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Abstract

As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replica-

tion on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papil-

loma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can

efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous

study we have shown that expression of the AAV2 rep gene is not compatible with efficient

replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and

ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite

effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication

these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here,

we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype.

Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at

least when a double-stranded AAV2 genome template was used. We also found that the

capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was

significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-

helicase subdomains exert diverging activities, which contribute to distinct steps of the

AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering

yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis,

genomic integration or packaging, which all involve the Rep-helicase activity.
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Introduction

Adeno-associated virus 2 (AAV2) is a helper virus-dependent human parvovirus with a unique

biphasic life cycle. In presence of a helpervirus such as herpes simplex virus 1 (HSV-1), adeno-

virus 2 (AdV2), or human papillomavirus 16 (HPV-16), it undergoes lytic replication [1–4],

while in absence of a helpervirus, it establishes latency. The AAV2 particle consists of a small

icosahedral capsid enclosing a single-stranded (ss)DNA genome of approximately 4,700 nucle-

otides [5]. The AAV2 genome contains inverted terminal repeats (ITRs) at both ends flanking

two clusters of genes, rep and cap, which due to splicing events, alternative start codons, and

nested open reading frames (ORF) encode a total of eight proteins from three different pro-

moters. [6–9]. The ITRs form hairpin structures and contain a Rep-binding site (RBS) as well

as a terminal resolution site (trs), which together act as viral origin of DNA replication [10,

11]. Among the eight proteins encoded by AAV2 are four different Rep proteins termed

Rep40, Rep52, Rep68, and Rep78, which differ in their apparent molecular weight as well as in

the composition of their structural and functional domains [12] (Fig 1A). At the very N-termi-

nal region of the rep open-reading frame (ORF) the combined DNA-binding and endonucle-

ase domains are located [13–15] (Fig 1A). The DNA-binding domain (map position 1–200) is

responsible for binding to double-stranded (ds)DNA templates at specific Rep binding site

(RBS) motifs consisting of the minimal consensus sequence GAGYGAGC [16], which are

located within the AAV2 ITRs and the p5 promoter region. The DNA-binding domain har-

bors two rolling circle replication (RCR) motifs termed RCR2 and RCR3 [14, 17], which com-

prise the endonuclease activity which is essential for the terminal resolution process during

DNA replication [17], as well as for integration of the AAV2 genome into the host cell genome

to establish latency [18–20] (Fig 1A). In the center of the rep ORF the Rep-helicase is located

(map position 225–490) (Fig 1A and 1B). This particular viral helicase belongs to the super-

family 3 (SF3) helicases, which are encoded mainly by small DNA viruses [21]. The complete

helicase domain can be subdivided into two main components, the α-helix domain and the

AAA+ region (Fig 1B). The α-helix domain is located at map position 225 to 278 and is

responsible for hexamerization. The AAA+ motif is located at map position 278 to 490 [22, 23]

and can be further divided into several sub-domains, including the ATPase domain (map posi-

tion 329–490) [23], which contains four Walker motifs [22]. The core of the SF3 ATPase

domain constitutes the Walker motifs A, B and B’, which are highly conserved entities also

found in SF1 and SF2 helicases [21]. Unlike other helicases, the SF3 helicase contains a third

type of Walker motif, C, which is located between B’ and the rest of the C-terminal protein

domain [24] (Fig 1B). The Walker motifs A, B and B’ represent residues that directly interact

with Mg-ATP as well as Mg-ADP, respectively, and are critical for NTP stability during NTP

turnover [21, 24–27]. The Walker motif C however, is bearing a polar residue, which is mediat-

ing interactions necessary for NTP hydrolysis rather than NTP binding [21, 28]. Typically, SF3

helicases form hexameric rings and have been shown to either specifically bind sites on

dsDNA templates via the N-terminal DNA-binding domain, or non-specifically bind ssDNA

templates via the helicase domain itself [26, 29, 30]. The combined ATPase/helicase domain is

required for AAV2 DNA replication and packaging of the ssDNA genome into pre-assembled

capsids [31, 32]. At the C-terminal end of the rep ORF a protein kinase A (PKA) binding site is

located (map position 526–621) and consists of a Zn-finger motif [33, 34] and a PKA inhibitor

(PKI)-like motif [35] (Fig 1A). While the Zn-finger motif is responsible for inhibition of cell

cycle progression [34, 36], the PKI-like motif is responsible for inhibition of AdV DNA repli-

cation [35]. The smaller Rep40/52 proteins, which originate from transcripts controlled by the

p19 promoter, and the larger Rep68/78 proteins which originate from transcripts controlled

by the p5 promoter, all comprise the ATPase/helicase domain. However, the DNA binding
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Fig 1. The AAV2 Rep protein domains and the Rep expression plasmids analyzed in this study. (A)

Schematic representation of the main protein domains within the rep ORF (grey bars). The promoters p5 and

p19 responsible for the expression of the different Rep proteins are indicated. The common splicing site at the

C-terminal end of the ORF is depicted with an up-facing arrow head. (B) Schematic representation of the

AAV2 Rep proteins analyzed in this study; (i) the wild-type (wt) Rep, (ii) the helicase-deficient mutant Rep-

K340H and (iii) the helicase mutant Rep-D371Y. The ATPase/helicase domain (grey box) and the
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and endonuclease domains are part of the Rep68/78 proteins only and the C-terminal Zn-fin-

ger and PKI-like motifs are part of the unspliced Rep52 and Rep78 proteins only (Fig 1A).

