes encoding
the common stress-interactive elements were identified, and their functional analysis was
carried out using mutation studies (see Glossary). Here, we discuss the role of various
stress-signaling factors, and how they contribute to the concept of cross-tolerance and plant
autoimmunity. We also emphasize the engineering of metabolic and signaling pathways
for creating multiple-stress-resistant plants.

2. Common Abiotic and Biotic Stress Tolerance Mechanisms
2.1. Abiotic Stress Tolerance

A certain physiological effect that disturbs the homeostasis and overall cellular
metabolism of a living organism is called stress. Abiotic causes of stress, such as drought,
salinity, heavy metals, low and high temperature, can disrupt the physical and biochemical
homeostasis of plants and can thereby induce variation in the cellular aqueous and ionic bal-
ances [14]. As a result, hundreds of genes become transcribed, and their products undergo
translational modifications [15,16]. Osmoprotectants and reactive oxygen species (ROS)
scavengers are crucial among them. Glycine betaine, which is a quaternary ammonium
compound, occurs abundantly during dehydration stress [17–19] and helps in maintaining
the photosynthetic efficiency of the thylakoid membrane. The amino acid proline plays a
similar role, as it helps to maintain the osmotic balance and stabilization of membranes
and proteins, to scavenge the ROS, and to maintain a redox potential during stressful con-
ditions [18]. ROS scavenging, on the other hand, is accomplished by enzymatic antioxidant
systems, which include superoxide dismutase, catalase, ascorbate peroxidase, glutathione
reductase, mono-dehydroascorbate reductase, dehydroascorbate reductase, glutathione
peroxidase, guaiacol peroxidase, glutathione-S-transferase and non-enzymatic antioxidant
systems, such as ascorbic acid, glutathione, tocopherol, carotenoids, and flavonoids [20,21].
Moreover, a multitude of supplemental proteins and transcription factors are also upregu-
lated during all types of abiotic stress. When the functionality of the cDNA′s in a diverse
combination of stress is compared, the functional gene categories show an analogous
pattern, and they also exhibit a higher expression under a common stress response machin-
ery. For example, cDNA libraries of barley plants show significant functional similarities
under drought and saline conditions. Proteins such as late-embryogenesis abundant (LEA),
metallothionein-like (ML), jasmonate responsive, and ABA-responsive, are remarkably
upregulated under drought stress, whereas ubiquitin-related transcripts are upregulated
in salinity stress, along with LEA and ML [22]. Apart from this, transcripts encoding jas-
monate biosynthesis and jasmonate responsive proteins were derived by cDNA microarray
from dehydration-shocked barley leaf tissues [23]. There is a strong relationship between
the expression profiles of cold-, drought- and high-salinity-stress-induced plants. Similarly,
transcripts that code for various transcription factors, influencing osmoprotective protein
synthesis, detoxification, lipid transfer, water channeling, fatty acid metabolism, hormone
biosynthesis, heat shock proteins, etc. were commonly expressed in Arabidopsis during
drought, cold, and high-salinity stress. It is also known that polyamines such as spermine
and putrescine play remarkable roles in the abiotic stress tolerance in plants and are highly
expressed during drought [24], saline [25], and chilling stress [26]. The exogenous applica-
tion of polyamines has been proven to enhance the endogenous polyamine levels and are
associated with maintenance of membrane integrity, accumulation of osmolytes, reduction
in ROS levels, lower levels of Na+ and Cl− in the organelles, and reduced negative impact
on photosynthetic machinery, compared with the non-treated plants [27]. It was also
suggested that polyamines prevent lipid peroxidation and quenching of free radicals by
binding to cellular/organelle membranes [28].



