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Abstract: Oral mucositis (OM) is a painful condition caused by chemotherapeutic or radiotherapeutic
cancer treatments, occurring in patients with different tumour characteristics and locations. OM
greatly impacts a patient’s quality of life and cancer recovery. Current OM management strategies are
not providing sufficient prevention and treatment; new approaches to injury management are needed.
Studies on the benefit of omega-3 free fatty acids (FFA) in human health have increased significantly
in recent years. FFA properties have been studied extensively, including their potential therapeutic
use in inflammatory conditions. However, omega-3 FFA’s use as a supplementary treatment for OM
has not been clinically tested. Preliminary evidence suggests that utilising FFA to manage OM could
be a useful strategy for lesion management, assisting with healthy oral mucosa recovery. This review
will describe the incidence, risk factors, biology of OM and the current treatment strategies, leading
to a discussion of the utility of omega-3 FFA as a novel therapeutic agent for OM.

Keywords: oral mucositis; inflammation; polyunsaturated fatty acids; omega-3 fatty acids; omega-6
fatty acids; cancer; prostaglandins; leukotrienes; interleukins; cytokines

1. Introduction

Oral mucositis (OM) is a severe form of acute inflammation and ulceration in the oral
mucosa that can be induced by oncological therapy. OM induces erythema and swelling in
the oral mucosa, followed by generalised ulceration and bleeding that can spread further
from the oral cavity to the digestive tract and that is capable of causing debilitating effects
for patients with OM. Effects include pain, inflammation, compromised oral hygiene, an
increased risk for local and systemic infections as well as impaired nutrition [1–4]. The
OM doubles the risk of systemic infections and quadruples the risk of death in cancer
patients. Supportive care approaches to managing symptoms are commonly used in the
OM condition. However, due the complicated pathobiology, those interventions are often
not efficient and effective for all patients. Therefore, OM relief still represents an unmet
need.

The aim of this review is to update knowledge about the concept, incidence and patho-
genesis of OM, to examine the well-established therapeutic strategies in the prevention or
treatment of OM and to discuss how omega-3 free fatty acids supplements could be used
to treat OM patients.
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2. Incidence and Risk Assessment

The incidence of OM in patients with various types of cancer ranges from approxi-
mately 30% to 40% to almost 100% [5]. However, the most severe and debilitating type of
OM observed in cancer patients is caused by head and neck radiation therapy, where it
manifests in almost all patients [6]. OM develops in approximately 60% to 85% of patients
undergoing hematopoietic stem cell transplantation (HSCT) and 20% to 40% of patients
receiving conventional chemotherapies [7]. The use of concomitant chemotherapy and
targeted agents increases OM risk [5]. The true prevalence of OM as an adverse effect
in oncological treatment has potentially been underreported. OM incidence and sever-
ity vary depending on the treatment modality. Often, its severity is clinically observed
in patients receiving chemotherapy, radiotherapy, or a combination of the two. Radio-
induced OM occurs in head and neck cancer patients who receive cumulative radiation
doses ranging from <32 gray (Gy) to greater than 65 Gy. However, dose fractionation
protocols and differences in RT techniques result in different incidence rates [8]. Add to
these variables the locations and intensities of OM that are associated with the vast range
of chemotherapeutic drugs. The highest incidence of OM occurs in patients that receive
antimetabolites, platin-derived DNA abductors, taxanes, anthracyclines, irinotecan and
alkylating agents [9]. More research is required to understand the true prevalence of OM
pathology in oncological therapies.