AAV2 has developed distinct strategies to inhibit helpervirus replication, likely to reduce

competitive interactions within the co-infected cell [37–43]. In previous studies, we have dem-

onstrated that the expression of the AAV2 Rep68/78 proteins leads to a significant inhibition

of HSV-1 DNA replication [37, 38]. Moreover, we found that the AAV2 Rep protein domains

responsible for the inhibition of HSV-1 DNA replication include the DNA-binding and the

ATPase/helicase activities, while the endonuclease activity is not required [38, 44]. In those

studies, we have utilized a set of mutant Rep proteins lacking distinct activities or domains to

assess their effect on the production of infectious HSV-1 particles. We demonstrated that

Rep68, Rep78 and Rep68/78-Y156F, which has a mutation within the RCR2 motif required

for endonuclease activity [17, 45, 46], reduce titers of infectious HSV-1 particle stocks by

approximately 100-fold, whereas Rep52, which lacks the DNA binding domain, and Rep68/

78-K340H, which is deficient for helicase activity [47], do not [38]. Of note, the mutant Rep-

K340H was generated by introducing a two-base change within the Lysine (K) codon at posi-

tion 340. In particular, the codon AAG (K) was converted to CAC (H) (Fig 1B) [47, 48]. This

mutation is located within the Walker motif A and directly affects the purine binding capacity

and therefore completely abrogates helicase activity. In conclusion, those results suggested that

the Rep activities required for AAV2 replication precisely coincide with the activities responsi-

ble for inhibition of HSV-1 replication and that efficient HSV-1 replication is not compatible

with expression of a functional AAV2 rep68/78 gene.

Here, we describe the phenotype of a new Rep mutant (D371Y) which harbors a Tyrosine

(Y) in place of an Aspartic-acid (D) at position 371 of the amino acid sequence. This mutant

was obtained by a single-base substitution (G!T) generating a TAC in place of a GAC codon

and is located between Walker motifs A and B (Fig 1B). This Rep mutant displayed an unex-

pected phenotype, as it did not block the replication of HSV-1 but was still capable of support-

ing AAV2 replication, at least when dsAAV2 genomes were used as template. In addition, we

found that the capacity of Rep-D371Y to induce apoptosis and DNA damage responses in

transfected cells was significantly reduced compared to wild-type (wt) Rep.

Materials and Methods

Cells and viruses

Vero (ATCC—LGC Standards GmbH, Wesel, Germany) and Vero 2–2 cells [49] were main-

tained in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum,

100 units/ml penicillin G, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B. For cul-

turing Vero 2–2 cells, 500 μg/ml G418 was added to the medium. All cell cultures were kept

at 37˚C and 5% CO2. The wt HSV-1 (strain F) was grown in Vero cells and titers were deter-

mined as described previously [38, 44]: briefly, confluent monolayers of Vero cells were

infected with wt HSV-1 at a MOI of 0.1 and incubated until the cytopathic effect (CPE)

reached 100%. Then, the cells were lysed by three freeze/thawing-cycles and cellular debris

was separated from the virus stock by centrifugation for 10 min at 1,900 x g. The cleared

corresponding mutations (vertical black lines) are indicated. A detailed representation of the helicase domain

(aa 225–490) is shown below. The mutation K340H is located within the Walker motif A whereas the mutation

D371Y is located between the Walker motifs A and B. The corresponding locations within the Rep aa-

sequence are indicated. (C) Rep protein levels. Plasmids encoding either the wt Rep, the mutant Rep-K340H,

the mutant Rep-D371Y or no Rep (pcDNA) were transfected into Vero cells. At 24 hrs after transfection, the

cells were harvested and processed for Western analysis using a Rep-specific antibody. The different Rep

protein variants are indicated on the right. Detection of actin served as a loading control.

doi:10.1371/journal.pone.0170908.g001
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lysate was titrated on Vero cells using the Spearman-Karber method. Virus stocks were kept

at -80˚C for long term storage. Production of wt AAV2 and rAAV2-D371Y stocks, followed

by purification on a Iodixanol gradient was performed as described elsewhere [50–52].

Transfection of Vero and Vero 2–2 cells was performed using the Lipofectamine™ LTX and

Plus™ reagents from Invitrogen™ (Thermo Fisher Scientific, Reinach, Switzerland) according

to the manufacturers’ protocol.

Plasmids

The plasmids expressing the wt Rep (pcDNA.Rep68/78) and the mutant Rep-K340H (pcDNA.

Rep68/78-K340H) genes were described elsewhere [38]. The plasmid expressing the mutant

Rep-D371Y was cloned by PCR. A first round of PCR was performed using the pcDNA.

Rep68/78 plasmid DNA as a template with primers reaching from the first BamHI-site

(nt1040; relative to the AAV2 genome) to the AccI-site (nt1420; relative to the AAV2 genome)

where in the reverse primer the G!T substitution at position 1431 was introduced (for.
primer:GCAGTGGATCCAGGAGGACCAGGCCTCATA/ rev. primer:ACCAGATCAC
CATCTTGTAGACACAGTCGT).A second round of PCR was performedwith
primersreachingfrom AccI-site(nt1413)to the XhoI-site(nt2225)
(for. primer:CCCTTCAACGACTGTGTCTACAAGATGGTG/ rev. primer:CTTCAGA
GAGAGTGTCCTCGAGCCAATCTG). The two PCR fragments were ligated between the

BamHI and XhoI sites of pcDNA.Rep68/78 plasmid DNA. The empty plasmid backbone

pcDNA3.1+ was purchased from Invitrogen (Thermo Fisher Scientific, Reinach, Switzerland,

Cat.no. V790-20). The mRFP expressing plasmid (pcDNAmRFP) was obtained from Michele

Gastaldelli (University of Zurich). The amplicon vectors pHSV-TetO [37] and pAV2-LacO

[53] were described previously. The plasmid pSV2-eYFP/lacI, expressing enhanced yellow

fluorescent protein (eYFP) linked to the lac repressor protein (LacI) [54], was kindly provided

by D. L. Spector (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). Plasmid pEYFP-

TetR expressing eYFP linked to the tet repressor protein (TetR) was described elsewhere [55,

56]. pHSVGFP, an HSV-1 amplicon vector containing the GFP-coding sequence under the

control of the HSV-1 IE 4/5 promoter [57] and pAV2GFP, a recombinant AAV (rAAV) plas-

mid containing the GFP-coding sequence under the control of the HCMV IE1 enhancer/pro-

moter flanked by the AAV2 ITRs [53], were described elsewhere. The BAC-cloned HSV-1

genome deficient for the packaging signal pac and the gene icp27 (fHSVΔpacΔ27Δkn) together

with pEBHICP27 represent a replication-competent, packaging-defective HSV-1 genome and

were described previously [58]. The hybrid vector plasmid pHyRaNGFPa was described in