Int. J. Mol. Sci. 2021, 22, 11945 3 of 15

Although several routes of chemical defense against abiotic stresses exist, the physical
barrier created by the cuticle functions as the outermost shield. Cutin, being a macro-
molecular polyester consisting of C16/C18 fatty acids, is synthesized de novo from acetyl
coenzyme A in plastids and oxygenated in the endoplasmic reticulum (ER) to serve as
cutin precursor or is modified to become cuticle wax [29]. These fatty acids are present
in the cuticle but are also key components of biological membranes and come into play
in maintaining membrane fluidity. Membrane remodeling is of great importance, as cold
stress rigidifies the membrane, whereas heat stress fluidizes it. Both can lead to membrane
dysfunction and ion/cellular component leakage. The polyunsaturated fatty acids, upon
reaction with lipase, release raw materials of several other bioactive compounds such as
oxylipins and jasmonates, which are implicated for defense against other types of stress.
Additionally, jasmonates are also well studied for their ability to provide resistance against
salt stress and UV stress [30,31].

2.2. Biotic Stress Tolerance

Biotic stress in plants is caused by living organisms such as bacteria, viruses, fungi,
nematodes, insects, weeds, or herbivorous animals. The constant evolution of molecular
studies on plant immunity and pathogen infection strategies reveals an integrated pic-
ture of the plant–pathogen interaction. Plants recognize and exhibit defense responses
against various pathogens through approaches involving the recognition of both conserved
and variable pathogen elicitors, as well as secreted virulence effectors of pathogens [32].
Plants bring forth defense responses upon the perception of a pathogen, which comprises
pathogen-associated molecular patterns (PAMPs)—pathogen-triggered immunity (PTI)
and effector-triggered immunity (ETI) [33]. Upon perception of the pathogen effector
molecules by R genes’ products, various processes occur in the cell, such as calcium
ion influx, production of reactive oxygen species, activation of protein kinases, etc. [34].
Later, transcripts associated with signaling molecules or molecules analogous to defense
execution and metabolism are accumulated, which leads to amassing of downstream sig-
naling molecules, such as salicylic acid (SA), jasmonate (JA), ethylene (ET), and, finally,
accomplishing the objective of defense signal transduction through cell wall strengthen-
ing, lignification, phytoalexin synthesis, and programmed cell death [35]. The defense
against wounding stress by insects/herbivores also involves jasmonate signaling, where
biosynthesis of leaf endoplasmic reticulum (L-ER) bodies, playing major roles in wounding
resistance, can be JA dependent/independent. The L-ER synthesizes two different kinds of
β-glucosidases—BGLU18 and PYK10. The expression of BGLU18 depends on JA signaling,
and PYK10 is JA independent. Plants constantly adjust their physiology and metabolism
for recognizing, integrating, and defending various stresses, which is facilitated by the
cross-tolerance phenomenon that makes the plant immune against continuously changing
environmental variables [5]. Majority of the plant defense execution involves a range
of secondary metabolites that are the products of metabolic pathways such as phenyl-
propanoid pathway, mevalonic/non-mevalonic acid pathway (isopentanoyl pathway) [36],
and polyketide pathway [37]. In plants, type III polyketide synthases are involved in
catalyzing sequential decarboxylative Claisen condensations of malonyl CoA with other
CoA-linked starter molecules, that are metabolites of supplementary pathways, to produce
important secondary metabolites active in plant immune responses [38].

