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Synchronization is one of the brain mechanisms allowing the coordination of neuronal

activity required in many cognitive tasks. Anticipated Synchronization (AS) is a specific

type of out-of-phase synchronization that occurs when two systems are unidirectionally

coupled and, consequently, the information is transmitted from the sender to the receiver,

but the receiver leads the sender in time. It has been shown that the primate cortex could

operate in a regime of AS as part of normal neurocognitive function. However it is still

unclear what is the mechanism that gives rise to anticipated synchronization in neuronal

motifs. Here, we investigate the synchronization properties of cortical motifs on multiple

scales and show that the internal dynamics of the receiver, which is related to its free

running frequency in the uncoupled situation, is the main ingredient for AS to occur.

For biologically plausible parameters, including excitation/inhibition balance, we found

that the phase difference between the sender and the receiver decreases when the free

running frequency of the receiver increases. As a consequence, the system switches

from the usual delayed synchronization (DS) regime to an AS regime. We show that at

three different scales, neuronal microcircuits, spiking neuronal populations and neural

mass models, both the inhibitory loop and the external current acting on the receiver

mediate the DS-AS transition for the sender-receiver configuration by changing the free

running frequency of the receiver. Therefore, we propose that a faster internal dynamics

of the receiver system is the main mechanism underlying anticipated synchronization in

brain circuits.

Keywords: neuronal oscillations, neuronal dynamics, neuronal motifs, synchronization, anticipated

synchronization

1. INTRODUCTION

Brain rhythms have been extensively studied and related to plenty of neurocognitive tasks in the last
decades (Buzsáki, 2006). According to the communication through coherence hypothesis (Fries,
2005), neuronal oscillation locked at the appropriate phase may facilitate information transmission
between brain regions. Despite the fact that the phase relations are associated to synaptic delays
between distant regions, non-linear ingredients as inhibition and external noise acting locally
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can also control the phase relation between coupled areas. When
the oscillations of certain area A influence and lock those of
another area B, it is expected that the phase between A and
B (defined as φB − φA) be positive [a regime we refer to
as delayed synchronization (DS)]. However, a counterintuitive
phase relation was observed between cortical regions in primates
(Brovelli et al., 2004; Salazar et al., 2012). Under certain
circumstances, a directional influence between two cortical areas
is accompanied by a negative time delay (i.e., by a negative
phase difference). This phenomenon has been explained by
the concept of anticipated synchronization (AS) (Voss, 2000;
Matias et al., 2014).

As proposed by Voss, two identical autonomous dynamical
systems unidirectionally coupled in a sender-receiver
configuration can exhibit anticipated synchronization if the
receiver is subject to a delayed negative self-feedback:

Ṡ = f(S(t)), (1)

Ṙ = f(R(t))+ K[S(t)− R(t − td)],

where f(S) is a vector function that describes the autonomous
dynamical system, K is the coupling matrix and the delayed term
R(t − td) is the self-feedback (Voss, 2000). The solution R(t) =
S(t + td) characterizes the regime of anticipated synchronization
and has been verified in a variety of theoretical (Voss, 2000,
2001a,b, 2016, 2018; Masoller and Zanette, 2001; Hernández-
García et al., 2002; Ciszak et al., 2003; Kostur et al., 2005; Sausedo-
Solorio and Pisarchik, 2014) and experimental (Sivaprakasam
et al., 2001; Tang and Liu, 2003; Ciszak et al., 2009; Stepp and
Turvey, 2017) studies.

The AS regime has been reported in systems without the
explicit delay term. For example, for a specific parameter
mismatch between the sender and the receiver system that gives a
first-order approximation to the delayed coupling (Corron et al.,
2005). AS has also been reported in a chain consisting of a
sender and two receivers with switching parameters (Pyragienè
and Pyragas, 2015), between two Hodgkin-Huxley neurons with
different depolarization parameters (Simonov et al., 2014) and in
the presence of an inhibitory loop mediated by an interneuron
with a free-running frequency greater than the others (Matias
et al., 2017). It has also been shown that AS may appear between
two neuron models directly coupled provided that the mean
frequency of the free receiver is greater than the mean frequency
of the sender with (Hayashi et al., 2016) and without the explicit
time-delay (Pyragienè and Pyragas, 2013; Dima et al., 2018). AS
has been verified in a system in which the delayed feedback has
been replaced by a simple, low-order all-pass filter (Pyragiene
and Pyragas, 2017). More recently, a novel theoretical viewpoint
based on the mathematical object called canard, has been used to
explain anticipation in excitable systems (Ersös et al., 2019)

