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ABSTRACT

Purpose: The COVID-19 pandemic has been widely
reported to present stress to medical systems globally
and to disrupt the lives of patients and health care
practitioners (HCPs). Given that spontaneous
reporting heavily relies on both HCPs and patients,
an understandable question is whether the stress of
the pandemic has diminished spontaneous reporting.
Herein, the hypothesis that the COVID-19 pandemic
has negatively affected the spontaneous reporting of
adverse drug events was assessed.

Methods: Spontaneous-report counts from 119
weeks (January 1, 2018, to April 12, 2020) were
identified using Pfizer's safety database and were
analyzed. Autoregressive integrated moving-average
models were fitted to aggregated and disaggregated
time series (TSs). Model residuals were charted on
individual-value and moving-range charts and
exponentially weighted moving-average charts for the
identification of statistically unexpected changes
associated with the pandemic.

Findings: Overall, the reporting of serious adverse
events showed no unexpected decline. Total global
reporting declined, driven by HCP reporting (of both
serious and nonserious events), starting after week 8
of 2020 and exceeding model expectations by week
15 of 2020, suggesting the pandemic as an assignable
cause. However, reporting remained within longer-
term historical ranges. The TS from Japan was the
only national TS that showed a significant decline,
and an unusual periodicity related to national
holidays. A few countries, notably Taiwan, showed
unexpected statistical increases in reporting
associated with the pandemic, commencing as early
as week 3 of 2020. In the literature, the reporting of
adverse drug events was stable. Ancillary findings
360
included prevalent year-end/beginning reporting
minima, with more reports from HCPs than from
consumers.

Implications: Using data from a large-scale and
diverse safety database from a pharmaceutical
company, a significant global decline in total
reporting was detected, driven by HCPs, not
consumers, and reports of nonserious events,
consistent with the pandemic as an assignable cause,
but the reporting remained within long-term ranges,
suggesting relative durability. Importantly, the
analyses found no unexpected decline in overall
reporting of serious events. Future avenues of
research include the use of data from large-scale,
publicly available spontaneous reporting systems for
assessing the generalizability of the present findings
and whether they correlate with impaired signal
detection, as well as a follow-up analysis of whether
the effects on spontaneous reporting abate after the
pandemic. (Clin Ther. 2021;43:360e368) © 2020
Elsevier Inc.

Key words: adverse drug events, coronavirus,
COVID-19, pandemic, spontaneous reporting, time
series.
INTRODUCTION
The unprecedented COVID-19 pandemic has
reportedly presented a huge stress to medical systems
across the globe.1,2 Health care practitioners (HCPs)
© 2020 Elsevier Inc.
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and institutions have been faced with large caseloads
and serious and unexpected clinical phenotypes.
Patients' lives have also been disrupted in significant
ways.

Spontaneous reporting, a foundation for drug-safety
monitoring, relies on the time and efforts of HCPs and
patients for providing crucial information on the
tolerability of drugs in clinical practice. Spontaneous
reporting may be influenced by numerous factors,
including the attitudes of HCPs; constraints on
reportes' time; clinical recognition/suspicion, fear of
litigation, publicity/notoriety bias; and secular trends
related to the life-cycle of a product (eg, Weber
curve). An important question is whether a disruptive
strain of a pandemic infection diminishes
spontaneous reporting by HCPs, patients, or both.

Serial data from long time periods, such as time
series (TSs) of spontaneous reporting frequencies,
cannot be fully understood if the time sequence is
ignored. The observations at any point in a TS may
reflect memory/carryover effects from previous time
points (autocorrelation), trends, seasonality, other
periodic effects, random variability, and systematic
disturbances. Ignoring such structure, such as
comparing the number of reports in a given week or
month from one year with the number of counts in
the same week or month from another year, can lead
to erroneous conclusions.3

Herein, weekly frequencies of global and national
spontaneous reporting across a TS were analyzed for
the potential impact of the COVID-19 pandemic on
spontaneous reporting.