3. The Concepts of Cross-Talk and Cross-Tolerance

Throughout their lifetime, plants stumble across various environmental hazards
including insect and herbivore attacks, pathogens, and other physical factors, such as tem-
perature, salinity, drought, etc. They react moderately by activating the primary immune
response that has evolved to recognize and counteract as a highly specific defense against
the stress encountered [39]. A plant that successfully defends against one stress has the
possibility to become more resistant to many other stresses when it is exposed to multiple
types of stress. This phenomenon is called cross-tolerance, and it shows that plants have
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evolved powerful defense regulatory pathways that allow them to quickly adapt to the
changing environment [6]. Cross-tolerance is achieved by the cross-talk between plant
defense signaling and metabolic pathways where these interactions can be mutually antag-
onistic or synergistic, leading to negative or positive functional outturn [40]. Cross-talk
minimizes the energy spent and helps the plant to create a flexible signaling network that
allows the plant to fine-tune its defense response to the invaders encountered [2,40,41]. This
mechanism is extremely important because plants can be bred selectively, and their genes
can be manipulated to render them tolerant to multiple stresses. Salicylic acid, abscisic acid,
jasmonic acid, and ethylene are the most studied mediators and were proposed as the key
players in stress tolerance in plants (Figure 1) [32,42–45]. Several other plant growth hor-
mones are also important in cross-tolerance signaling mechanisms. Brassinosteroids—the
endogenous plant growth hormones—upregulate the antioxidant levels by accumulating
apoplastic H2O2 and thereby provide stress tolerance [46]. The cell surface receptor kinase
brassinosteroid insensitive 1 (BRI1) perceives brassinosteroids, which triggers a signal cas-
cade in the cytoplasm that leads to the transcription of BR-responsive genes [47]. They have
multifaceted roles in pathogen interaction, PAMP reception, activation of stress response
genes, fine-tuning of oxidative metabolism, and production of secondary metabolites, thus
contributing to innate immunity, PTI, and cell death [48]. The classic ethylene-mediated
signal transduction is triggered from the membrane receptors (ETR genes) and constitutive
triple response—MKKK (CTR1) modulation—to regulate the activity of several genes [49].
In the presence of ethylene, the ethylene insensitive-2 (EIN2) domain is cleaved, and it is
transported into the nucleus to repress EBF and activate EIN3/EIL, which, in turn, activates
several transcription factors that interact with other phytohormones, such as JA and SA,
regulating them positively or negatively [50]. The ethylene-responsive factors ERF1, ERF2,
and ERF5 regulate the expression of JA-responsive gene plant defensin 1.2 (PDF1.2) [51].
Similarly, the jasmonate insensitive/MYC2 (JIN/MYC2) is the transcription factor that
plays an important role in JA-responsive gene expression [52]. The F-box protein and com-
ponent of SCF E3 ubiquitin ligase, coronatine insensitive 1 (COL1) also has an important
role in JA signaling, along with JAZ and MYC. They constitute the major signaling inter-
section of various stress-responsive pathways. The JAZ/MYC or other JAZ/TF elevates
the concentration of secondary metabolites that initiate defense response/hypersensitive
response against the pathogen interaction [53]. Generally, JA is involved mainly in regu-
lating defense responses against necrotrophic pathogens, whereas SA-mediated defense
activation is for broad-spectrum resistance against both biotrophic and hemibiotrophic
pathogens [54]. SA is derived from the shikimate–phenylpropanoid pathway in the chloro-
plasts and is transported to the cytosol under tight signaling control. The consecutive
accumulation of SA in the cytosol can lead to reduced fitness of the plant. It has been
postulated that the biosynthesis of SA at the site of infection can induce gene expression
in the distal part of the plant. The hormone induces the expression of PR genes, thus
initiating systemic acquired resistance [55]. There is a significant overlap between these
secondary metabolic pathways [56] along with a common signal (such as ROS) that triggers
downstream signaling pathways [57], which renders the plants tolerant against multiple
stresses. There is a remarkable coincidence of many defense-related and stress-responsive
genes that are routinely taking part in the reaction to multiple stresses. Apart from these,
several transcription factors are also upregulated, such as ethylene-responsive factor 1 [58],
NAC6 [59], ABA-responsive element (ABRE) [60], WRKY transcriptional factors [61], etc.
It is also evident that flavonoids and carotenoids play major roles in protecting the plants
from oxidative and pathogen stresses [20,21].
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Figure 1. Possible role of plant hormones in stress cross-tolerance. The biotic and abiotic stress factors are first sensed
by the plant cell membrane and are transduced to specific downstream signaling pathways. Reactive oxygen species
(ROS) and Ca2+ play major roles as messenger molecules that initiate ABA-mediated cell signaling. It was discovered that
ethylene-insensitive 2 (EIN2) and ethylene-responsive genes (ETR) of Arabidopsis are involved in ABA responses. They
activate the ethylene-responsive transcription factors (ERFs), which are key regulatory hubs that integrate ethylene, ABA,
and jasmonate signaling and thereby their corresponding responsive gene transcription. Brassinosteroids are perceived
by the extracellular domain of Brassinosteroid-insensitive 1 (BRI1)—a leucine-rich repeat kinase located in the plasma
membrane. Upon perception, the intercellular serine–threonine kinase domain of BRI1 becomes phosphorylated and
dissociates to form a complex with a second receptor kinase BRI1-associated receptor kinase BAK1. This transduces the
signal by inactivating another kinase Brassinosteroid-insensitive 2 (BIN2), thus activating Abscisic acid-insensitive 5 (ABI5),
a bzip transcription factor that regulates the transcription of ABA- and BR-responsive genes. Increased biosynthesis of SA
occurs upon pathogen attack by effector perception via ICS/PAL pathway in plastids. Conversion of SA to methyl salicylate
(MeSA) is catalyzed by SA methyltransferase (SAMT). MeSA diffuses into the cytoplasm, where it is converted back to SA
and is distributed to the systemic tissues. Increased levels of SA in the cytoplasm lead to the disruption of oligomeric NPR1
into its monomers, migrating to the nucleus to activate transcription of SA-responsive defense genes including PR genes.