OM adversely affects several clinical outcomes for patients. Cancer patients who
develop this comorbidity typically experience a decreased tolerance for therapy, are at a
higher risk of readmission and tend to have longer hospitalisation periods than patients
without OM [10]. An intensive care unit study revealed that the most commonly diagnosed
alterations in the oral cavity were an imbalance in the oral microbiota, oral candidiasis, sali-
vary flow changes and mucositis [11]. Furthermore, OM negatively affects the nutritional
status of cancer patients since dysphagia (difficulty in feeding) with solid and liquid food,
dysarthria (poor coordination of the speech muscles) and odynophagia (pain or burning
sensation when swallowing) affect food intake and other nutritional supplementation [12].
Additionally, symptoms related to developmental pathology, from lower-grade oral burn-
ing to severe pain and spontaneous bleeding that disrupts routine feeding, may lead to
cachexia (the loss of skeletal muscle and fat tissues), requiring parenteral nutrition via a
nasogastric tube [2].

Comorbidities alongside OM can lead to severe systemic disorders, immunosuppres-
sion and even sepsis [1,3,7]. Therefore, many studies have been seeking strategies to aid
faster recoveries of inflammatory pathological conditions by reducing the rate of oral cavity
contamination by harmful microorganisms [11]. OM is a prevalent, adverse effect of cancer
treatment that has likely been underreported despite its negative ramifications in patients’
lives [12]. As a consequence, considerable research is being carried out to determine agents
and strategies which promote the prevention of OM and the recovery from its disruptions
to patients’ quality of life.

3. Biomolecular Mechanisms of OM

Radiation-induced and chemotherapy-induced OM have similar developmental mech-
anisms [1]. The cascade of biological events responsible for the genesis of OM begins with
the induction of DNA damage caused by radiation or chemotherapeutic cancer ther-
apy [6,13] (Figure 1).

The genesis of OM in neoplastic treatments occurs with or without mucosal cell DNA
damage. Radiation-induced OM takes place when DNA degrades in oral basal-epithelial
cells, while chemotherapy-induced OM occurs when basal cells become damaged by
chemotherapeutic agents present in the systemic circulation [14]. In radiation-induced
OM, reactive oxygen species (ROS) are produced in response to DNA damage. The
production of ROS negatively impacts the epithelium by causing irreversible DNA damage,
promoting cell apoptosis. It is important to note that, at this stage, patients do not present
any clinical symptoms, but the biological disruptions will have already occurred in the
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submucosa, advancing the progression of OM [13–15]. With submucosal injury, initiators
of inflammation are triggered (Figure 2). Taken together, these endogenous mechanisms
trigger a cascade of biological events and inflammatory pathways that initiate tissue
damage in the oral mucosa [5,13,16–18].
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Figure 1. Five-phase pathobiological model of oral mucositis. Based on this model, the process trigger is DNA damage
induced by radio-chemotherapy followed by activation of inflammatory pathways together with apoptosis. These processes
lead to the loss of integrity of the mucosal barrier and subsequent wound formation. The end of the signalling pathway
occurs spontaneously after cessation of tissue damage.
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Figure 2. Mucositis signal amplification. Anti-cancer treatment activates the transcription factor
nuclear factor-κB (NF-κB) after damage to basal epithelial cells and cells in the underlying tissue.
The break in double-stranded DNA, the generation of ROS and PAF release through platelet aggrega-
tion leads to cell death and/or injury. NF-κB up-regulation initiates a positive feedback loop and
consequently amplifies the production of pro-inflammatory cytokines (TNF-α, interleukin (IL)-6 and
IL-1β) as well as the transcription of genes encoding MAPK, COX-2 and tyrosine-kinase signalling
molecules, prompting activation of apoptotic genes (BAX and BCL-2) and matrix metalloproteinases.

Additionally, enzymatic and fibroblast activation occurs, further accelerating cell apop-
tosis in the oral submucosa, advancing OM [19]. The activation of the pro-inflammatory
NF-kB pathway also induces the expression of various adhesive molecules, including
E-selectin, P-selectin, ICAM-1, vascular adhesion molecule 1 (VCAM-1) and angiogenesis
molecules [18,20,21]. Consequently, c-Jun N-terminal kinase (JNK) signalling is triggered,
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initiating a fibronectin breakdown and leading to macrophage activation [14,15,22,23]. NF-
kB also affects genes in the B-cell lymphoma 2 (BCL2) family, which may directly induce
cell apoptosis [24].