MATERIALS AND METHODS
To investigate the potential impact of the COVID-19
pandemic on spontaneous-reporting frequencies, the
basic strategy was to apply TS regression to model
the long-term temporal evolution of spontaneous-
report counts. Then, statistical process control (SPC)
charts were applied to assess whether significant
deviations from well-fitting models were temporally
related to the pandemic. As it might be expected that
the effects of a pandemic on spontaneous reporting
may vary as a function of multiple variables, total
global spontaneous reports were analyzed, as was the
source of reports (HCP vs consumer vs literature),
reports of serious versus nonserious events, and
reports from a selected set of countries with the
highest numbers of confirmed COVID-19 cases.
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Therefore, there were 3 elements of the
methodology: (1) the use of a safety database for
obtaining adverse-events report counts, (2) the use of
a global database of confirmed numbers of COVID-
19 cases, and (3) the use of statistical TS analysis.

Data Collection

Pfizer Safety Database
The analyses were performed on data from Pfizer's

in-house safety database (New York, New York).
This database consists of >3 million initial reports
(from the past 10 years) originating from 208
countries, inclusive of a portfolio of >900 drugs; it is
a large-scale, pharmacologically, clinically, and
geographically diverse database.

Weekly global and national spontaneous-report
frequencies were extracted from 119 weeks (January
1, 2018, to April 12, 2020) inclusive of a substantial
time period after the World Health Organization
declared on January 30, 2020, that COVID-19 was a
public health emergency of international concern, and
on March 11, 2020, that it was a global pandemic.4,5

This time span captured the latest available data and
exceeded the frequently recommended minimum
sample size recommendation for TS analysis of 50,
and preferably 100, time points, but not overly so,
which could have degraded the ability to
approximate the true process with a model.6,7

In addition to TS for global spontaneous adverse-
events report counts, the corresponding component TS
were analyzed for events reported by HCPs versus
consumers, serious versus nonserious events, and
reports from the literature, plus weekly spontaneous-
report counts from the top 12 countries ranked by
confirmed COVID-19 cases as of May 8, 2020, on the
John Hopkins COVID-19 Resource Center World
Map (see next section).8 The robustness of the
analysis was increased by the inclusion of 2 additional
countries about which there was curiosity because
they may be regarded as having pharmacovigilance
systems with unique features of interest to this
exercise: Taiwan and Japan. Taiwan implemented an
early, intensive, and effective response to the COVID-
19 pandemic,9 while Japan contributes a substantial
number of spontaneous reports and has specialized
features for intensive monitoring of the effects of new
drugs.10 TS of literature reports were also examined
as a comparator that was hypothesized to be resilient
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to the pandemic, although possibly showing delayed
effects.
Johns Hopkins Coronavirus Resource Center
The Johns Hopkins Resource Center is a leading

centralized source of data and information on
COVID-19 infection. It collects, collates, tracks, and
displays/plots data on global and national confirmed
COVID-19 infections and deaths, on an open-source
platform. The website was interrogated on May 8,
2020, for the selection of the countries with the top
12 numbers of confirmed COVID-19 cases, for the
TS analysis.8

Statistical Analysis
The analysis involved an autoregressive integrated

moving average (ARIMA) model/BoxeJenkins
protocol supplemented with special-causes SPC charts
of the model residuals11 (Minitab statistical analysis
software version 18; Minitab LLC, State College,
Pennsylvania). This combined ARIMA and SPC
approach has been used in detection of
epidemics,12,13 and ARIMA modeling with outlier
detection has been implemented for high-throughput,
hypothesis-free signal detection in
pharmacovigilance.14 Recently it has also been used
to forecast COVID-19 cases.15 ARIMA incorporates
model terms for the aforementioned effects of trends,
autocorrelation, and seasonality, thus maximally
exploiting historical information embedded in the
time sequence.

