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Abstract
In neuro-oncology, magnetic resonance imaging (MRI) is a critically important, non-invasive radiologic
assessment technique for brain tumor diagnosis, especially glioma. Deep learning improves MRI image
characterization and interpretation through the utilization of raw imaging data and provides unprecedented
enhancement of images and representation for detection and classification through deep neural networks.
This systematic review and quality appraisal method aim to summarize deep learning approaches used in
neuro-oncology imaging to aid healthcare professionals. Following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines, a total of 20 low-risk studies on the established use of
deep learning models to identify glioma genetic mutations and grading were selected, based on a Quality
Assessment of Diagnostic Accuracy Studies 2 score of ≥9. The included studies provided the deep learning
models used alongside their outcome measures, the number of patients, and the molecular markers for brain
glioma classification. In 19 studies, the researchers determined that the deep learning model improved the
clinical outcome and treatment protocol in patients with a brain tumor. In five studies, the authors
determined the sensitivity of the deep learning model used, and in four studies, the authors determined the
specificity of the models. Convolutional neural network models were used in 16 studies. In eight studies, the
researchers examined glioma grading by using different deep learning models compared with other models.
In this review, we found that deep learning models significantly improve the diagnostic and classification
accuracy of brain tumors, particularly gliomas without the need for invasive methods. Most studies have
presented validated results and can be used in clinical practice to improve patient care and prognosis.
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Introduction And Background
Gliomas arise from precursor or glial cells and account for 27% of all tumors and 80% of major brain
malignant tumors. They include glioblastoma, astrocytoma, oligodendroglioma, ependymoma, mixed
glioma, malignant glioma, and not otherwise specified (NOS) and other rare histology [1]. Cellular invasion,
heterogeneous angiogenesis, apoptosis, and cellular proliferation of glioma biology make its quantitative
assessment complicated and significantly increase morbidity and mortality [2]. Histopathologic grading of
glioma is important to plan the treatment approach, assess the response to treatment, and provide the
overall prognosis. Stereotactic brain biopsy allows accurate and definitive diagnosis but is considered an
invasive procedure [3].

Magnetic resonance imaging (MRI) serves as the primary contributor to brain tumor diagnosis, staging,
treatment, and follow-up. The National Comprehensive Cancer Network Clinical Practice Guidelines in
Oncology for Central Nervous System (CNS) Cancers recommends MRI for the evaluation of patients with a
primary brain tumor and in the determination of the response to therapy [4]. Preoperative brain MRI is a
useful, non-invasive imaging technique for the assessment of the histopathological grade of gliomas. Both
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and dynamic susceptibility contrast
magnetic resonance imaging (DSC-MRI) have been used prior to surgery to differentiate the grades of
gliomas by using different quantitative parameters; relative cerebral blood volume (rCBV) is the most
sensitive parameter [5]. In addition, computer-aided diagnosis (CAD) using intensity-invariant MRI features
has been proposed to grade gliomas by using quantitative image features such as histogram moment and
texture analyses, which are practical to use in the clinical setting [6]. Moreover, several approaches have
been proposed for subjective visual interpretation of malignant glioma. Gutman et al. [7] developed a
comprehensive subjective MRI feature called Visually AcceSAble Rembrandt Images (VASARI) to predict
overall survival and correlate it with different genomic biomarkers.

Artificial intelligence (AI) is expanding rapidly and evolving in different fields including diagnostic radiology
and medical imaging [8]. Machine learning (ML) is a subset of AI that allows systems to automatically learn
and gain experience from existing training data and to make predictions about new data by using different
algorithms and without explicit programming. Deep learning (DL) is a subfield of ML, and it uses neural
networks (NN) that contain many layers to analyze different factors. In radiology and medical imaging, most
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ML applications rely on supervised forms comprising algorithms trained on “ground truth” labels [9]. These
labels may contain different classes of diagnoses, prognoses, or classes existing in one set of images [10].
Both ML and DL methods are being used increasingly in neuro-oncological imaging. DL provides an
astonishing improvement in image analysis by using raw data obtained from MRI images to automatically
detect, grade, or classify gliomas. DL has become the most widely used approach within the field of ML
because it can achieve outstanding results in several complex tasks, similar to and sometimes exceeding
those provided by humans [11]. Multiple DL models are currently in use. These include convolutional neural
network (CNN), deep Boltzmann machine (DBM), deep neural network (DNN), recurrent neural network
(RNN), deep autoencoder (DA), and deep belief network (DBN) [12].