4. Expediency in Plant Autoimmunity: The Propitiously Misdirected Process

Plant immune systems are under strict control to avoid continuous activation of
defense response without the presence of pathogens, and when this control is lost, it leads to
autoimmunity, which may be at the expense of plants’ growth and development. Normally,
plant autoimmunity is induced by certain mutations in genes encoding nucleotide-binding
leucine-rich repeat (NLR) immune receptors, where there is continuous activation of the
defense genes and related proteins (Figure 2) [62]. In some hybrid plants, autoimmunity can
be naturally developed by the heteromeric association of autoimmune risk alleles of two
NLRs. In Arabidopsis, the P-loop and Toll interleukin (TIR) domain-mediated heteromeric
association of two different NLR locus variants—DM1 and DM2d—leads to the activation
of the DM1 complex, which can activate immune signaling in the absence of non-self-
recognition [63]. Continuous activation of defense response can also occur when there is
an aberration in the RNA surveillance mechanism that degrades mutated mRNAs. One of
such mechanisms is the nonsense-mediated mRNA decay (NMD) that regulates the level of
functional proteins expressed during defense responses in plants. The functionally marred
NMD proteins, such as SMG7, UPF1, or UPF3, result in constitutive activation of NLR
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and thereby induce autoimmune responses [64]. The typical phenotypes of autoimmune
mutants include dwarfism, elevated salicylic acid levels, constitutive expression of defense
genes and enhanced disease resistance to pathogens, and in some cases also spontaneous
lesion formation [65]. On the other hand, an aberration in the NLR protein regulation
and constitutive expression of R genes can also lead to non-pathogen-induced defense
activation, thus leading to autoimmunity [66,67]. To summarize, it can be clearly stated
that the constitutive expression of any distinct gene that continuously activates the immune
response proceeds to autoimmunity; this misdirected process can be propitious if it does
not compromise the growth, reproduction, and yield of the plant.
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Apart from mutations and aberrations in NB-LRR, autoimmunity can also be de-
veloped by disruption or constitutive expression of genes involved in various cellular
processes. Studies on induced constitutive gene expression were initiated by [68]. Ini-
tially, the studies were based on fungal cell wall-degrading enzymes such as chitinase
and glucanase. Transgenic tobacco seedlings constitutively expressing a bean chitinase
gene under the control of the cauliflower mosaic virus 35S promoter showed increased
tolerance to the fungal pathogen Rhizoctonia solani present in the soil and delayed appear-
ance of disease symptoms. Studies are being conducted to evaluate the resistance offered
by altered or overexpressed genes involved in cellular signaling, whose continuous and
elevated expression leads to defense activation. One of the examples is calcium-dependent
protein kinase (CDPK). CDPKs are cellular secondary messengers and principal mediators
of downstream responses in plant immune and stress signaling [69]. The ginger CDPK1
gene, overexpressed in tobacco, was found to be rendering salinity and drought stress
tolerance [70]. Apart from the common autoimmune phenotypes, the plants showed a
high percentage of seed germination, higher relative water content, expression of stress-
responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency, and
other photosynthetic parameters. Similarly, potato aspartic proteases under constitutive
expression in A. thaliana forged the plant cytotoxic to the fungal pathogen Botrytis cinerea,
along with rendering improved growth and development [71]. The PDF1.2 gene involved
in the jasmonate signaling pathway was found to be induced after infection with the
pathogen. On the other hand, it becomes responsible for the activation of salicylic acid-
associated genes such as PR1 even in the absence of the pathogen. The SA-dependent
activation of PR genes involves NPR proteins that both positively and negatively regulate
their expression. In Arabidopsis, the NPR1 is a positive regulator of SAR, which enhances
SA-induced PR gene expression. Elucidating the function of NPR3 and NPR4 by mutation
studies showed constitutive expression of PR1, which induced autoimmune responses [72].
The single and double mutants exhibited enhanced disease resistance to virulent bacterial
and oomycete pathogens. A ubiquitin protein (PUB13) that selectively degrades proteins
that are intertwined and affect plant processes involving growth, development, defense,
and other cellular process mediates SA-mediated defense signaling and flowering time in
Arabidopsis. The PUB13-disrupted plants resulted in spontaneous cell death, the accumu-
lation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic
pathogens but increased susceptibility to necrotrophic pathogens. It is evident that there is
a possibility to develop autoimmune genotypes, which show constitutive defense response
without growth and yield penalty.