[53]. In brief, the plasmid pRep harboring the full-length Rep ORF was cut with NotI and the

overhang-ends were blunt-end repaired with T4 DNA polymerase. This 2.5-kb fragment was

inserted into the blunt-ended SphI site of pHSVNot resulting in pHyRa. In parallel, the BglII

fragment was excised from the pAV2GFP plasmid which contains the ITR-flanked GFP cas-

sette and was inserted into the BamHI site of pUC18-Not. The resulting plasmid pAV2GFP-

Not was cleaved with NotI and the 2.3-kb fragment containing the ITR-flanked transgene gfp

was inserted into the unique NotI site on pHyRa, forming pHyRaNGFPa. To generate the plas-

mid pHyRD371YGFPa, the same strategy was used to generate pHyRaNGFPa, but instead a

pRep plasmid was used harboring the mutation D371Y (pRep-D371Y). pRep-D371Y was

cloned by ligating the PstI fragment from the pcDNA.Rep78-D371Y template directly into the

PstI cleaved target plasmid pRep. pcDNA.eGFP expressing eGFP under the control of the

HCMV IE1 enhancer/promoter was described previously [38]. The plasmid pAV2-D371Y has

been constructed as follows: the 837 bp BamHI (partial digestion)-HindIII fragment of pAV2

was replaced by the 837 bp BamHI-HindIII fragment of pcDNA.Rep-D371Y.

Mutant AAV2 Rep-D371Y Proteins Display an Unexpected Phenotype
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Rep protein synthesis and purification

The wt Rep68 and the mutant Rep68-D371Y proteins were expressed and purified as described

elsewhere [26, 59].

Antibodies

Primary antibodies. The mouse anti-AAV Rep mAb (clone 303.9) was purchased from

Fitzgerald Industries International (Acton, MA, USA), the mouse anti-Actin mAb (clone AC-

47) from Sigma (Sigma-Aldrich Chemie GmbH Buchs, Switzerland), the mouse anti-phospho-

ATM (S1981) mAb (clone 10H11.E12) from Rockland Immunochemicals Inc. (Limerick, PA,

USA), the rabbit anti-phospho-RPA32 (S4/S8) pAb BL- A300-245A from Bethyl Laboratories

(Montgomery, TX, USA), the mouse anti-phospho-H2A.X (S139) mAb (clone JBW301) from

Upstate Millipore (Merck AG, Zug, Switzerland) and the mouse anti-GFP MAb JL-8 from

Clontech (Takara Bio Europe SAS). The alkaline phosphatase-conjugated anti-DIG antibody

(Anti-Digoxigenin-AP, Fab fragments, 11093274910) was purchased from Roche Applied Sci-

ence (Roche Diagnostics, Rotkreuz, Switzerland).

Secondary antibodies. Goat anti-mouse IgG(H+L)-Alexa Fluor 488 (AF488), goat anti-

mouse IgG(H+L)-AF594 and goat anti-rabbit IgG(H+L)-AF488 were purchased from Molecu-

lar Probes (Thermo Fisher Scientific, Reinach, Switzerland). Rabbit anti-mouse IgG (whole

molecule)-peroxidase was purchased from Sigma (Sigma-Aldrich Chemie GmbH Buchs,

Switzerland).

Western blot analysis

Vero cells were transfected with 0.5 μg of the individual pcDNA.Rep plasmids or empty

pcDNA3.1+ vector. At 24 h after transfection, the cells were lysed and processed for Western

analysis as described previously [37]. Primary antibodies were used at the following dilutions:

mouse anti-AAV Rep mAb clone 303.9, 1:100; mouse anti-GFP MAb JL-8 1:8,000, rabbit anti-

mouse IgG (whole molecule)-peroxidase, 1:10,000.

Immunofluorescence analysis

Immunofluorescence staining was performed as described previously [37]. The primary anti-

bodies were used at the following dilutions: mouse anti-AAV Rep MAb, 1:100; rabbit anti-

phospho-RPA32 (S4/S8) pAb, 1:100; mouse anti-phospho-ATM (S1981) mAb, 1:100; and

mouse anti-phospho-H2AX (S139) mAb, 1:100. Alexa Fluor-conjugated secondary antibodies

were diluted 1:500. Confocal laser scanning microscopy (CLSM) was performed with a SP2

confocal microscope from Leica (Leica Microsystems, Heerbrugg, Switzerland) as described

previously [60].

HSV-1 amplicon packaging assay

Packaging of the HSV-1 amplicons pHSVGFP was performed as described previously [38, 58].

Briefly, Vero 2–2 cells were transfected with 0.5 μg of pHSVGFP, 2 μg of fHSVΔpacΔ27Δkn,

and 0.2 μg of pEBHICP27 together with the indicated amounts of pcDNA.Rep plasmids or

empty pcDNA3.1+ vector. Three days later, cells were harvested and HSV-1 amplicon particles

were purified as described above for wt HSV-1 stocks. The purified HSV-1 amplicon stocks

were titrated by infection of Vero cells and enumeration of EGFP+ cells 48 hpi by flow cytome-

try on a Gallios Flow Cytometer (Beckman Coulter International SA, Nyon, Switzerland)

and analyzed with the Kaluza Analysis-Software (Beckman Coulter International SA, Nyon,

Switzerland).
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Southern analysis

Southern analysis was performed essentially as described previously [38]. Briefly, Vero 2–2

cells were co-transfected with the different Rep encoding plasmids (pcDNA.Rep) or the empty

backbone plasmid pcDNA3.1+ together with the AAV2 replicon plasmid pAV2GFP and

infected with wtHSV-1 (MOI 2) one day later. Three days after infection, the cells were har-

vested and extrachromosomal DNA was extracted [61]. The DNA was digested with DpnI to

cut bacterial input DNA, separated on a 1% agarose gel, and transferred to a positively charged

nylon membrane (Hybond N+ from Amersham—GE Healthcare, Opfikon, Switzerland).

Hybridization with a digoxigenin (DIG)-labeled probe specific for the GFP-coding sequence

and immunological detection using an alkaline phosphatase-conjugated anti-DIG antibody

and chemiluminescence substrate (CDP Star) were performed as described by the supplier

(Roche Applied Science, Rotkreuz, Switzerland). The DIG-labeled probe was produced by

PCR amplification as described previously [38].