There is a change in the interface integrity between the epithelium and the submucosa
in the basement membrane, which is mediated by the transcription factor that activates
protein 1 (AP1), which controls the genes that regulate matrix metalloproteinases (MMP)
production [13,14,22–24]. The modification in the production of MMP causes destruction of
the subepithelial matrix and, consequently, may enhance the effectiveness of other signals,
such as those carried out by TNF-α [13].

Tissue-destructive processes result in visible inflammation and ulceration in the oral
mucosa, often leading to bacterial colonisation and further aggravating tissue damage.
Alterations in the oral microbial communities occur during cancer treatments, leading to
microbiota imbalances and consequently to an increase in normally contained populations
of microorganisms [25]. The presence of pro-inflammatory microbiota influences the
severity of OM. For example, the increased amount of Porphyromonas gingivalis and the oral
yeasts Candida glabrata and Candida kefyr alter the recovery capacity of epithelial cells of oral
mucosa, leading to a delay in the wound healing capacity [26]. Ruptures in the oral mucosal
tissue thereafter led to microbial colonisation and growth, creating a risk of infection for
patients. The open wounds in the oral cavity caused by OM allow opportunistic bacteria,
such as Actinomyces, Lactobacillus, Bifidobacterium and Eubacterium, to colonise the tissue
and release toxins into the submucosa, causing damage and leading to infection. This also
increases the risk of septicaemia in patients with neutropenia [27–29].

The inflammatory process culminates with wound healing associated with hematopoi-
etic recovery, the re-establishment of balanced local microbial flora and an absence of factors
that interfere with wound healing, such as infection resolution and diminished mechani-
cal irritation [16,30,31]. The resulting repair of the extracellular matrix leads to mucosal
renewal and healing via stimulated proliferation, migration, adhesion and differentiation
of compromised tissues in the submucosa [15,32]. Nevertheless, residual angiogenesis in
the tissue after an OM episode induces higher risk of future episodes [33].

The course of OM progression is not only associated with treatment factors but also
with patients’ characteristics such as body mass profiles, renal and hepatic function, local
oral factors and genetics [5,31,34]. Despite OM being an independent risk factor for the
development of infections, several researchers have demonstrated that microbial flora is
not a primary causative factor for the developmental pathology [23]. Once the individual
risks for mucositis have been identified, efforts to interfere in the inflammatory responses
from different treatment approaches will naturally follow. Therefore, the therapy-based
strategy involves the concomitant use of agents that are able to act in different phases of
the pathogenesis of mucositis [34].

4. Prevention and Management Strategies

OM treatment is a miscellany of therapies that quest the control of the diseases and
the symptoms relieved. Therefore, the clinical practice guidelines from the Multinational
Association of Supportive Care in Cancer and International Society of Oral Oncology
(MASCC/ISOO) summarized the standard protocol to manage the OM in cancer pa-
tients [32,34]. The proposed intervention strategy is to begin with the care in oral health
with a combination of toothbrushing and flossing [35]. The strategy is followed by the
elimination of any type of irritant and the control of the proliferation of oral pathogenic
microflora through mechanical removal, combined with the individual use of mouth rinses
to maintain oral hygiene. Complete oral examinations and dental interventions are critical
components performed in conjunction with oncological treatments [32,34,35].

Oral cryotherapy and photobiomodulation (PBM) therapy have been utilised preven-
tively to reduce the impact of the treatment toxicity in the oral mucosa [36]. The PBM is
recommended for the prevention and treatment of OM in patients receiving cancer treat-
ments. Several studies have demonstrated the effectiveness of anti-inflammatory effects



Biomedicines 2021, 9, 1531 5 of 13

in supporting tissue repair [13,33,37–45]. Nevertheless, clinical evidence still shows that
some patients present recurring episodes of OM during their cancer therapy despite being
treated with LLLT [37].