5. Targeting Secondary Metabolite Biosynthetic Pathways for Multiple-Stress
Resilience and Induced Autoimmunity

Apart from the continuous activation and impaired regulation of NLR proteins, we
propose that certain mutations in the secondary metabolic pathway genes can induce
autoimmunity and can also help plants to be resilient to multiple types of stress. The list
of autoimmune phenotypes with a continuous expression of resistance-related genes is
given in Table 1. Generally, an enormous number of secondary metabolites are synthesized
via the phenylpropanoid pathway by using phenylalanine—one of the final products of
the shikimate pathway, and they have a wide variety of functions, both as structural and
signaling molecules. The initial substrate phenylalanine undergoes deamination by the
enzyme phenylalanine ammonia lyase (PAL) and is converted to cinnamate [73], followed
by generation of coumarate and other acids with a phenylpropane unit through hydroxyla-
tion and continual methylation reaction. Reduction in the CoA-activated carboxyl groups
of these acids results in the corresponding aldehydes and alcohols. The hydroxycinnamyl
alcohols called monolignols are the starting compounds for the biosynthesis of lignin [74],
which is the second most abundant biopolymer that provides structural and vascular
integrity to plants, as well as their resistance to pathogens.
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Flavonoids are proven to be among the protecting agents in plants during high light
and UV stresses [75]. The flavonoid biosynthetic pathway gives rise to a wide array
of compounds that are attributed to various biological activities and are derived from
the acetyl–CoA, malonyl–CoA, and phenylpropanoid pathways. They are a chemically
diverse and biologically important group of secondary metabolites that are further sub-
divided into anthocyanidins, flavonols, flavones, chalcones, dihydrochalcones, and dihy-
droflavonols [76]. Anthocyanidins are the sugar-free counterparts of the plant pigment
anthocyanins. These pigments deliver UV protection to plants during light and extreme
temperature stresses [77]. Certain antioxidant enzymes are inactivated during severe stress,
simultaneously the synthesis of some specific flavonols becomes upregulated. They are
also involved in the reduction in ROS species, which, in turn, helps the plants in the sup-
pression of oxygen radicals, inhibition of ROS-generating enzymes such as lipoxygenase,
cyclooxygenase, monooxygenase, etc. [78].