Annexin V staining

Apoptosis assays were performed as described elsewhere [38]. Briefly, Vero cells were trans-

fected with 0.25 μg pEGFP-N3 together with 0.5 μg pcDNA.Rep68/78 plasmids or empty

pcDNA3.1+ vector as indicated. Annexin V staining was performed using the annexin V-Cy5

Apoptosis Detection Kit from Abcam (Lucerna-Chem AG, Luzern, Switzerland) according to

the manufacturer’s protocol. The cells were analyzed by flow cytometry using a Gallios Flow

Cytometer (Beckman Coulter International SA, Nyon, Switzerland) with filters specific for

eGFP (transfected cells) and Cy5 (annexin V+ cells) and analyzed with the Kaluza Analysis-

Software (Beckman Coulter International SA, Nyon, Switzerland).

Electron microscopy

Virus preparations were adsorbed to carbon coated parlodion films mounted on 300 mesh/

inch copper grids (EMS, Fort Washington, PA, USA) for 10 min, washed once with distilled

water, and stained with saturated uranylacetate (Fluka, Buchs, Switzerland) for 1 min at room

temperature. Specimens were analyzed in a transmission electron microscope (CM 12, Philips,

Eindhoven, The Netherland) equipped with a CCD camera (Ultrascan 1000, Gatan, Pleasan-

ton, CA, USA) at an acceleration voltage of 100 kV.SV-1.

Gel filtration chromatography

Binding capacity of wt Rep68 and mutant Rep68-D371Y to either ssDNA or dsDNA (RBS)

was performed as described elsewhere [59]. Briefly, wt Rep68 or mutant Rep68-D371Y pro-

teins (16.6 μM) were incubated in the absence or presence of 2.8 μM ssDNA (polydT25) or

2.8 μM RBS dsDNA (28-mer: generated with the oligos 5’ GCCTCAGTGAGCGAGCGAGCGCG
CAGAG 3’ and 5’ CTCTGCGCGCTCGCTCGCTCACTGAGGC3’) for 30 min on ice. Samples

(50 mL) were chromatographed on a Superose 6 10/300 GL column (GE Healthcare) with a

flow rate of 0.5 ml/ min. Protein elution was detected by UV-light at 280 nm.

Results

Expression levels of the wild-type and mutant rep genes

In order to characterize the phenotype of the Rep mutant D371Y, we compared three different

Rep constructs; (i) the wt Rep, (ii) the helicase-null mutant Rep-K340H, and (iii) the mutant

Rep-D371Y (Fig 1B). All rep genes were cloned into the expression vector pcDNA3.1+ and are

under the control of the constitutively active CMV IE1 enhancer/promoter. To estimate the
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expression levels, Vero cells were transfected with the individual Rep encoding plasmids and

subjected to Western analysis 24 hrs later using a Rep-specific antibody. Actin staining served

as a loading control. As shown in Fig 1C, the accumulation levels of the different Rep protein

variants encoded by the respective expression plasmids were comparable.

The Rep mutants Rep-D371Y and Rep-K340H both allow HSV-1 DNA

replication, whereas wt Rep does not

To assess the effects of the different Rep constructs on HSV-1 DNA replication we used a pre-

viously described visualization system employing the interaction of the tetracycline operator

(TetO) located within a HSV-1 replicon plasmid (pHSV-TetO) with the tetracycline repressor

(TetR) DNA-binding domain fused to the enhanced yellow-fluorescent protein (eYFP-TetR)

(Fig 2A) [37, 56, 62]. Vero cells were co-transfected with pHSV-TetO, the eYFP-TetR express-

ing plasmid (pSV2eYFP-TetR) and the individual rep expression plasmids. The following day,

the cells were infected with wt HSV-1 at a multiplicity of infection (MOI) of 2 and, 24 hrs later,

fixed and stained with a Rep-specific antibody. Then, the formation of pHSV-TetO replication

compartments (RCs) in Rep-positive cells was visualized by confocal laser scanning micros-

copy (CLSM). As shown in Fig 2B, the Rep mutants Rep-K340H and Rep-D371Y both allowed

the formation of mature pHSV-TetO RCs while specifically in cells expressing the wt Rep pro-

teins, pHSV-TetO RCs were not observed. A cell transfected with a control plasmid expressing

the monomeric red fluorescent protein (mRFP), which allowed the formation of a mature

HSV-1 RC was used as a positive control.

An HSV-1 packaging assay was utilized to quantify the effects of the different Rep con-

structs on the production of HSV-1 particles [38]. Briefly, Vero 2–2 cells were co-transfected

with the individual rep expression plasmids, HSV-1 helper DNA which provides HSV-1 repli-

cation and packaging factors [58], and the HSV-1 amplicon plasmid pHSVGFP, which con-

tains an HSV-1 origin of DNA replication, an HSV-1 DNA packaging/cleavage signal, and a

GFP transgene cassette [53, 63, 64]. Three days after transfection, the pHSVGFP amplicon vec-

tor particles were harvested and titrated on Vero cells. Compared to the positive control (wt

Rep) both Rep mutants (K340H and D371Y) significantly rescued pHSVGFP titers by more

than 10-fold and at comparable levels (Fig 2C). The helicase-null mutant Rep-K340H, which

cannot support AAV2 replication, was previously known to allow HSV-1 replication [38, 44].

As the mutant Rep-D371Y allowed HSV-1 replication, we expected that it may not support

AAV2 DNA replication either. However, the following experiment revealed that Rep-D371Y

has the unexpected property that it can support AAV2 DNA replication without blocking

HSV-1 DNA replication.