DL has the potential to detect image patterns that usually require the eyes of an experienced
neuroradiologist. With the use of magnetic resonance (MR) images, DL is a noninvasive method that can
rapidly identify the genetic features of glioma and make predictions regarding the treatment response and
future outcome [13]. This systematic review aims to summarize ML and DL approaches used in neuro-
oncological imaging to aid healthcare professionals, improve treatment outcomes, and add value to patient
care.

Review
Methods
This systematic review was registered with PROSPERO (International Prospective Register of Systematic
Reviews) and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [14]. The literature search was done with the following databases: PubMed,
Medline, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and Google
Scholar. The search was done for articles in English published between 2005 and 2020, and for articles
addressing the clinical application of DL in patients with glioma. The search terms included “deep learning
AND glioma” OR “deep learning AND glioblastoma” OR “artificial intelligence AND glioma” OR “artificial
intelligence AND glioblastoma” AND “glioma classification” AND “deep learning approaches” OR “artificial
intelligence” OR “brain metastasis”.

Eligibility Criteria

All prospective and retrospective studies that examined neuro-oncology patients with glioma, glioma tumor
grading, and mutations using MRI and AI, ML, or DL models as a major diagnostic tool were eligible for
inclusion. The target population included patients with an established diagnosis of glioma. No restriction
was applied to the patient population or age. Articles that examined radiomics and histopathological data
without the use of an imaging modality were excluded. Only articles written in English were considered. All
study forms were included except letters to the editor and review articles.

Data Extraction

Two reviewers performed the eligibility assessment of the search results by screening titles and abstracts.
The review placed a limitation on the presence of a glioma tumor, the intended context for using the model,
and the disease outcome of interest. Data were extracted independently by two reviewers using a predefined
data extraction sheet. Furthermore, both reviewers cross-checked the extracted data and resolved any
disagreements by discussion. The information for study characteristics included author(s), the purpose of the
study, the number of patients or exams, the diagnostic model used, and the outcome measures including
accuracy, sensitivity, specificity, the dice index, the positive predictive value (PPV), and the negative
predictive value (NPV). The PRISMA flowchart showing studies retrieved at each stage of the systematic
review is shown in Figure 1.
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FIGURE 1: PRISMA flowchart showing the number of studies retrieved
at each stage of the systematic review.
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Quality Assessment of the Studies

The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to evaluate the risk of
bias, the applicability, and the quality of the studies. All studies with scores greater than 9 during the quality
assessment were classified as low risk and included in this review

Data Synthesis

A single contingency table was developed to report the accuracy of each DL model used. Binary diagnostic
accuracy data were extracted preferably. Contingency tables of true negatives, false negatives, true
positives, and false positives were used to report sensitivity and specificity.

Results
The initial literature review produced 17,362 articles. After title and abstract screening and removal of
duplicates, a total of 2,649 articles were retrieved. After the review by two independent reviewers and
application of the inclusion and exclusion criteria, 2,580 articles were excluded, and an additional 49 articles
were excluded during data extraction. Finally, a total of 20 articles were included in this review.

Characteristics of the Included Studies

Table 1 shows the DL models used in various studies along with their outcome measures, the number of
patients or MRI scans, and the molecular markers for brain glioma classification [15-36]. In 19 studies, the
researchers determined the DL model accuracy. In six studies [15-20], the authors reported the sensitivity of
the DL model used, and in five studies [15,16,18-20], the authors reported the specificity of the DL models.
In eight studies, the researchers examined glioma grading by using different DL models compared with other
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models [19,21-27].