Pharmacological agents (pentoxifylline, benzydamine hydrochloride, thalidomide
and simvastatin) currently utilized to prevent and treat OM have variable efficacy rates
and significant side effects, rendering this treatment strategy less than ideal [13–15]. The
requirement to reduce the side effects of pharmacological agents and increase the possi-
bility of a patient’s fast recovery elicited the need for research to demonstrate the benefits
of utilising natural resources and herbal medicines to manage the OM wound and re-
lated inflammatory conditions [3,33]. For this reason, several natural products such as
chamomile, essentials oils from manuka (Leptospermum scoparium) and kanuka (Kunzea
ericoides), vitamins A, B12 and E, folate, glutamine, aloe vera and curcumin have been
studied [46–49]. In addition, several studies have investigated the mechanisms of action of
n-3 fatty acids (or omega-3 fatty acids) against several diseases, with observed successes
that are likely due to the fatty acids’ anti-inflammatory effects [50].

Researchers have demonstrated that the use of a combination of agents and physical
strategies can provide anti-inflammatory, analgesic and anti-microbial effects that can be
used to manage cancer-therapy-induced OM in general. The combination strategy has
been promising for patients’ symptom relief and wellness during the OM course [13,37].

5. Omega-3: Inflammation Reduction and Tissue Homeostasis Recovery

The PUFAs are a part of the group of fats (lipids) that are the main components of
cellular membranes [51]. The shift in cell membrane compositions could be the mechanism
of anti-inflammatory agents as well as immune cell activations [52,53]. The synthesis of
eicosanoids (prostaglandins, prostacyclins, thromboxanes and leukotrienes) is generated
by the presence of omega-3 (eicosapentaenoic acid (EPA; C20: 5ω-3), docosahexaenoic
acid (DHA; C22: 6ω-3)) and omega-6 (arachidonic acid (AA)) incorporated into the cell
membrane [53]. Further, metabolic enzymes act on EPA and DHA, producing metabolites
that activate other anti-inflammatory pathways and weaken the inflammatory action of
immune cells [54,55] (Figure 3).
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Omega-3 PUFAs have been proven to inhibit inflammatory processes in several ways.
The blockage of the AA cascade is an anti-inflammatory mechanism frequently studied as
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the pathway is linked with the daily omega-3 (EPA and DHA) supplementation [56–59].
The increased bioavailability of omega-3 leads to an additional level of immunoregulation
by these FFAs [56,57]. Publications show that AA metabolites, such as prostaglandin
and leukotrienes, are involved in oral health and diseases, including the modulation of
salivary gland inflammation [60]. Although the role of AA metabolites in OM is not well
established, there is evidence that topical prostaglandin-E2 (PGE2) application is effective
in reducing chemoradiotherapy-induced OM [61]. Therefore, EPA and DHA used to reduce
the oral mucosa inflammatory process should be further investigated to elucidate whether
the FFAs promote inhibition of pro-inflammatory cascades during the OM development.
The action of PUFAs on the immune system is related not only to the profile alteration of
eicosanoids during inflammatory activation but also to the alteration of pro-inflammatory
protein production, including cytokines and adhesion molecules [56].

A prominent anti-inflammatory mechanism of action of omega-3 is its epigenetic inhi-
bition of NF-kB in response to inflammatory stimuli [59]. This epigenetic alteration is also
responsible for the decrease in the expression levels of adhesion molecules, inflammatory
cytokines and COX-2 metabolites [62,63]. In addition, FFA can block the translocation
of NF-kB to the nucleus by inducing peroxisome proliferator-activated receptor gamma
(PPARg) target genes [64]. This translocation inhibition leads to a decrease in the produc-
tion of cytokines such as TNF-α, IL-1β and IL-6 [55,62–64]. According to Calder (2013),
the omega-3 FFAs elicit an effect on inflammatory genes’ expression via the inhibition of
the activation of the transcription factor NF-kB in response to exogenous inflammatory
stimuli [63].