Unlike the mutant Rep-K340H, the mutant Rep-D371Y supports AAV2

DNA replication

To test the capability of the different Rep constructs to support AAV2 DNA replication we

used a previously described visualization system employing the interaction of the Lac operator

(LacO) located within an AAV2 replicon plasmid (pAV2-LacO) with the Lac repressor (LacI)

DNA-binding domain fused to eYFP (eYFP-LacI) (Fig 2D) [55]. Vero cells were co-transfected

with pAV2-LacO, the eYFP-LacI expressing plasmid (pSV2eYFP-LacI), and the individual rep
expression plasmids. The following day, the cells were infected with wt HSV-1 (MOI of 2) and,

24 hrs later, fixed and stained with a Rep-specific antibody. Surprisingly, CLSM revealed that

unlike Rep-K340H, Rep-D371Y supported the formation of pAV2-LacO RCs (Fig 2E). A cell

expressing wt Rep is shown as a positive control and a cell expressing mRFP was used as a neg-

ative control (Fig 2E).
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The capability of Rep-D371Y to support AAV2 replication was also examined by Southern

analysis. For this, Vero cells were co-transfected with the AAV2 replicon pAV2GFP and indi-

vidual Rep constructs. The pAV2GFP replicon contains a recombinant AAV2 genome in

which a green-fluorescent protein (GFP) transgene cassette is flanked by the AAV2 ITRs. At

Fig 2. Effects of the different Rep constructs on HSV-1 and AAV2 DNA replication. (A) Replication of an HSV-1 replicon is visualized with plasmid

pHSV-TetO containing an HSV-1 origin of DNA replication (oriS) and a TetO-cassette consisting of 35x TetR binding sites. In presence of HSV-1

replication factors (HSV-1), the accumulation of pHSV-TetO replication products is visualized by binding of an eYFP-TetR fusion protein (yellow

fluorescent RCs). (B) Cells expressing the different Rep constructs (indicated on top) were analyzed for the ability to inhibit HSV-1 replication. The

presence of Rep proteins was confirmed by staining with a Rep-specific antibody (red; bottom panels). A cell transfected with pcDNAmRFP expressing

the monomeric red fluorescent protein (mRFP) was used as a positive control. DAPI was used to stain the nuclei. Scale bar; 5μm. (C) Effects of the

different Rep constructs on HSV-1 amplicon vector production. Vero 2–2 cells were transfected with the HSV-1 amplicon DNA (pHSVGFP),

packaging-defective HSV-1 helper DNA (fHSVΔpacΔ27Δkn), HSV-1 ICP27 encoding plasmid (pEBHICP27) and the different Rep encoding plasmids.

At 72 hrs post transfection the pHSVGFP amplicon vector particles were harvested and titrated on Vero cells. The data are shown as

means ± standard errors (SE) from three independent experiments. Asterisks indicate statistically significant differences based on a paired two-tail

Student t-test (** = p<0.01). (D) Replication of an AAV2 replicon is visualized with plasmid pAV2-LacO, which is harboring a LacO-cassette consisting

of 40x LacI binding sites flanked by AAV2 ITRs. In presence of the different Rep constructs and HSV-1 helper factors (HSV-1), the accumulation of

pAV2-LacO replication products is visualized by binding of an eYFP-LacI fusion protein (yellow fluorescent RCs, top panels). (E) Cells expressing the

different Rep constructs (indicated on top) were analyzed for the ability to replicate pAV2-LacO and accumulate corresponding RCs. A Rep-specific

antibody was used to confirm the synthesis of Rep proteins in the transfected cells (red; bottom panels). A cell expressing mRFP was used as a

negative control. DAPI was used to stain the nuclei. Scale bar; 5μm. (F) Vero 2–2 cells were transfected with pAV2GFP and the different Rep

constructs as indicated. At 24 hrs after transfection, the cells were infected with HSV-1 (MOI 2) and subjected to Hirt DNA extraction 48hrs later.

Extrachromosomal DNA was digested with DpnI and analyzed by Southern blotting with a DIG-labeled probe specific for GFP. The ITR ssDNA, the

monomeric (ITRm) and the dimeric (ITRd) AAV2 replication intermediates are indicated on the left.

doi:10.1371/journal.pone.0170908.g002
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24 hrs after transfection, the cells were infected with wt HSV-1 (MOI of 2) to provide helper

factors for AAV2 replication. Three days after infection, extra-chromosomal DNA (Hirt

DNA) was extracted, digested with DpnI to eliminate bacterial input DNA and subjected to

Southern analysis using a GFP-specific DNA probe. As shown in Fig 2F, monomeric (ITRm)

and dimeric (ITRd) double-stranded (DpnI resistant) as well as ITR ssDNA replication prod-

ucts of the recombinant AAV2 genome were detected in presence of both wt Rep and the

mutant Rep-D371Y, but not in presence of the helicase null mutant Rep-K340H.

The mutant Rep-D371Y proteins are less cytotoxic than the wt Rep

proteins

In previous studies we and others reported that the AAV2 Rep68 and Rep78 proteins induce a

distinct DNA-damage response (DDR) in transfected cells. This DDR is characterized by the

activation (i.e. phosphorylation) of the replication protein A32 (RPA32), the sensor-kinase

ataxia-telangiectasia mutated (ATM) and the histone 2A.X (H2A.X) [34, 36, 38, 65]. In particu-

lar, we found that the Rep domains necessary to induce the cellular DDR are the combined

DNA-binding and ATPase/helicase domains [38]. Here, we assessed to what extent the mutant

Rep-D371Y protein is capable of inducing a Rep-specific DDR in transfected cells. For this, Vero

cells were transfected with the different Rep constructs (wt Rep, Rep-K340H, Rep-D371Y) or a

plasmid expressing the gene for enhanced green-fluorescent protein (eGFP). The cells were fixed

48 hrs post transfection and stained with antibodies specific for either pRPA32 (S4/S8), pATM

(S1981) or γH2A.X (S139). Expression of the different Rep constructs was confirmed with anti-

bodies specific for Rep (Fig 3A–3C). Cells positive for Rep or eGFP were counted and scored for

the staining of the different DDR markers (Fig 3A–3C). Interestingly, the number of cells dis-

playing a DDR characterized by the different DDR markers was significantly smaller (20–60%

reduction) upon transfection of the Rep-D371Y encoding plasmid than upon transfection of the

wt Rep encoding plasmid. Similar to a previous study [38], the DDR induced by Rep-K340H was

also significantly reduced (85–95% reduction) compared to the positive control (wt Rep) and

was comparable to that induced by the mutant Rep-D371Y (Fig 3A–3C). However, it is impor-

tant to note that the DDR characterized by pATM (S1981) or γH2A.X (S139) was not fully abol-

ished in cells expressing the mutants Rep-K340H or Rep-D371Y when compared to the negative

control (no Rep, eGFP). Interestingly, this is in accordance with the fact that pHSVGFP vector

titers were also not fully restored in cells expressing these mutant Rep proteins (Fig 2C).