No. Author Year Study markers
Best
performing DL
model used

Sample size
Other DL models
used

Outcome
measures

Values
(DL
model)

1
Akkus et
al. [15]

2015
Preoperative patients with LGGs
segmentation

2D and 3D
segmentation

30 STAPLE TS

3D segmentation

Dice index 0.89

Sensitivity 0.91

Specificity 0.99

2D segmentation

Dice index 0.9

Sensitivity 0.92

Specificity 0.99

2
Bangalore
et al. [16]

2020 Predict IDH mutation status T2-Net
214 patients (94 IDH
mutated and 120
IDH wild-type)

T2W image only
network (T2-Net)

T2-net

Accuracy 97.14%

Sensitivity 0.97

Specificity 0.98

PPV 0.98

NPV 0.97

AUC 0.98

Multi-contrast
network (TS-Net)

TS-net

Accuracy 97.12%

Sensitivity 0.98

Specificity 0.97

PPV 0.97

NPV 0.97

AUC 0.99

3
Díaz-
Pernas et
al. [17]

2021
Segmentation and classification of
brain tumors (meningioma, glioma,
and pituitary tumors)

Deep CNN with
a multiscale
approach

233
Classic ML and
DL methods

Accuracy 97.30%

4
Naser et
al. [18]

2020
Grade LGGs (grade II vs. III) and
tumor detection by segmentation

DL model 110

Detection model

Accuracy 0.92

Sensitivity 0.92

Specificity 0.92

Grading model

Accuracy 0.89

Sensitivity 0.87

Specificity 0.92

5
Zhuge et
al. [19]

2020 Glioma classification 3DConvNet 285

2D Mask R-CNN

Accuracy 96.30%

Sensitivity 93.50%

Specificity 97.20%

3DConvNet

Accuracy 97.10%

Sensitivity 94.70%
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Specificity 96.80%

6
Nalawade
et al. [20]

2019 Predict IDH mutation status DenseNet-161
260 patients (120
HGGs and 140
LGGs)

Inception-v4

Inception-v4 slice-
wise

Accuracy 76.10%

Precision 59.40%

Sensitivity 59.20%

Specificity 84.50%

F1 score 58.20%

Inception-v4
subject-wise

Accuracy 64.20%

Precision 65.80%

Sensitivity 65.10%

Specificity 65.10%

F1 score 64.00%

ResNet-50

ResNet-50 slice-
wise

Accuracy 89.70%

Precision 79.30%

Sensitivity 81.70%

Specificity 94.10%

F1 score 81.30%

ResNet-50 subject-
wise

Accuracy 81.40%

Precision 81.50%

Sensitivity 81.50%

Specificity 81.50%

F1 score 81.40%

DenseNet-161

DenseNet-161 slice-
wise

Accuracy 90.50%

Precision 79.90%

Sensitivity 83.10%

Specificity 94.80%

F1 score 81.30%

DenseNet-161
subject-wise

Accuracy 83.80%

Precision 84.10%

Sensitivity 83.50%

Specificity 83.50%
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F1 score 83.50%

7
Gutta et al.
[21]

2021 Predict glioma grade CNN 237

CNN trained with
radiomic features
alone

Accuracy
CNN

87%

GB
Accuracy
GB

64%

 RF
Accuracy
RF

58%

 SVM
Accuracy
SVM

56%

8
Latif et al.
[22]

2021 Glioma tumor detection CNN
65 patients (26
LGGs and 39 HGGs)

MLP classifier Accuracy 98.50%

KNN classifier Accuracy 97.96%

SVM classifier Accuracy 90.04%

9
Lu et al.
[23]

2020 Glioma classification
Modified
ResNet50

193 cases

Modified ResNet Accuracy 80.11%

CNN Accuracy 75.43%

DenseNet Accuracy 67.55%

MLP Accuracy 63.58%

ResNet50 Accuracy 78.59%

10
Ahammed
Muneer et
al. [24]

2019
Glioma grade identification (LGG,
oligodendroglioma, anaplastic
glioma, and glioblastoma multiforme)

VGG-19 CNN  

Wndchrm
classifier

Accuracy 92.86%

VGG-19 Accuracy 98.25%

11
Mzoughi et
al. [25]

2020
Glioma classification into LGG and
HGG

3D-CNN 284 2D-CNN Accuracy 96.49%

12
Yang et al.
[26]

2018 Glioma classification
CNN
(GoogLeNet)

113 patients (53
LGGs and 61 HGGs)

AlexNet

Validation
accuracy

0.866

Test
accuracy

0.855

Test AUC 0.894

GoogLeNet

Validation
accuracy

0.867

Test
accuracy

0.909

Test AUC 0.939

13
Khawaldeh
et al. [27]

2017 Glioma classification
Modified
AlexNet

109
ConvNet-3 Accuracy 85.71%

Modified AlexNet Accuracy 91.16%

14
Chang et
al. [29]

2018 Predict IDH mutation status

Residual CNN
(ResNet) with
age
incorporation

496

Residual CNN
(ResNet) with age
incorporation

Training
accuracy

87.30%

Validation
accuracy

87.60%

Testing
accuracy

89.10%

Residual CNN
(ResNet) without
age incorporation

Training
accuracy

82.80%

Validation
accuracy

83.00%

Testing
accuracy

85.70%
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15
Chang et
al. [30]