In neuronal rhythms the relative phase between two coupled
regions is an important characteristic of the dynamics since it can
modulate the information flow of an unexpected stimuli (Barardi
et al., 2014). Here we investigate the mechanisms underlying
the transition from positive to negative phase locking (or
equivalently the transition between the DS and AS regimes) on
multiple scales. For synchronized systems, it is equivalent to

define the phase relation or the time delay between peaks of
activity. We simulate three different motifs of unidirectionally
coupled systems in which the negative delayed feedback of
Equation (1) is replaced by a synaptic inhibitory loop. We
extend previous results for three coupled neurons (Matias et al.,
2011) and cortical-like populations (Matias et al., 2014), showing
that the AS-DS transition can be mediated not only by the
inhibitory synaptic conductance but also by the external stimulus
at the receiver. We also show that a neural mass model, known
to exhibit zero-lag synchronization (Gollo et al., 2014), can
operate in the anticipated synchronization regime and the AS-
DS transition can be mediated by the stimuli acting on the
receiver as well by an inhibitory loop. Moreover, we show that
when the sender and receiver are uncoupled the inhibitory loop
and an external current acting at the receiver system change its
internal dynamics which is reflected in its free running frequency.
More important, we found that the phase difference between
the sender and the receiver decreases when the free running
frequency of the receiver increases. Therefore, we propose that
for an excitation/inhibition balance and biologically plausible
parameters a faster internal dynamics of the receiver as compared
to the emitter is the mechanism underlying AS. We also suggest
that the DS-AS transition studied here could be mediated by any
parameter that turns the internal dynamics of the free-receiver
faster (or equivalently the free-running frequency of the sender
slower) and could also account for delay compensation in cortical
systems.

2. MATERIALS AND METHODS

2.1. Microcircuit
The model for the 3-neurons motif is the one proposed byMatias
et al. (2011). Neurons are described by the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952) composed by the currents
INa, IK and IL:

Cm
dV

dt
= INa + IK + IL + Iext + Isyn, (2)

where Cm = 9πµF is the membrane capacitance of a 30 ×

30×π µm2 equipotential patch of membrane, Iext is the external
constant current that sets the neuron excitability and Isyn is the
pre-synaptic current.

The ion channels follows the Hodgkin-Huxley formalism:
dx/dt = φ[αx(V)(1−x)−βx(V)x], being φ = 1 the temperature
factor. The sodium current INa = gNam

3h(VNa − V) has a
maximal conductance gNa = 1080π mS, and rate constants
αm(V) = 0.1(25 − V)/(e0.1(25−V) − 1), βm(V) = 4e−V/18,
αh(V) = 0.07e−V/20 and βh(V) = 1/(e0.1(30−V) + 1). The
delayed-rectifier potassium current IK = gkn

4(VK − V) has
a maximal conductance gK = 324π mS and rate constants
αn(V) = 0.01(10−V)/(e0.1(10−V)−1) and βn(V) = 0.125e−V/80.
The leakage current IL = gL(VL−V) has a maximal conductance
gL = 2.7π mS. The reversal potentials are VNa = 115 mV,
VK = −12 mV and VL = 10.6 mV. In all the expressions above,
V is measured in mV.

The synaptic current Isyn = gsynr(Vsyn − V) comprises the
gating variable r following dr/dt = α[T](1 − r) − βr, where α
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FIGURE 1 | Cortical motif circuits. Schematic representation of the models: (A) 3-neuron motif, (B) two cortical populations, and (C) two neural masses. (D)

Membrane potential of three neurons in a regime of delayed-synchronization (DS, top) and anticipated-synchronization (AS, bottom). (E,F) Average membrane

potential in a regime of DS (top) and AS (bottom), for populations and neural masses, respectively. For the sake of clarity, the data in (D–F) correspond to simulations

where the external parameter was varied. The parameters used were: (D) gG = 20.0 nS with IRext = 280 pA (DS) and IRext = 320 pA (AS); (E) gG = 8.0 nS with