In a next step, we examined the capability of Rep-D371Y to induce apoptosis in transfected

cells, since it has been shown that the Rep domains involved in DDR induction coincide with

the domains involved in the induction of apoptosis [38, 66]. For this, Vero cells were co-trans-

fected with the different Rep constructs together with a plasmid expressing eGFP to identify suc-

cessfully transfected cells. Three days later, the cells were stained with Cy5-conjugated annexin

V and subjected to flow cytometry. In particular, eGFP-positive cells were screened for staining

of Cy5 as a marker for the induction of apoptosis (Fig 3D). Similar to the mutant Rep-K340H,

the mutant Rep-D371Y did not lead to an increased number of Cy5-positive cells compared to

the control (no Rep, pcDNA) while the number of apoptotic cells expressing wt Rep was signifi-

cantly higher. Taken together, these results indicate that in transfected cells the overall cytotoxic-

ity of the mutant Rep-D371Y proteins is clearly reduced compared to the wt Rep proteins.

Production of recombinant AAV2-D371Y results in poor virus titers and

disproportional accumulation of empty particles

To further study the impact of the mutant Rep-D371Y proteins on the AAV2 life-cycle, we

sought to produce recombinant (r)AAV2-D371Y virus stocks. Production and purification of
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PLOS ONE | DOI:10.1371/journal.pone.0170908 January 26, 2017 10 / 21



rAAV2-D371Y stocks was performed as described previously [52]. Surprisingly, rAAV2-

D371Y virus stocks suffered from poor genomic virus titers (100-fold reduced compared to wt

AAV2 virus stocks (data not shown)). Furthermore, electron micrographs of wt AAV2 and

rAAV2-D371Y virus preparations revealed disproportional accumulation of unpackaged virus

Fig 3. Impact of the different Rep constructs on the induction of a Rep-specific DNA damage response and apoptosis. (A-C)

Assessment of Rep induced DNA-damage responses. Vero cells were transfected with plasmids encoding wt Rep, Rep-K340H, Rep-D371Y

or eGFP as a negative control. Two days later, the cells were fixed and stained with antibodies specific for Rep (green; insets) and (red)

either pRPA32-S4/8 (A), pATM-S1981 (B) or γH2A.X-S139 (C). The cell nuclei were visualized by staining with DAPI (blue; insets). Rep+- or

GFP+-cells were scored for staining of the DDR markers using a confocal laser scanning microscope (graphs in A-C). Bars represent mean

values (% positive cells) and SEs from 3 individual experiments. Asterisks indicate statistically significant differences between the positive

control (wt Rep) and the corresponding mutant Rep constructs in a paired two-tail Student t-test (*, P<0.05; **, P<0.01). Scale bars, 10μm.

(D) Screening of the Rep constructs for their ability to induce apoptosis in transfected cells. Vero cells were co-transfected with an eGFP

expressing plasmid and a plasmid encoding either wt Rep, Rep-K340H, Rep-D371Y or no Rep (pcDNA). Three days later, the cells were

stained with Cy5-conjugated annexin V and analyzed by flow cytometry with filters specific for eGFP (transfected cells) and Cy5 (apoptotic

cells). The data are shown as means ± SE from three independent experiments (*, P<0.05).

doi:10.1371/journal.pone.0170908.g003
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particles in the mutant rAAV2-D371Y virus stock whereas wt AAV2 stocks contained negli-

gent numbers of empty capsid particles (Fig 4A). Moreover, co-infection of recombinant

AAV2-D371Y and wt HSV-1 did not result in successful AAV2 DNA replication as shown

with Southern analysis using a Rep-specific probe to detect AAV2 DNA replication intermedi-

ates (Fig 4B). In contrast, co-infection of wt AAV2 and HSV-1 resulted in the accumulation of

the expected AAV2 replication intermediates ITR ssDNA, ITRm and ITRd. These findings

indicate that the mutant Rep-D371Y proteins may be deficient for packaging of the viral

ssDNA genome into pre-assembled virus capsids which results in rAAV2-D371Y stocks that

are not compatible with efficient virus replication. This could be due to two reasons: first, the

mutant Rep proteins may not be capable of binding to pre-assembled capsids, a process neces-

sary to form the ssDNA-capsid complex [32, 67], or second, the mutant Rep proteins are not

capable of binding to ssDNA. To test the latter possibility, we performed gel filtration chroma-

tography to assess the capability of Rep-D371Y to form DNA-protein complexes with either

ssDNA or dsDNA. To do so, we incubated purified wt Rep68 or mutant Rep68-D371Y pro-

teins with either random ssDNA or RBS specific dsDNA substrates and assessed the formation

of protein-DNA complexes by gel filtration followed by protein chromatography. Indeed, the

capability of mutant Rep68-D371Y proteins to bind random ssDNA is substantially reduced

compared to wt Rep68 proteins (Fig 4C). Interestingly, binding to ssDNA substrates seems

to be not completely abolished as the peak of the P1 species, showing the mutant Rep68-

Fig 4. The mutant rep-D371Y gene is not compatible with the production of recombinant AAV2 virus stocks. (A) Wild-type (wt AAV2, a) and

recombinant (rAAV2-D371Y, b) virus stocks were visualized and analyzed with transmission electron microscopy. Red arrows: empty particles (electron

dense), green arrow: fully packaged particle (electron light). Scale bars; 50nm. (B) Southern analysis to assess replication of wt and recombinant AAV2

virus stocks. Vero 2–2 cells were co-infected with either wt (wt AAV2) or recombinant (rAAV2-D371Y) (MOI 20) and HSV-1 (MOI 1) followed Hirt DNA

extraction 48hrs later. Southern blotting was performed as described in Fig 2F with a DIG-labeled probe specific for Rep. The ITR ssDNA, the monomeric

(ITRm) and the dimeric (ITRd) AAV2 replication intermediates are indicated on the right. (C, D) The capability of the mutant Rep68-D371Y proteins to bind

ssDNA is reduced, whereas specific binding of dsDNA is not affected. Gel filtration chromatography profiles of either wt Rep68 or mutant Rep68-D371Y

proteins were utilized to assess the binding capacity to (C) unspecific ssDNA or (D) specific dsDNA (RBS) templates. V0 is the void volume where

aggregates are eluted with a molecular mass larger than the exclusion limit of the column (indicating complex Rep multimers). The other species at P1

represent the Rep-dsDNA or Rep-ssDNA complexes respectively. The P2 species represent unbound Rep proteins.

doi:10.1371/journal.pone.0170908.g004
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D371Y-DNA complex, is not fully reduced as expected. However, dsDNA binding capacity

was not affected by the mutant Rep68-D371Y proteins (Fig 4D).