2018
Predict MGMT promoter methylation
status, IDH1 mutation status, and
1p/19q codeletion status

CNN 259 patients

Predict MGMT
promoter
methylation status

Accuracy 83.00%

AUC 0.81

Predict IDH1
mutation status

Accuracy 94.00%

AUC 0.91

1p/19q codeletion
status

Accuracy 92.00%

AUC 0.88

16
Levner et
al. [32]

2009
Predict MGMT promoter methylation
status

 59 2D-DOST + ANN Accuracy 87.70%

17
Korfiatis et
al. [33]

2017
Predict MGMT promoter methylation
status (no tumor, methylated MGMT,
or non-methylated MGMT)

ResNet50

155 patients (66
methylated and 89
unmethylated
tumors)

ResNet50
Test
accuracy

94.40%

ResNet34
Test
accuracy

80.72%

ResNet18
Test
accuracy

76.75%

18
Ge et al.
[34]

2018
Glioma classification (LGGs vs.
HGGs) and 1p19q codeletion

Deep CNN 285 Deep CNN

Training
accuracy

91.93%

Validation
accuracy

93.25%

Test
accuracy

90.87%

 Deep CNN 159
Deep CNN 1p19q
codeletion

Training
Accuracy

97.11%

Validation
accuracy

90.91%

Test
accuracy

89.39%

19
Rehman et
al. [35]

2020
Classification of brain tumors
(meningioma, glioma, and pituitary
tumors)

CNN (fine-tuned
VGG-16)

233

Fine-tuned
GoogLeNet

Accuracy 98.69%

Fine-tuned
AlexNet

Accuracy 97.39%

Fine-tuned VGG-
16

Accuracy 98.04%

20
Matsui et
al. [36]

2020 Prediction of LGG molecular subtype DL model
217 patients with
LGG

Prediction of LGG
molecular subtype

Accuracy
training

96.60%

Accuracy
test

68.70%

TABLE 1: Description of deep learning models used and comparison of their outcome measures
in neuro-oncology patients.
2D: two-dimensional; 2D-DOST: two-dimensional discrete orthonormal Stockwell transform; 3D: three-dimensional; ANN: artificial neural networks; AUC:
area under the curve; CNN: convolutional neural network; DL: deep learning; GB: gradient boosting; HGGs: high-grade gliomas; IDH: isocitrate
dehydrogenase; KNN: k-nearest neighbor; LGGs: low-grade gliomas; MGMT: O6-methylguanine-DNA methyltransferase; MLP: multilayer perceptron;
NPV: negative predictive value; PPV: positive predictive value; RF: random forest; SVM: support vector machine; T2w: T2-weighted; TS: true
segmentation; VGG: visual geometry group; Wndchrm: weighted neighbor distance using a compound hierarchy of algorithms representing morphology.

DL Models Used to Predict the Isocitrate Dehydrogenase Mutation Status

The isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis, prognosis,
and treatment. Generally, an invasive neurosurgical procedure is required to determine the IDH mutation
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status. Glioblastomas with an IDH mutation have a significantly improved survival compared with IDH wild-
type gliomas [28]. Out of the 20 included studies, the authors of four [16,20,29,30] used different DL models
in combination with MR images to predict the IDH mutation status. Nalawade et al. [20] used T2-weighted
(T2w) MRI of 120 patients with high-grade gliomas (HGGs) and 140 patients with low-grade gliomas (LGGs)
and compared them between three CNN models (Inception-v4, ResNet-50, and DenseNet-161). DenseNet-
161 with five-fold cross-validation was found to be the best performing model with few preprocessing steps.
It attained a mean slice-wise accuracy, sensitivity, and specificity of 90.5%, 83.1%, and 94.8%, respectively,
and a subject-wise accuracy, sensitivity, and specificity of 83.8%, 83.5%, and 83.5%, respectively [20].
Bangalore et al. [16] used multiparametric brain MRI of 214 patients (94 IDH mutated and 120 IDH wild-
type) in combination with voxelwise DL that uses either T2w image-only network (T2-Net) or multi-contrast
(T2w, fluid-attenuated inversion recovery [FLAIR], and T1 postcontrast) network (TS-net). With minimal
data preprocessing, T2-Net and TS-net achieved a mean cross-validation accuracy of 97.14% and 97.12%,
respectively. Chang et al. [29] used residual CNN (ResNet) to predict non-invasively the IDH status of glioma
from MR images of 496 patients. Incorporation of the age at diagnosis into the model increased the accuracy
from 82.8% to 87.3% for the training set, from 83.0% to 87.6% for the validation set, and from 85.7% to 89.1%
for the test set. Chang et al. [30] used a CNN model in combination with MRI in 259 patients with glioma to
predict the IDH1 mutation status; the model achieved an accuracy of 94.0%.