λR
Ext

= 2.8 kHz (DS) and λR
Ext

= 3.0 kHz (AS); (F) gG = 1.4 with IRext = 0.1 (DS) and IRext = 0.75 (AS). For (A–C) excitatory and inhibitory neurons are represented by

triangle and circle, respectively. Also, the colors used in (D–F), respectively, stand for the same colors as in (A–C).

and β are rate constants and [T](Vpre) = Tmax/(1+e(Vp−Vpre)/Kp )
is the neurotransmitter concentration in the synaptic cleft. In
this model AMPA (A) and GABAA (G) are the excitatory and
inhibitory synapses, respectively. The parameters concerning the
synapses are: αA = 1.1 (mM−1ms−1), βA = 0.19 (ms−1),
αG = 5.0 (mM−1ms−1), βG = 0.30 (ms−1), Tmax =

1 mM−1, Kp = 5 mV, Vp = 62 mV, Vsyn,AMPA =

60 mV and Vsyn,GABA = −20 mV. The three neurons are:
sender, receiver, and interneuron. The sender projects excitatory
synapses onto the receiver. The receiver projects excitatory and
receives inhibitory synapses from the interneuron (see Figure 1).
We kept gA = 10.0 nS, ISext = 280.0 pA and IInterext = 280.0 pA
fixed throughout all the simulations. The free parameters of this
model are gG and IRext . When gRG was varied, IRext = 280 pA was
kept fixed, whereas when IRext was varied, gRG = 20.0 nS was
kept fixed.

2.2. Neuronal Populations
For two cortical populations we follow the ideas proposed
by Matias et al. (2014). Each population, sender (S) and
receiver (R), is composed of excitatory (80%) and inhibitory
(20%) neurons, whose dynamics is described by the Izhikevich
model (Izhikevich, 2003):

dv

dt
= 0.04v2 + 5v+ 140− u+

∑

Isyn, (3)

du

dt
= a(bv− u), (4)

where v and u stands for the membrane potential of the neuron
and the membrane recovery variable (activation of K+ and
inactivation of Na+ ionic currents), respectively. a, b, c and d
are dimensionless parameters that account for the firing patterns
heterogeneity which are randomly distributed accordingly to the
neuron’s nature. For excitatory neurons a = 0.02, b = 0.20,
c = −65+15σ 2 and d = 8−6σ 2, whereas for inhibitory neurons
a = 0.02 + 0.08σ , b = 0.25 − 0.05σ , c = −65.0 and d = 2.0.
σ ∈ (0, 1) is a random variable. If a spike occurs, i.e., v > −30mV,
v is reset to c and u to u+ d.

The synaptic transmissions are mediated by excitatory AMPA
(A) and inhibitory GABAA (G). The pre-synaptic current is
described as Isyn = −gsynr(v − Vsyn), where VA = 0 mV
and VG = −65 mV. gsyn is the maximal conductance, gA for
excitatory and gG for inhibitory synapses. r is the gating variable
and follows a first-order kinetic dynamics: τsyndr/dt = −r +
D

∑

j δ(t − tj), where τA = 5.26 ms, τG = 5.60 ms and the

summation over j stands for the neighbor’s pre-synaptic spikes at
the previous time steps {tj}. D is taken, without loss of generality,
equal to 0.05.

The populations S and R are composed of 500 neurons
each, among which 80% are pyramidal cells and 20% inhibitory
interneurons. In the S population, each neuron receives 50
randomly chosen synapses from other neurons with excitatory
conductances gSA = 0.5 nS and inhibitory conductances gSG =

4 nS, which remained fixed throughout the simulations. In
the R population, each neuron receives 10 inhibitory synapses
(gR,IG = 4 nS for inhibitory neurons and gRG for excitatory
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neurons) and 40 excitatory synapses (gRA = 0.5 nS). For both
populations, no autapses are allowed. The connectivity between
S and R populations is such that all neurons within the R
population receive 20 randomly chosen excitatory synapses from
the S population (gSRA = 0.5 nS, unless otherwise specified).
Also, all neurons, within the S and R populations, are subject
to an independent noisy spike train described by a Poisson
distribution with rate λ. The input mimics excitatory synapses
from neurons that are not included in the populations, with a
maximal conductance gA = 0.5 nS. Without loss of generality,
we assume for the S population λS = 2.4 kHz. So, the free
parameters for this model are gRG and λRext . When gRG was varied,
λRext = 2.4 kHz was kept fixed, whereas when λRext was varied,
gRG = 8.0 nS was kept fixed.