Even though the functions of many flavonoids are yet to be revealed, there is in-
creasing evidence that they are inevitable factors for eliciting defense response in many
plant species. Phenolic acids such as hydroxyl benzoic acid and hydroxyl cinnamic acid
produced from the intermediate steps of the phenylpropanoid pathway are involved in
attracting the beneficial microorganisms and establishing a symbiotic relationship with
the plant roots [79]. It is possible to engineer the metabolic pathways of therapeutically
important flavonoids for enhanced production, but it might also be conceivable to impart
improved plant resistance by manipulating the steps involved in phytoalexin synthesis, UV-
protecting pigments (flavonols and anthocyanins), and better-aimed synthesis of nod gene
influencers such as flavones and isoflavones [80,81]. It is well known that the flavonoid
and anthocyanin pathways are the best-studied secondary metabolic pathways [82]. The
antioxidant potential of flavonoids is being used to produce crops with increased stress
resistance and to enhance the therapeutic potential of various crops.

Type III PKS superfamily of enzymes is the most important among the enzymes
involved in secondary metabolic pathways. The active site of these homodimeric proteins
iteratively participates in catalyzing the priming, extension, and cyclization reactions
to produce a wide range of plant phenylpropanoids including flavonoids, chalcones,
resveratrols, benzophenones, quinolones, phenylphenalenones, and curcuminoids [83].
Type III PKS enzymes fall into two main categories—namely, chalcone synthase (CHS) and
non-chalcone synthase. Aldol type, lactonization type, no cyclization type, and nitrogen–
carbon-forming type enzymes fall under the non-chalcone-synthesizing PKSs [84]. To study
the role of active residues and to frame the structure in CHS and non-CHS, developing
mutants is an ideal option. The mutants thus developed are capable of accepting bulkier
substrates and the transformed plants showed improved growth and disease resistance.
Recently, various mutation and crystallization studies were carried out and revealed the
diverse function and structure of type III PKSs [85,86].

Engineering of secondary metabolite pathway was initiated in Petunia mutant RL01,
which served as a recipient of the A1 gene of Zea mays, encoding dihydroquercetin
4-reductase, reducing dihydrokaempferol to provide intermediate for pelargonidin biosyn-
thesis that develops orange flowers [87]. Later, the role of flavonoids in the plant–microbe
interaction arsenal was proposed by [88]. Studies have been conducted on Aegle marmelos [89]
and Emblica officinalis [90] to unveil the role of active site amino acid residues and the
phenotypic changes in their mutants. The overexpression of the quinolone synthase gene
in Aegle marmelos induced improved growth, chlorophyll content, and photosynthetic
efficiency. The CHS overexpressed transgenic plants showed an increased accumulation of
secondary metabolites, such as flavonoids, phenols, and alkaloids that are accredited to
their higher tolerance to drought and salinity stress. A similar result was obtained with
E. officinalis CHS mutants. Mutants of E. officinalis CHS developed by exchange of single
amino acids (F215S and F265V) were found to be utilizing p-coumaroyl–CoA as well as
N-methylanthraniloyl–CoA as substrates and yield active products such as naringenin,
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4-hydroxy 1-methyl 2(H) quinolone, and 1,3-dihydroxy-n-methyl acridone. Along with
this finding, the mutants showed improved growth and disease resistance.