DL Models Used to Predict the MGMT Promoter Methylation Status

The O6-methylguanine-DNA methyltransferase (MGMT) gene is associated with improved prognosis and a
good response to treatment with temozolomide [31]. In three studies [30,32,33], the authors evaluated
different DL models to predict the MGMT gene status using MRI. Levner et al. [32] performed a texture
analysis of T2, FLAIR, and T1 postcontrast MR images based on two-dimensional discrete orthonormal
Stockwell transform (2D-DOST) in combination with artificial neural networks (ANN) to predict the MGMT
promoter methylation status in 59 newly diagnosed patients with glioblastoma. The 2D-DOST in
conjunction with ANN achieved an accuracy of 87.7%, which is comparable to that of the invasive biopsy
technique (approximately 90%). Korfiatis et al. [33] compared three deep CNN architectures (ResNet50,
ResNet34, and ResNet18) to evaluate their ability to predict MGMT promoter methylation. ResNet50
performed significantly better than ResNet34 and ResNet18. The test accuracy for ResNet50, ResNet34, and
ResNet18 was 94.40%, 80.72%, and 76.75%, respectively. Another study by Chang et al. [30] used a CNN
model and MRI of 259 patients with glioma to predict the MGMT promoter methylation status. The CNN
accuracy reached 83.0%.

DL Models Used to Predict Glioma Grade or Classification

In eight studies [19,21-27], the researchers reported accurate determination of glioma grade and
classification using CNN compared with other techniques. Gutta et al. [21] proposed a deep CNN model in
237 patients to predict glioma grade and compared that to ML models trained by using standard radiomic
features alone. The proposed deep CNN model demonstrated an accuracy of 87.0%, outperforming the ML
models using radiomic features alone. The top-performing ML model trained with radiomic features alone
was gradient boosting (GB), with an average accuracy of 64.0%. Similarly, Latif et al. [22] proposed a four-
step CNN technique to classify brain MR images into tumorous and non-tumorous and tested them on 65
cases by using multilayer perceptron (MLP) and achieved an average accuracy of 98.77%. Lu et al. [23] used
the CNN ResNet model based on the pyramid dilated convolution to classify gliomas using MRI. The
classification accuracy for the modified ResNet was 80.11% compared with 63.58%, 75.43%, 67.55%, and
78.59% for MLP, CNN, DenseNet, and traditional ResNet, respectively. Ahammed Muneer et al. [24]
performed automatic glioma grade identification with the weighted neighbor distance using the compound
hierarchy of algorithms representing morphology (Wndchrm) classifier and compared that to a 19-layer
visual geometry group (VGG-19) deep CNN. The Wndchrm classifier showed a maximum accuracy of 92.86%
compared with 98.25% for the VGG-19.