2.3. Neural Mass Models
The large-scale circuit model is the one used in Gollo et al. (2014).
Briefly, the neural mass model (NMM) is composed by three
state variables: V is the mean membrane potential of pyramidal
neurons; Z, the mean membrane potential for interneurons; and
W is the average number of open potassium ion channels. Here
we made use of two ensembles i = S,R, namely Sender and
Receiver. The equations for the dynamics are given by:

dV i(t)

dt
= −{gCa + (1.0− Cji)rNMDAaeeQ

i
V (t)

+CjirNMDAaee < Q
j
V (t − τ ) >}mCa(V

i(t)− VCa)

−gKW
i(t)(V i(t)− VK)− gL(V

i(t)− VL)

−{gNamNa + aee(1.− Cji)Q
i
V (t)

+Cjiaee < Q
j
V (t − τ ) >}(V i(t)− VNa)

−aieZ
i(t)Qi

Z + aneI
E
ext , (5)

dZi(t)

dt
= b(aniI

I
ext + aeiV

i(t)Qi
V (t)), (6)

dWi(t)

dt
=

φ{mK −Wi(t)}

τW
, (7)

mion = 0.5
[

1+ tanh
(V i(t)− Tion

δion

)]

, (8)

Qi
V (t) = 0.5QVmax

[

1+ tanh
(V i(t)− VT

δV

)]

, (9)

Qi
Z(t) = 0.5QZmax

[

1+ tanh
(Zi(t)− ZT

δZ

)]

, (10)

where mion and Qi
V ,Z are the fraction of open channels and

neuronal firing rates, respectively.
The parameters are: gCa = 1.1, gK = 2, gL = 0.5, gNa = 6.7,
rNMDA = 0.25, φ = 0.7, τW = 1.0, b = 0.1, TK = 0,
TCa = −0.01, TNa = 0.3, δK = 0.3, δNa = 0.15, δCa = 0.15,
VCa = 1, VK = −0.7, VL = −0.5, VNa = 0.53, VT = ZT = 0,
QVmax = ZVmax = 0, δV = δZ = 0.65, aei = 2, aee = 0.4, ane =
1, ani = 0.4 and IIext = 0.02 (here the upper index stands for the
inhibitory sub-population in both sender and receiver groups).
All quantities are dimensionless. In the sender, the maximal
conductance from interneurons to pyramidal neurons as well as

the external current in the excitatory neurons are kept constant,
aSie = 2.4 and ISext = 0.20, respectively. Thus, aRie and IRext are the
free parameters of this model. The coupling (Cji) between the two
neural masses are: CRS = 0 and CSR = 0.4, thus guaranteeing an
unidirectionalmaster-slave configuration between S and R.When
aRie was varied IRext = 0.3 was kept fixed, whereas when IRext was
varied aRie = 1.4 was kept fixed.

2.4. Numerical Methods and Data Analysis
The model for 3-neurons-motif was implemented in a C code
and simulated using a forth-order Runge-Kutta method with
a time step of 5 × 10−3 ms. The equations for the neuronal
populations and neural masses were implemented in a C++
code and simulated using the Euler method, with a time step of
5 × 10−2 ms for neuronal populations and of 10−3 (arbitrary
units) for neural masses. To compute the mean response of the
membrane potential in NMMs we averaged over 10 realizations
of the initial conditions while for the populations we averaged
over 10 realizations of the external noise, network connectivity
and neuron parameters.

The population membrane potential was estimated from the
average value of the individual cell’s membrane potential (a
variable comparable to the local field potential (LFP) recorded
in experiments). In order to smooth the noisy signal of the
membrane potential we used a Butterworth low-pass filter of
fourth order and cutoff frequency of 5 rad/s. From the filtered
signal we and extract the peak at times ti. We then calculate
the time delay in each cycle as τi = tRi − tSi (see Figure 1E).
Also, the main frequency (ω) of the neuronal population was
obtained detecting the peak of the power spectrum computed
via the Fast-Fourier Transform (FFT). For the 3-neurons-motif
and also for NMMs, we compute the period in each cycle as
the difference between consecutive peaks at times ti, i.e., T

∗
i =

t∗i+1 − t∗i (∗ = R,S). The time delay is estimated as in the case of
neuronal populations.