As previously mentioned, NF-kB is a primary driver in the process of mucositis
pathobiology and the severity of the disease is associated with the pathway activators.
Their activation leads to further production of the principal inflammatory target cytokines,
which, in turn, amplifies the response [18]. Omega-3 blocking the NF-kB migration to the
nucleus could decrease the production of cytokines responsible for the positive feedback
and affect the development of the OM signal amplification phase. The blockade of this
stage alters the biological environment to reduce the message generation that activates
the damaged response pathways. Consequently, there would be a stop in the cytokines’
feedback loops and a slowdown of tissue injury. However, as the source of damage
remains due the chemotherapeutic or irradiation insult, the mucosa still presents molecular
alterations that would delay the total tissue recovery until the end of oncological treatment.

In addition to acting in several pathways, omega-3 FFA modulates immune cells’
activity. PUFAs act directly on several immune cells. FFA supplementation modulates
neutrophil function, including migration and phagocytic capacity as well as the production
of reactive oxygen species and cytokines. It stimulates macrophage cells to produce
and secrete cytokines and chemokines, to increase capacity of phagocytosis and the cells
polarization and to modulate T cell activation [55].

Mucosa wound recovery in cancer patients could be supported by the daily intake of
these natural supplements, not only to increase the immune cell’s capacity to act directly in
the mucosa but also in the systemic immunoregulation. During the OM development, there
is an activation of inflammatory cascades that affect mast cells, neutrophils and natural
killer cells, leading to the production of AA metabolites, toxic phagocytic products (oxygen
metabolites, nitric oxide, collagenases, etc.), toxic lymphocyte products, neuropeptides
and various components of the plasma proteolytic cascades [65]. In this condition, FFAs
would be able to reduce inflammation through immune cell regulation and support wound
reepithelialisation.

6. Evidence of Omega-3 as Therapeutic Strategy

Natural and herbal remedies have been precursors to numerous medicines that are
commercialised and utilised today [66]. A novel strategy to speed up the recovery of OM is
to improve patients’ nutrition by increasing their intake of omega-3. This nutritive change
may be particularly effective in promoting tissue recovery, decreasing inflammation and
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improving the body’s natural immune response to OM [67]. The anti-inflammatory and
healing properties of omega-3 fatty acids make them exciting potential pharmaceutical agents
for several pathological conditions. Evidence suggests that local and systemic levels of
inflammatory mediators, combined with EPA and DHA oral supplementation, may encourage
inflammation resolution, PMN down-regulation and wound reepithelialisation [68].

In a critical review, the anti-inflammatory potential of the compounds has also been
evaluated in the management of different cancer therapy side effects, such as anorexia-
cachexia syndrome, pain, depression and paraneoplastic syndromes. The authors con-
cluded, through preclinical evidence, that omega-3 PUFAs and their metabolites might
modulate the main pathways underlying complications secondary to cancer [69]. The evi-
dence that PUFAs are promising for handling the toxicity effects of the oncologic treatment
is an initial point to evaluate their use in the OM prevention and treatment.

Although omega-3 may be a promising agent to treat and manage various pathologies,
there are few studies that investigate how and if omega-3 fatty acids aid in the healing of
wounds from different aetiologies (Table 1). Omega-3 activity in the recovery of epithelial
cells has been demonstrated in clinical trial studies. The FFA capacity to reduce swelling
and pain without debridement of the necrotic tissue in cutaneous wound healing was
demonstrated. In addition, the studies have shown that FFA increases proinflammatory
cytokine production, PMN down-regulation and wound reepithelialization [56,68]. Al-
though the process of wound healing in the oral mucosa is starkly different to other tissues,
the evidence from the studies gives a broad sense for the way that omega-3 could act in
mucosal recovery.

Table 1. Summary of the characteristics of studies investigating the effectiveness of omega-3 (ω-3) PUFAS on different ulcers.

References Study Description Omega-3 Dose Key Finding

McDaniel et al.
2008 [56]

Clinical Trial, Randomized
and Double-blind Control

Study.