Incorporating the mutant rep-D371Y gene into HSV/AAV hybrid vectors

significantly increases vector titers

Due to the fact that the Rep-D371Y proteins are less cytotoxic than the wt Rep counterparts,

this mutant Rep variant may be an interesting tool for vector development. For example, HSV/

AAV hybrid gene transfer vectors have previously been developed to combine the advanta-

geous properties of AAV2 (persistent transgene expression) and HSV-1 amplicon vectors

(large transgene capacity [53, 68, 69]. HSV-1 amplicon vectors are bacterial plasmids that con-

tain a transgene cassette and two cis elements from the HSV-1 genome, in particular an origin

of DNA replication (ori) and a DNA packaging/cleavage signal (pac), which allow the replica-

tion and packaging of the double-stranded amplicon DNA into HSV-1 particles in presence of

HSV-1 helper factors [58]. In addition to the HSV-1 ori and pac signals, HSV/AAV hybrid vec-

tors contain the AAV2 rep gene and a transgene cassette that is flanked by AAV2 ITRs. The

presence of these AAV2 elements supports long-term transgene expression and Rep-depen-

dent integration of the ITR-flanked transgene cassette into the host genome [53]. However,

the presence of the AAV2 rep genes on the vector genome resulted in low hybrid vector titers

([53] and Fig 5A). Alternatively, the incorporation of the mutant rep68/78-D371Y gene in

place of the wt rep68/78 gene may overcome the poor performance of the first generation

HSV/AAV hybrid vectors. Indeed, the titers of HSV/AAV hybrid vectors encoding the mutant

Rep68/78-D371Y proteins (pHyRD371YaNGFPa) were 5 to 10-fold higher compared to

hybrid vectors encoding the wt Rep68/78 proteins (pHyRaNGFPa) (Fig 5A). Rep protein

expression during packaging of the hybrid vectors was readily observed by Western analysis

and was at comparable levels (Fig 5B).

Discussion

In this study, we show that a novel AAV2 Rep helicase mutant, Rep-D371Y, has the unex-

pected property that it can support AAV2 DNA replication without blocking HSV-1 DNA rep-

lication. Moreover, compared to the wt Rep, the capacity of Rep-D371Y to induce apoptosis

and a Rep-specific DDR was significantly reduced and comparable to that of Rep-K340H, a

helicase-null mutant that neither supports AAV2 replication, nor blocks HSV-1 DNA replica-

tion. In addition, we compared the capability of the wt Rep and mutant Rep-D371Y proteins

to bind either ssDNA or RBS dsDNA. The properties of the different wt and mutant AAV2

Rep proteins are summarized in Table 1.

The molecular interactions of the AAV2 Rep proteins with its helpervirus HSV-1 has been

studied extensively in the past. We and others have demonstrated that the AAV2 Rep domains

responsible for the inhibition of HSV-1 DNA replication include the combined DNA-binding

and the ATPase/helicase domains [38, 41]. Direct binding of the AAV2 Rep proteins to the

HSV-1 DNA and the subsequent activity of the ATPase/helicase domain have been shown to

account at least in part for the Rep-mediated inhibition of HSV-1 replication [44]. This inter-

action may cause DNA lesions which are not compatible with effective HSV-1 DNA replica-

tion. However, the exact mechanism of interaction, in particular the impact of the Rep

ATPase/helicase activity (i.e. unwinding) on the HSV-1 DNA itself remains elusive. Highly

quantitative helicase assays are required to assess the Rep-specific unwinding process, which

seems to be a hallmark of the Rep-mediated inhibition of HSV-1 replication. A key to under-

standing this mechanism may be the novel mutant Rep-D371Y. Evidentially, the findings pre-

sented here suggest that the mutant Rep-D371Y proteins allow the simultaneous and efficient

Mutant AAV2 Rep-D371Y Proteins Display an Unexpected Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0170908 January 26, 2017 13 / 21



Fig 5. Virus titers of HSV/AAV hybrid vectors harboring the mutant rep68/78-D371Y gene are

significantly higher than titers of hybrid vectors harboring the wt rep68/78 gene. (A) Packaging and
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replication of both HSV-1 and AAV2 DNA in the same cell. We indeed observed mature RCs

of both viruses in the same cell when Rep-D371Y is present, while in presence of Rep-K340H

only HSV-1 RCs but no AAV2 RCs are observed and in presence of wt Rep only AAV2 RCs

but no HSV-1 RCs can be found respectively (data not shown and [37]).

The specific properties of the mutant Rep-D371Y protein make it an interesting tool for

studying DDR in AAV2 and helpervirus co-infected cells. In particular, Rep-D371Y may allow

dissecting the contributions of the different virus components to the DNA damage response

observed in AAV2 and helpervirus co-infected cells. In particular, HSV-1 provokes a distinct

DDR in infected cells, which is characterized by the activation of a cellular DNA double-strand

break response pathway involving ATM, p53 and RPA [70–73], while the ATR response is

inhibited [74]. Importantly, in HSV-1 infected cells, the catalytic subunit of the DNA-depen-

dent protein kinase (DNA-PKcs) is degraded through ICP0-dependent proteasomal degrada-

tion [75, 76]. In HSV-1 and AAV2 co-infected cells, the degradation of DNA-PKcs is delayed

in an AAV2-dependent manner, and DNA-PKcs in fact is recruited into AAV2 RCs [77, 78].

The modulation of the HSV-1 induced DDR by AAV2 may be due to the AAV2 genome (i.e.

the single-stranded AAV2 DNA genome and its replication intermediates) and/or the AAV2

Rep proteins. The contribution of Rep could largely and specifically be eliminated by employ-

ing the mutant Rep-D371Y, while the contribution of the helpervirus could be eliminated

largely by using an ICP0-deficient HSV-1 [77]. It will be particularly interesting to assess to

what extent AAV2 DNA replication is affected by helpervirus-mediated and/or AAV2-me-

diated DNA damage responses and to study the dynamics and activation of specific DDR pro-

teins such as RPA, ATM and γH2A.X in cells that support the simultaneous replication of both

HSV-1 and AAV2.