3. RESULTS

We investigated the phase locking characteristics, or
equivalently in this case the synchronization characteristics,
of a unidirectionally coupled system A → B. Our main analysis
assumes that the two dynamical nodes A and B are phase
locked such that computing the phase difference is equivalent to
compute the time difference between peaks. For this reason, from
now on we talk about synchronization instead of phase locking.
In a delayed synchronization condition, the time difference
between the spikes in A and B is positive (A leads B), i.e., the
pulse in B occurs after the pulse in A. In the less intuitive case of
anticipated synchronization, the pulse in B precedes that in A,
yielding a negative time difference.

3.1. The DS-AS Transition Can be Mediated
by the External Input at the Receiver
In this section we analyze how an input in the receiver side can
induce a transition from DS to AS (or vice versa) for the three
systems under study.
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3.1.1. 3-Neuron Motif

We start by studying the spiking dynamics of a circuit
composed of 3 Hodgkin-Huxley cells coupled by chemical
synaptic connections as in Matias et al. (2011) (for a schematic
representation of the network architecture see Figure 1A and the
Methods section for more details). The sender (S) neuron excites
the receiver (R) neuron which also participates in an inhibitory
loop mediated by an interneuron. For the simplest situation in
which gG = 20 nS and all cells receive the same external current
ISext = IRext = IInterext = 280 pA, the neurons synchronize in the
expected DS regime which exhibits the expected pre-post spike
order. The neuronal time series show that the R neuron fires right
after the S neuron (top panels of Figure 1D).

For an external constant current, after a transient time and
within a synchronized state, the spike time difference converges
to a constant value τ = τi that is independent of the initial
conditions. By definition, DS is characterized by a positive τ (or
phase difference) and AS by a negative τ (or phase difference).
As we increase the inhibitory conductance gG, the spike time
difference τ decreases, eventually changing sign and reaching
negative values (see Matias et al., 2011). When this happens, the
S and R neurons fire in a post-pre order (see bottom panel of
Figure 1D for gG = 20 nS and IRext = 320 pA) characteristic of
the AS regime. A similar effect can be obtained by increasing the
external current at the receiver IRext , without changing the value of
the conductance gG, as discussed below.

The dependence of τ with gG has been previously studied
in Matias et al. (2011) for a large region of parameter space. The
transition from DS to AS is continuous and smooth, and τ is a
function of gG (see Figure 2A). Here we extend these findings,
showing that a similar transition from DS to AS can be mediated
by a different mechanism, namely increasing the external current
of the R neuron. Starting from a DS regime in which ISext = IRext
and gG = 20 nS, the spiking time difference τ decreases as we
increase IRext (see Figure 2D).

3.1.2. Neuronal Populations

Similar patterns of out-of-phase synchronization have been
reported for two unidirectionally coupled cortical-like
populations composed of hundreds of neurons connected
by chemical synapses (see Matias et al., 2014, Figure 1B and
Methods for more details). Each population is composed by
excitatory and inhibitory neurons, each of them receiving an
independent Poisson input with rate λ, which accounts for
excitatory synapses from neurons that are not included in
the population. By construction, both Sender (S) and receiver
(R) populations have inhibitory loops within the populations.
Depending on the synaptic conductances and the external
Poisson current, the mean activity of all neurons in each
population may exhibit an oscillatory component. Moreover,
the activity of the S and R populations can synchronize with
a specific phase difference or equivalently time difference. As
an example, it can be seen in the top panel of Figure 1E that
if the neurons from both populations receive a noisy spike
train with distribution rate λSext = 2.4 kHz and λRext = 2.8 kHz
and the inhibitory synaptic conductance are gSG = 4.0 nS and
gRG = 8.0 nS, the system operates in a DS regime. The peak of the

mean activity 〈V〉 of the S population occurs before the peak of
the R population. For the populations the spike time difference
in each cycle i defined as τi = tRi − tSi , where t

S
i is the peak of

the mean activity of all neurons in S at the i − th cycle. Due to
the noise, we can also define a spike time difference τ as the
mean of τi averaged over many cycles. If we increase the external
Poisson input at the R population, τ decreases and the system
reaches an AS regime (see the bottom panel of Figure 1E for
λRext = 3.0 kHz). The transition from DS to AS is continuous
and smooth (see Figure 2E). To our knowledge, this is the first
time that the DS-AS transition mediated by the level of noise in
the receiver system is reported. Conversely, the dependence of
τ with the inhibitory conductance has been previously reported
in Matias et al. (2014) (see Figure 2B).