Apart from the genes involved in phenylpropanoid biosynthesis, several other tran-
scription factors (TF) regulate the expression of key enzymes. Those TFs can be the targets
for the enhanced production of flavonoids. In Arabidopsis, MYB12 TF was found to
be upregulating the chalcone synthase (CHS) and flavone synthase (FS) genes, thereby
accumulating flavonoids [91].

Most of the plant metabolic pathway engineering to date have used the constitu-
tive promoter to enhance and activate the expression of native genes or transgenes in
plants regardless of the tissue or the organ. One such promoter widely used is CaMV
35S promoter from the cauliflower mosaic virus, owing to its stability and activity in
several plant species [92]. One such successful case was the introduction of the Totivirus
antifungal protein KP4 in maize, rendering them resistant against the corn smut pathogen,
Ustilago maydis [93]. Apart from biotic stresses, enhanced tolerance to abiotic stresses such
as salt stress can also be achieved by such genetic engineering approaches. The levels of
osmoprotectants such as trehalose or glycine betaine were achieved by overexpressing the
genes from the cytochrome oxidase, trehalose-6-phosphate phosphatase (TPP), or trehalose-
6-phosphate synthase (TPS) pathways [94]. Moreover, specific plant expression vectors
were also used for introducing transgenes or genes for synthetic antimicrobial peptides,
which render the plants resistant to a broader range of pathogens. Expression vectors such
as pCAMBIA1300 were used for introducing a biopeptide BP100, a synthetic and cationic
α-helical undecapeptide that exhibited a high degree of antibacterial activity against eco-
nomically important plant-pathogenic bacteria with very low toxicity levels. Although the
mutants exhibited antimicrobial activity, the fitness of the plants was compromised [95].

6. Managing the Reactive Oxygen Species

Overexpression of AtMYB12 in transgenic Arabidopsis enhanced the production of
flavonoids and showed a significant increase in ABA, proline, peroxidase (POD), and
superoxide dismutase (SOD) activities, thereby improving the salt and drought tolerance
of the plants [96]. Significant reduction in H2O2 and malonaldehyde (MDA) was also
observed in the above study, which also indicated that tissue damage and necrosis were
prevented by reducing the ROS content since ROS (especially H2O2) is considered to play
the main role in hypersensitive responses [97]. In addition, several transcription factors are
the positive regulatory molecules in plant immunity by upregulating defense hormones.
Salicylic acid (SA), which is a phenolic phytohormone that plays an important role in
systemic acquired resistance and also in pathogen pattern recognition, can be upregulated
by overexpressing the systemic acquired resistance deficient 1 (SARD1) TF [98]. This
dramatically increased the overall SA content in the plant and led to the constitutive
expression of the pathogenesis-related (PR) marker genes PR1 and PR2.

Table 1. List of mutants developed, which induce constitutive expression of defense-related genes.

Mutant Type Encoding Protein Activity References

Constitutive expression of potato
aspartate proteases in Arabidopsis Aspartic proteases

Induces expression of genes under JA
and SA signaling pathways such as

PDF1.2 and PR1.
[71]

Transgenic lines expressing
pokeweed antiviral protein Antiviral protein Constitutive expression of isoforms of

PR-I and II genes [99]

At edr1 mutant Putative MAP kinase Priming of PR1 and BGL2 genes [100]
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Table 1. Cont.

Mutant Type Encoding Protein Activity References

Constitutive expression of VSP1 Vegetative storage protein

Increases anthocyanin accumulation,
constitutive expression of defense
genes such as VSP, VSP2, Thi2.1,

PDF1.2, CHI.B

[101]

Overexpression of At JMT
S-Adenosyl L- Methionine

Jasmonic acid carboxyl
methyl transferase

Constitutive expression of
JA-responsive genes such as VSP

and PDF1.2
[102]

Constitutive expression of At ERF-1 Transcription factor Activates CHI and PDF1.2 [103]
Knockout of At ACD11 gene Sphingosine transfer protein PCD and defense-related proteins [104,105]