Mzoughi et al. [25] proposed a fully automatic three-dimensional (3D) CNN architecture and volumetric MRI
T1 postcontrast sequence to classify brain tumors into LGGs and HGGs. The 3D-CNN model achieved an
accuracy of 96.49%. Yang et al. [26] compared the performance of two trained and fine-tuned CNN models
(AlexNet and GoogLeNet) in 113 patients with glioma. GoogLeNet showed better performance than AlexNet
whether it was trained from scratch or pre-trained models. The validation accuracy, test accuracy, and the
test area under the curve (AUC) were 86.7%, 90.9%, and 93.9%, respectively, for GoogleNet compared with
86.6%, 85.5%, and 89.4%, respectively, for AlexNet. Zhuge et al. [19] made another comparison between two
CNN models (3DConvNet and two-dimensional [2D] Mask R-CNN) to grade gliomas using conventional MRI.
The results showed better performance for the 3DConvNet, with a test accuracy of 0.971 compared with the
2D Mask R-CNN accuracy of 0.963. Khawaldeh et al. [27] proposed a 12-layer CNN model in combination
with axial FLAIR MR images. The modified AlexNet model demonstrated a greater accuracy of 91.16%
compared with 85.71% for ConvNet. Ge et al. [34] used 2D CNN to assess glioma grading by using two
datasets: the first for glioma classification into LGGs and HGGs and the second to identify gliomas
with/without 1p19q codeletion. The proposed model showed a high test accuracy of 90.87% for glioma
classification and 89.39% for 1p19q codeletion.

DL Models Used to Detect or Classify Gliomas, Meningiomas, and Pituitary Tumors
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In two studies [17,35], the researchers evaluated the detection and classification of three types of brain
tumors, namely, gliomas, meningiomas, and pituitary tumors, by using deep CNN. Diaz-Pernas et al. [17]
presented a fully automatic segmentation and classification model using deep CNN with a multiscale
approach and achieved a classification accuracy of 0.973. Rehman et al. [35] evaluated three CNN
architectures with data augmentation techniques (AlexNet, GoogLeNet, and VGG-16). The VGG-16 fine-
tuned architecture achieved the highest classification and detection accuracy of 98.69%.

DL Models Used for Segmentation of LGGs

MRI segmentation of LGGs is challenging because they rarely enhance after administration of gadolinium. In
three studies [15,18,36], the authors investigated the segmentation of LGGs by using deep learning models.
Akkus et al. [15] proposed a semi-automated segmentation process using only T2w and optionally
postcontrast T1-weighted images and compared that to manual segmentation by three experts. Matsui et al.
[36] developed a DL model that was able to predict the molecular subtypes of LGGs by using three different
imaging modalities: positron emission tomography (PET), MRI, and computed tomography (CT). The
performance of the model combining the three modalities had an accuracy of 96.6% for the training set and
68.7% for the test set. Naser and Deen [18] used T1-precontrast, FLAIR, and T1-postcontrast MR images to
grade and segment LGGs. The tumor detection model achieved an accuracy of 0.92 while the grading model
achieved an accuracy of 0.89.

Discussion
This systematic review summarizes the DL models used to classify and grade gliomas as well as the status of
different molecular biomarkers. In three studies [16,20,29], the authors discussed the role of DNN in IDH1
mutation detection. In two studies [32,33], the authors discussed the MGMT promoter methylation mutation
status with different DNN. Ge et al. [34] discussed 1p19q codeletion mutation along with glioma grading and
Chang et al. [30] classified gliomas based on their genetic category (MGMT promoter methylation status,
IDH1 mutation status, and 1p19q codeletion) using CNN architecture. Considering glioma classification, in
several studies [19,21-27], the researchers discussed grading gliomas into low and high grades to adapt the
treatment approach appropriately. The authors of two studies [17,35] evaluated the diagnostic accuracy of
DNN through cross-validation. In three studies [15,18,36], the researchers specifically focused on LGG
classification through CNN models to identify the most accurate and sensitive model for preoperative
diagnosis.

In this review, the authors of six studies [16,19,26,27,33,35] compared different DNN to establish an accurate
and effective model. Levner et al. [32] used L1-regularized NN and quantitative assessment of tumor texture
to predict the MGMT promoter methylation status in 59 newly diagnosed patients with glioblastoma
multiforme (GBM). Korfiatis et al. [33] tested three different residual CNN models. ResNet50 (accuracy
94.90%) outperformed ResNet34 (80.72%) and ResNet18 (76.75%). Deepak and Sarath [37] evaluated a DNN
model (ResNet) in brain tumor classification using MRI and attained excellent processing with an accuracy
of 98.3%. When Liu et al. [38] used the G-ResNet model (global average pooling residual network) to classify
brain tumors using ResNet34, they attained 95% accuracy, which is significantly better than the previously
used DNN models. Ghosal et al. [39] used the SE-ResNet-101 model to classify three brain tumors (glioma,
meningioma, and pituitary tumors) without data augmentation and the proposed CNN attained an accuracy
of 89.93%. In two studies [17,35], the authors examined multiple brain tumor classification by using deep
CNN models. This approach produced a tumor classification accuracy of 97.3%, higher than the classic ML
models [17]. Comparison between DNN (GoogLeNet, AlexNet, and VGG16) was performed and the fine-
tuned VGG-16 demonstrated the highest accuracy of 98.69%. Ghosh et al. [40] used improved U-Net with
VGG16 architecture cross-validated in patients from The Cancer Genome Atlas Low Grade Glioma (TCGA-
LGG) dataset for tumor segmentation. The accuracy was 99.75% for the improved U-Net model,
outperforming the basic U-Net model, which had an accuracy of 99.4%.