3.1.3. Neural Mass Models

To further investigate the robustness of the relationship between
the local parameters of the receiver system and the existence
of anticipated synchronization we also studied the case of two
unidirectionally coupled neural mass models, which represents
a reduced model of spontaneous cortical dynamics. The neural
mass model used here accounts for the neuronal population
dynamics and uses three non-linear differential equations per
node: one equation for the excitatory subpopulation, one for
the inhibitory subpopulation and one for the number of open
potassium channels. By its own definition the model has an
inhibitory loop mediated by an effective conductance aei from
excitatory to inhibitory neurons and aie from inhibitory to
excitatory neurons (see Figure 1C). We find, as in previous
cases, that two neural masses unidirectionally connected may
synchronize and the inhibitory conductance aie as well as the
external current IRext at the receiver node can control the phase-
locking difference between them (see Figure 1F). The transition
from DS to AS via zero-lag can be obtained by increasing aie or
IRext (see Figures 2C,F).

3.2. The Frequency of the Free-Running
Receiver Serves as a Mechanism
Underlying the Synchronization Transition
Based on previous work on anticipated synchronization in
the framework of Equation (1) (Pyragienè and Pyragas, 2013;
Hayashi et al., 2016; Dima et al., 2018), we studied the effect
that an inhibitory connection and the external current plays
in determining the frequency of the receiver system when
the sender and the receiver are uncoupled (the receiver free-
running frequency ωR). In fact, we find that both the inhibitory
conductance and the external stimuli modify the receiver internal
dynamics. More important, we find a correlation between the
transition from DS to AS regime and the increase of the receiver
free running frequency ωR, and consequently in ωR − ωS since
ωS is fixed. We find that the DS-AS transition can be mediated
by a change in the receiver free running frequency in multiple
scales and by two different parameters (see Figure 4). Therefore,
we propose that a faster free-running frequency of the receiver is
the mechanism yielding anticipation. Similarly, it is also possible
to obtain AS by keeping the Receiver intact and slowing-down
the Sender free-running frequency.
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FIGURE 2 | Assessing anticipated and delayed synchronization in cortical motifs. For all the models—3-neurons-motif (left), neuronal populations (middle) and neural

masses (right)—a transition from delayed synchronization (DS, τ > 0, cyan dots) to anticipated synchronization (AS, τ < 0, yellow dots) is possible increasing the

inhibition in the receiver (A–C); or increasing the external stimulus (D–F). Gray shadow represents the standard deviation over 10 runs (see Methods). For the

parameters used here see Methods.

FIGURE 3 | Receiver free-running frequency. Assessing the free-running frequency of the receiver when uncoupled from the sender for all the models. (A–C) show

how the receiver’s frequency changes when varying the internal parameter while (D–F) when changing an external parameter. Blue dashed line represents the

sender’s natural frequency and magenta dots represents the receiver’s frequency. Gray shadow represents the standard deviation over 10 runs (see Methods). For the

parameters used here see Methods.

An increasing external stimuli increases the frequency of the
uncoupled receiver for the three systems (see Figures 3D–F). On
the contrary, an increasing inhibitory conductance increases the
receiver frequency for the 3-neuron motif and the neural mass
model but decreases the free-running frequency in the case of
neuronal populations (compare Figures 3A,C with Figure 3B).
Despite the fact that more inhibition is typically associated
to less activity, it is well-established that resonant neurons, as
Hodgkin Huxley model, can exhibit inhibition-induced spiking
(Izhikevich, 2003). For neuronal populations and the neural
mass model, the transition from DS to AS occurs roughly when
the receiver pulses faster than the sender, whether it is due to
the internal (Figures 4B,C) or the external factor (Figures 4E,F).