Evaluation of plasma fatty
acid levels in healthy
individuals (n = 30) at

baseline and after 4 weeks in
a blister wound model.

ω-3 group: total daily
intake of 1.6 g of EPA and 1.1

g DHA
capsules daily/4 weeks.

PUFA may increase proinflammatory
cytokine production at wound sites at 24 h

and non significantly slower wound
healing.

McDaniel et al.
2011 [68]

Clinical Trial, Randomized
and Double-blind Control

Study.

Evaluation of lipid mediator
levels in acute wound and the

reduction of PMN levels in
healthy individuals (n = 18)
by a blister wound model.

Active group: 1.6 g of EPA
and 1.2 g of DHA per day/28

days.

ω-3 group presented lower mean levels of
myeloperoxidase at 12 h and more

reepithelialisation on Day 5 post wounding.

Abdelsalam
et al. 2017 [70]

Murine model, Group-control
Study

2 groups (n = 15 per group).
Histological samples

harvested on post-injury days
3, 7 and 14.

Systemic: 93 mg/kg body
weight

The study group had high
reepithelialisation and connective tissue

healing score on day 7 and 14.

Hashemipour
et al. 2012 [71]

Murine model, Group-control
Study

5 groups (n = 16 per group).
On post-injury days 2, 4, 6,
and 8, tissues harvested for

histological evaluation.

Local: 100 mg/kg (0.2% total
weight) and Systemic: 200
mg/kg (0.4% total weight)

The control group had highest
inflammation, and the lowest

reepithelialisation. The thickest epithelium
was observed in the local and systemic

groups on days 6 and 8.

El Khouli &
El-Gendy 2014

[72]

Clinical Trial, Randomized
and Double-blind Control

Study.

Patients diagnosis with
recurrent aphthous ulcer (n =
50). Evaluation by number of
new ulcers, duration of ulcer

episodes, and pain level
through questionnaires.

Experimental group: ω-3 (1
g-200 mg of DHA and 300 mg
of EPA), 3x daily/6 months.

Daily ω-3 treatment achieved a significant
reduction in number of ulcers, duration of
ulcers, and level of pain by 3 months that

persist for 6 months.

Nosratzehi &
Akar 2016 [73]

Clinical Trial, Randomized
and Double-blind Control

Study.

Patients diagnosis with
recurrent aphthous ulcer (n =

50). Size and rate of ulcers
was measured weekly.

ω-3 group: 1 g of DHA
and EPA, 3 times daily for 6

months.

The ω-3 group present less pain and
irritation. The ulcer size decrease from 2.3

to 1.48 mm (p = 0.062). The number of
ulcers indicates a reduction in comparison

with the control group.

Hashemipour
et al. 2017 [74]

Clinical Trial, Randomized
and Double-blind Control

Study.

Patients with leukaemia or
breast cancer diagnosis

undergoing chemotherapy
treatment that developed oral

mucositis (n = 60). Oral
examinations were repeated

on days 1, 7, 14, and 21.

ω-3 group: 1 g pearl (360 mg
of EPA, and 240 mg of DHA),

2 capsules daily.

Differences in the severity of mucositis and
pain score between the ω-3 and placebo

groups in the first, second, and third weeks
of treatment were noted.

Animal studies have demonstrated that supplementing the diet with 0.2% to 0.4%
of the total animal weight with omega-3 was associated with accelerating ulcer healing
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in murine mucosal models [70,71]. Hashemipour et al. concluded that omega-3 was
effective in wound re-epithelialization, increasing the average thickness of the epithelium
and encouraging inflammation resolution [71]. The use of FFA in mucosal recovery also
specifically increases the formation of granulation tissue, encourages fibroblast action and
reduces the severity and size of oral wounds [70,71]. Despite both studies having been
conducted using animal models, the results agree with the general understanding of the
mechanism action of omega-3 in tissue inflammatory processes.