Overexpression of At WRKY70 Transcription factor Constitutive expression of
SA-responsive genes [106]

Suppression of At WRKY70 Transcription factor Constitutive expression of
JA-responsive PR genes [106]

Ectopic expression of OsWRKY11 Transcription factor Constitutive expression of pathogen
/drought defense responsive genes [107]

Constitutive expression of
AtPROPEP1 gene

Elicitor of defense-
related genes

Constitutive transcription of PDF1.2
and defense-related proteins [108]

Transgenic combination of wheat
Lr34res and Lr34sus alleles ABCG type transporter Constitutive expression of defense- and

secondary metabolite-related genes [109]

EDS1/PAD4 over-expression Lipase-like protein R genes activation [110]
Constitutive expression of

Senescence associated gene SAG101
in Arabidopsis

Lipase-like defense regulator Basal defense activation, R-mediated
resistance [111]

7. Conclusions

Complex mechanisms that evolved in plants help them to defend against both single
and combination of stresses. It is indeed important to understand the complex defense
mechanisms and signaling pathways for minimizing the stress effects on growth and
reproduction, thereby improving their life span. It is evident that the studies on plant
immunity against various combinations of stresses have revealed the complex nature of the
signaling cross-talk. The information is still limited, even though the research continuously
evolves due to the astounding progress in high throughput sequencing and well-developed
bioinformatics technologies for genomic studies, proteomics, metabolomics, and whole-
transcriptome profiling. Recently, the studies demonstrated that ROS synthesis, hormone
signaling, MAPK pathways, and various transcription factors (TFs) can act as positive or
negative regulators of the plant immune responses upon reception of biotic and abiotic
stress stimuli, and are having non-specific, crucial roles in eliciting an immune response.
The interaction between hormone-responsive and secondary metabolite biosynthetic genes
is yet to be elucidated, which will allow for developing novel strategies to withstand the
combination of both biotic and abiotic stresses encountered in field conditions.

Therefore, it is very important to understand and accelerate the development of
stress-resistant crops via precise genome editing techniques, such as transcription activator-
like effector nucleases (TALENs) and clustered regulatory interspaced short palindromic
repeats (CRISPR)/Cas9 systems, and to promote the flourishment of plant biotechnology
for the sustenance and welfare of living beings.
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Glossary

Mutation A permanent alteration of the nucleotides in the genome sequence of an
organism resulting a change in the gene product or affecting the function of
gene partially or completely.

Apoptosis Programmed cell death due to biochemical and structural changes in the cell.
Autoimmunity Reduction in the activity of negative regulators or constitutive expression of

defense genes that manifest retardation in growth and spontaneous
lesion formation.

Metabolism All chemical processes occurring in the plant cell for maintaining the cellular
activities and for survival.

PR genes Pathogenesis related genes are involved in the production of proteins that
defend the plant in the event of a pathogen infection.

Phytoalexin Antimicrobial compounds produced by plant tissues in response to contact
with a pathogen and specifically inhibits its growth.

Oxidative stress Stress generated by the reactive oxygen species when the plant system fails to
detoxify them with the antioxidant enzymes.

Lignification Process of strengthening the cell wall in plants by the synthesis and deposition
of lignin.

TF Transcription factors are proteins that controls the rate of transcription of DNA
to RNA.

SA Salicylic acid is a phenolic phytohormone that have roles in plant growth,
photosynthesis and also mediate the defense pathways during pathogen attack.

JA Jasmonic acid is a lipid based plant hormone that functions in photosynthesis,
reproduction and biotic stress.

ET Ethylene is a gaseous plant hormone involved in fruit ripening, flower opening
and also in leaf abscission.

ABA Abscisic acid is a plant hormone that have functions in stomatal closure, seed
and bud dormancy and also in defense against environmental stresses.

Phenylpropanoids Diverse family of secondary metabolites derived from amino acids
phenylalanine and tyrosine.
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