Nevertheless, this effect cannot be observed for the 3-neuron
motif (Figures 4A,D), when the system is uncoupled; the
Receiver always pulses at the same frequency or faster than
the Sender (Figures 3A–D). This is due to the fact that, unlike
other motifs, the Sender neuron is not subjected to any kind of
inhibition. This means that in the uncoupled configuration, in
the absence of inhibition at the receiver and same external current
both neurons are identical and consequently ωR = ωS.

4. DISCUSSION

In this paper we have studied the effects that a change in the
inhibitory conductance or an increase in the external forcing play
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FIGURE 4 | Delayed and anticipated synchronization as a function of the free-running frequency. For all the cases, τ (y-axis) was computed in a coupled system,

while the frequency difference (x-axis) was computed for an uncoupled system; the parameters used in both cases are specified by the color code. (A–C) Internal

parameter vs. frequency differences and (D–F) external parameter vs. frequency differences, for 3-neurons-motif, neuronal populations, and neural masses,

respectively. Horizontal and vertical dashed lines represent zero−lag synchronization (coupled system) and a perfect match between sender and receiver free-running

frequencies, respectively. For the parameters used here see Methods.

in the transition from delayed to anticipated synchronization in
neuronal circuits. Our study covers three cases of unidirectionally
coupled systems: two Hodgkin-Huxley (HH) neurons where the
receiver neuron is coupled to an inhibitory interneuron, two
populations and two neural mass (NM) models. The results

obtained for the HH neurons and the neuron populations
confirmed that, when changing the inhibitory conductance in the
receiver side, the systems can undergo a delayed to anticipated
synchronization transition (Matias et al., 2011, 2014). Similar
results were obtained when analyzing two coupled neural mass
(NM) models. Interestingly, we found a second mechanism that
yields similar results. If we fix the inhibitory conductance in
all cases but change the external input (external current for the
HH and NM models or the Poisson rate in the populations) the
system can also undergo a DS to AS transition.

To unveil if the two mechanisms are independent or not, we
studied how the pulsating frequency of an isolated system (a pair
of excitatory-inhibitory neurons, a single population containing
excitatory and inhibitory neurons or a NMmodel) changes when
changing the inhibitory conductance or the external forcing.
We found for the excitatory-inhibitory pair and the NM model
that an increase in the inhibitory conductance indeed increases
the pulsating frequency (see Figures 3A–C), as happens when
we increase the external current. However, for the parameters
we have used for the populations, an opposite behavior is
observed: an increase in the inhibitory conductance decreases
the oscillating frequency of the population. These results suggest
that the two mechanisms might be independent although a more
exhaustive analysis is necessary. Nevertheless, we propose that
the unifyingmechanism that promotes the transition between DS
and AS in the sender-receiver motif is indeed an increase of the
internal dynamics of the receiver system. This was observed at
the three scales that we examined. This result is in agreement with
previous studies of AS in a theoretical framework with the explicit
time-delay in Equation (1) (Hayashi et al., 2016) and in simplified

neural models without the explicit time-delay (Pyragienè and
Pyragas, 2013, 2015; Dima et al., 2018).

Previous studies have shown that a biologically plausible
mechanism for anticipation of pre-synaptic inputs is a
combination of short-term synaptic depression (STD) and

intrinsic spike-frequency adaptation (SFA) (Puccini et al.,
2006, 2007). In the presence of both STD and SFA the post-
synaptic system approximately computes the derivative a
pre-synaptic stimuli which allows it to anticipate temporally
incoming synaptic inputs. Their findings quantitatively agree
with experimental results on anticipatory responses to moving
stimuli in the primary visual cortex (Jancke et al., 2004; Puccini
et al., 2007). We propose that the DS-AS transition studied
here could be mediated by any parameter that turns the
internal dynamics of the free-receiver faster and could also
account for delay compensation in cortical systems. Specially
the DS-AS transition could explain commonly reported short
latency in visual systems (Orban et al., 1985; Nowak et al.,
1995; Kerzel and Gegenfurtner, 2003; Jancke et al., 2004;
Puccini et al., 2007; Stepp and Turvey, 2010, 2017; Martinez
et al., 2014). Therefore, our results open new possibilities to
further experimental investigation of anticipatory dynamics in
neuronal systems.
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