Two double-blind, placebo-controlled mucosa cell-based clinical trials assessed the effects
of the systemic use of omega-3 on the treatment of recurrent aphthous stomatitis. Both studies
note that omega-3 treatment achieved a significant reduction in ulcer numbers, duration in
the tissue and level of pain. Results indicate that the daily consumption of omega-3 capsules
of 1000 mg (200 mg of DHA and 300 mg of EPA essential fatty acids) could be effective in the
management of recurrent ulcers in the oral cavity [72,73]. Even though there are differences
in etiopathology between aphthous stomatitis and OM, the study’s conclusion brings forth
important considerations regarding mucosa recovery under omega-3 influence.

In one clinical study, patients received 2000 mg of fish oil (360 mg of EPA and 240 mg
of DHA) omega-3 fatty acids and presented significantly less pain and irritation of the oral
cavity [74]. Despite the limitations of this particular study, the clinical observations support
the premise that dietary intake of omega-3 can affect molecular and cellular activities
supporting tissue recovery [59]. Several separate experiments have also demonstrated the
positive effects of omega-3 fatty acids in preventing complications associated with diseases
and treatments across a range of cyclosporine use, hypertension, diabetes, arthritis, other
inflammatory conditions, autoimmune disorders and cancer [54,59].

The American Heart Association (AHA) has suggested that a safe EPA and DHA
dosage for healthy people is 0.5 g to 1.8 g daily [75]. This is equivalent to approximately
one to two servings of fish per week. However, this recommendation is based on the
calculated effective dosage for preventing cardiovascular diseases and their associated
mortality. Specific dosage recommendations for the treatment of OM must be established
before this treatment strategy is clinically implemented. Furthermore, AHA guidelines
advise monitoring patients who consume high doses of EPA and DHA (>3 g/d) because
of the potential complication of excessive bleeding [75]. Additionally, the AHA cautions
consumers to be aware of their fish sources, as some species of fish contain high concen-
trations of toxins, such as methylmercury and dioxins [75]. This risk can be mitigated by
consuming younger and smaller fish and consuming fish from low-risk waters. Generally,
the benefits of consuming omega-3 fatty acids appear to outweigh the risks. Therefore,
omega-3, in safe doses, could be a feasible intervention to aid in the recovery of OM.
The increased use of natural medicine instead of the synthetic pharmaceuticals in the
management of some diseases is mainly due to less adverse effects [76]. Studies have
demonstrated the possibility of handling the healing of different wounds via the dietary
intake of PUFAs based on their anti-inflammatory effects [56,68,70–74]. Altogether, it is
possible to manage OM via the dietary intake of PUFAs due to their anti-inflammatory
effects. In short, the anti-inflammatory mechanisms of PUFAs include decreasing immune
cell recruitment, switching pro-inflammatory pathways and eliminating apoptotic cells
through phagocytosis, resulting in tissue healing [76].

This review outcome agrees with the latest research findings, that PUFAs present a
promising approach in addressing the lack or delay of the recovery of OM during cancer treat-
ment, possibly improving the overall quality of life and, consequently, patients’ survival [77].

7. Conclusions

Evidence suggests that the dietary supplementation of FFA could be effective for
managing the complications associated with cancer treatment, including the physiolog-
ical development of OM. This intervention is especially relevant for cancer patients not
responding to current OM treatment strategies. Nevertheless, this possibility needs to be
better studied before it can be clinically implemented. Studies on the pathophysiology of
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OM, including its pharmacogenomic influences and epidemiology, will be helpful to better
understand the disease. Meta-analyses on the best pharmaceutical agent combinations to
treat OM will also be beneficial in this pursuit. Importantly, more primary research must
be conducted on the anti-inflammatory mechanisms of omega-3 fatty acids to discern if
this supplementation strategy will truly be efficacious for treating inflammatory diseases
such as OM; if so, then the optimised dosage regime of omega-3 fatty acids for OM must
be discovered before clinical implementation is possible.
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