Furthermore, it will be significant to study the performance of the mutant Rep-D371Y in

specific steps of the AAV2 life-cycle such as (i) second-strand synthesis, (ii) genomic integra-

tion and (iii) genome packaging which all involve the Rep-helicase activity [31, 32]. Notably, we

were not able to successfully produce recombinant AAV2 progeny virus stocks harboring the

mutant rep-D371Y gene. Hence, we hypothesized that the mutant Rep-D371Y proteins may be

deficient for packaging of the viral ssDNA genome into pre-assembled virus capsids, a process

involving both, the binding of Rep to pre-assembled capsids and the formation of Rep-ssDNA

complexes at the same time [32, 67]. A variety of mutations in the Rep SF3 helicase have been

titration of the HSV/AAV hybrid vectors pHyRaNGFPa and pHyRD371YaNGFPa was performed as described

for the HSV-1 vector pHSVGFP (Fig 2C). The data are shown as means ± SE from three independent

experiments (*, P<0.05). (B) Western analysis to confirm Rep expression in HSV/AAV hybrid vector

producing Vero-2-2 cells. Production of vectors was performed as described for Fig 2C and Fig 5A. Instead of

harvesting vector particles, the cells were processed for and subjected to Western analysis. In addition to the

Rep-specific antibody to detect Rep expression, the blots were stripped and re-stained with an antibody

specific for GFP as a loading and expression control.

doi:10.1371/journal.pone.0170908.g005

Table 1. Summary of AAV2 Rep activities.

AAV2 replication HSV-1 replication DNA damage response Apoptosis bind ssDNA bind dsDNA

wt Rep +++ - +++ +++ +++ +++

Rep-K340H - ++ + - n/a n/a

Rep-D371Y +++ ++ + - + +++

The activities of the wt Rep, the mutants Rep-K340H and Rep-D371Y were scored for their ability to (i) enable AAV2 replication, (ii) inhibit HSV-1 replication,

(iii) induce a DNA damage response (DDR), (iv) induce apoptosis, (v), bind ssDNA and (vi) bind dsDNA; (-) no score, (+) minimal score, (++) intermediate

score, (+++) high score.

doi:10.1371/journal.pone.0170908.t001
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tested in the past for their ability to form the Rep-capsid complex. The three helicase mutants

K391I, K391T and K404T showed reduced capsid complex formation and therefore reduced

packaging activity, while the helicase mutants E379K, E379Q and K404I formed complexes as

efficiently as wt Rep, but failed to package the AAV2 genome regardless [32]. This finding sug-

gests that Rep-capsid complex formation is not affected when mutating the Glutamic-acid (E)

at position 379, a residue very close and with similar biochemical properties to the Aspartic-

acid (D) at position 371. Therefore, we concluded that Rep-capsid complex formation of the

mutant Rep-D371Y may not be impaired either. However, the capability of mutant Rep68-

D371Y proteins to bind ssDNA is substantially reduced compared to wt Rep68 proteins. Gel fil-

tration chromatography assays revealed that mutant Rep68-D371Y proteins were not able to

efficiently form protein-DNA complexes with ssDNA substrates, while the capacity of binding

RBS dsDNA templates was not affected. This is in agreement with the fact that AAV2 Rep pro-

teins facilitate specific binding of RBS dsDNA via their N-terminal DNA-binding domain,

whereas binding of ssDNA is essentially mediated by the helicase domain which has no binding

specificity. Notably, we exclude the possibility that the reason for unsuccessful production of a

rAAV2-D371Y stock was due to the incompatibility of the mutant Rep-D371Y proteins to suc-

cessfully replicate the viral genome. This is due to the fact that the AAV production system we

utilized here is based on the replication of a dsDNA viral genome provided on a plasmid

(pAV2 or pAV2-D371Y). Since we demonstrated that DNA replication from a viral dsDNA

amplicon template is not affected by the mutant Rep-D371Y proteins (Fig 2F), we assumed that

DNA replication may not be the limiting step during production of rAAV2-D371Y stocks.

Last but not least, we have demonstrated that the production efficiency of HSV/AAV

hybrid vector stocks is significantly increased when we replace the wt rep gene with the mutant

rep-D371Y gene in this vector. This effect may be due to the reduced capability of the mutant

Rep-D371Y proteins to inhibit HSV-1 DNA replication. Intriguingly, Conway and colleagues

developed an HSV-1 based AAV vector system, which was successfully utilized to produce

recombinant AAV (rAAV) vectors in HEK293 cells [79]. In particular, rAAV vector stocks

were produced by transfecting cells with a recombinant AAV plasmid followed by infection

with an ICP27 deficient HSV-1 vector, which expresses the wt AAV Rep and Cap proteins

(d27.1-rc). Unexpectedly, production of d27.1-rc was not affected by the presence of the wt rep
gene. However, d27.1-rc was created by co-transfection of d27.1-lacZ infected cell DNA and a

linearized integration plasmid harboring the rep and cap genes [79]. Since this type of HSV-1

vector production does not directly rely on HSV-1 DNA replication, it therefore may not be

affected by the Rep-mediated inhibition of HSV-1 replication, which particularly involves

blocking of the HSV-1 DNA amplification [38, 44].

The findings we present here substantially add to our understanding how and also to what

extent the AAV2 Rep-helicase mechanistically contributes to different steps of the AAV2 life-

cycle. In particular, we provide evidence that the Rep-helicase functions responsible for the

induction of a DDR or apoptosis may not be identical to those critical for AAV2 replication,

but they clearly coincide with the ability to inhibit HSV-1 replication. In addition, the novel

AAV2 mutant Rep-D371Y proteins may allow deciphering yet unsolved Rep activities, which

contribute to several steps of the AAV2 life cycle, such as replication or genomic integration.

Last, but not least, the novel mutant Rep-D371Y potentially is utilized for the development of

safer and more reliable AAV2 gene therapy vectors.
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