On the other hand, NN, as identified in other studies, utilizes energy to activate neurons. Only a small
number of neurons are active throughout the thought process with the human brain, whereas the neurons
that will be used in the future are temporarily unregulated until they are required. Single-task allocation for
subsequent neurons reduces communication costs. It is anticipated that ANN will be developed in the future
to help complete more multifaceted tasks.

DL approaches have a wider application in the clinical field. In this regard, use-cases of DL networks are
employed for conducting medical diagnoses. As discussed previously, this process encompasses prediction,
segmentation, classification, and detection. The findings of the reviewed studies show that DL methods can
be dominant with respect to other high-performing algorithms. Thereby, it is safe to assume that DL will
endure and continue to expand its offerings. The future progression of DL shows more potential in different
fields of medicine, specifically in the realm of medical diagnosis. On the other hand, it is currently not clear
whether DL can replace the role of clinicians or doctors in medical diagnosis. In this regard, DL can offer
better support for professionals in the clinical field. All predictors show a broader aspect of AI and DL in
different fields. Conventional approaches to different similarity measures are ineffectual compared with DL.
Based on such outcomes, it has been recommended that DNN and DL will succeed, and they will be explored
for a myriad of other uses in the near future.
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AI could revolutionize all stages of the pathway by which patients with gliomas are managed: the
postoperative acute phase; outpatient and oncological care preoperative screening, treatment planning, and
diagnosis; and intraoperative tissue analysis and intraoperative workflow analysis. In addition, AI could
change how national guidelines and policies are formed and help research into brain tumors as well as
therapeutics. In this regard, AI could enhance clinical findings for patients in the future. Several obstacles
exist for the development of AI in the field of brain tumors. The collaboration will be fundamental to
developing clinically applicable AI as the field quickly diversifies. Such collaboration must emphasize the
progression of databases and sources that might be utilized to train additional AI models.

This systematic review represents a simple, precise, and objective article that should contribute to the
existing body of literature concerning the use of DL in neuro-oncology. The research outcomes of the
included studies offer adequate information and insight into the applications of DL and AI to detect,
classify, segment, and diagnose different impairments and diseases in certain anatomical realms of interest.
The most important issue regarding ML and clinical medicine that should be taken into consideration is that
most of the papers did not perform validation. They either developed models or performed cross-validation.
According to the guidelines for developing and reporting ML predictive models in biomedical research,
validation is necessary [41]. The application of AI and DL will continue to develop beyond the significant
findings that have been shown in imaging gliomas. This may elevate the quality and efficiency of health care
in the long term and, therefore, reduce the risk of late diagnosis of extreme diseases. On the other hand,
there is still a long road before objective NNs are used widely in medical diagnosis. Finally, it is anticipated
that AI will increase the combination of complex reasoning and representation learning in neuroradiological
and neurosurgical practice [42,43].

Conclusions
ML and DL models incorporating MRI have been evaluated extensively. They have a significant value in
improving the diagnostic and classification accuracy of brain tumors, especially gliomas, without the need
for invasive methods. Most studies have presented validated results and can be used in clinical practice to
improve patient care and prognosis. Open access to such algorithms is essential to support broader
technological progression because ML algorithms have become more advanced. Clinical trials must follow
reporting guidelines to ensure robust evidence is collected and to reduce biases as AI platforms associated
with brain tumor surgery develop. There remain valid issues about the further implementation of machines
in modern neurosurgery when AI promises to enhance patient management. Enhancements in patient
findings might be challenged by job replacement, unique neglect, and physician deskilling. Clinician
acceptability and stringent patient approval must be considered in the future to ensure that the potential of
AI, ML, and DL does not lead to unidentified adverse outcomes.
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