ARIMA is a form of regression, specifically
regression of TS datadthat is, a model that estimates
or predicts the value of a variable of interest (eg,
spontaneous-report counts) over time. In general, a
regression model estimates or predicts the value of an
outcome variable as a weighted combination of
predictor variables plus random error. In an ARIMA
model, the predictor variables can include previous
values of the outcome (ie, the autoregressive term
representing correlations with one or more previous
time points), an underlying trend in the TS (ie,
integrated term), and carryover effects of previous
estimation errors (the moving-average term). In
summary, in an ARIMA model, the value observed at
any time point is modeled with a weighted sum of
previous values, underlying trends, and/or previous
estimation errors.
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Sometimes the best model is purely autoregressive,
other times purely moving average, and sometimes the
best model is mixed (i.e., both autoregressive and
moving-average terms and even an integration term).
A specific ARIMA model is represented by 3
lettersdpdqdin that order, corresponding to the
AR, I, and MA order, respectively. The order refers
to how far ahead in time the AR and MA effects
reach. So, in an ARIMA model that is autoregressive
of order 2, the estimated value at a given time point
is a weighted sum of the values of the 2 preceding
time points, without underlying trend or moving
averages, and would be labeled ARIMA (2,0,0). The
order of the I term denotes the number of times the
difference is taken between consecutive values to
eliminate trend.

SPC charts, of which there are many varieties for use
with different types of data, were originally developed
for manufacturing-quality monitoring. Common
features of these graphs are a variable plotted over
time, a line of central tendency, and so-called
“control limits,” which are statistically derived lines
above and below the line of central tendency. The
latter define threshold values of the monitored
variable that substantially deviate from the central,
expected value, indicating a significant nonrandom
change in the process that generated the data.

The protocol consisted of 4 steps for assessing
whether observed changes in counts of spontaneous
reports were consistent with the inherent nature of
the entire TS (eg, common causes) versus a change of
a magnitude sufficient to be considered unlikely
without an external shock or disruption (ie, an
assignable external cause, contributing to the change):

1. Visual inspection of TS plots/run charts with
testing for clustering indicative of
autocorrelation, and trends;

2. Initial model selection, starting with examination
of autocorrelation function and partial
autocorrelation function of the original TS to
determine an initial ARIMA model;

3. Iterative model selection and evaluation based on
the following criteria, supporting model fit:
approximate normality of residuals (QeQ plot);
no obvious structure on residuals versus fits
plots; no significant residual correlations in the
autocorrelation function, partial autocorrelation
function, or BoxeLjung statistics; statistically
Volume 43 Number 2
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significant parameter estimates; parameter
parsimony; and minimum mean square error.
An additional model-checking option (used only
in the example in the Appendix 2 for didactic
purposes; see the online version at https://doi.
org/10.1016/j.clinthera.2020.12.008) is over-
fitting of the model with an additional higher-
order term for assessing its statistical
significance. Due to theoretical issues with the
BoxeLjung statistic, small P values of the
statistic at large lags is less important as an
isolated finding. If more than one equally
satisfactory model was identified, the minimum
mean square error was decisive; and

4. Generation of SPC charts (individual
valueemoving range [I-MR] and exponentially
weighted moving-average [EWMA] charts of
the model residuals, so-called “special-causes
charts”).11

Two special-causes charts were used because they
complement each otherdI-MR charts are more suited
for detecting sudden shifts, while EWMA charts are
more suited for detecting more gradual drifts.16 In
addition, because the EWMA calculates a moving
average of current and past observations, it is robust
to deviation from normality and thus useful for
plotting individual values.16 The smoothing
parameter (l) for the EWMA was set at 0.2, given its
use in supplementing the I-MR chart/detecting small
shifts.16

If a finding from the aggregated global TS was
inconsistent across component TS (eg, HCP vs
consumer, serious vs nonserious), the role of
increased TS noisiness/volatility decreasing the signal/
noise ratio was evaluated using a comparison of the
respective TS consecutive disparity index (CDI), a
measure of TS volatility used in quantitative
ecology.17 Unlike conventional measures (eg, the
coefficient of variation), the CDI takes into account
the time-ordering of the observations. To assess
whether differences in CDI between 2 TSs were
statistically significant, paired t tests were performed
on the summed consecutive differences in the formula
for the CDI of each TS.

Unexpected changes were considered potentially
pandemic related if observed from week 2 of 2020, or
a later “time period of interest” (TPI), to avoid
prevalent periodic year-end/beginning reporting effects.
February 2021
Appendix 2 (see the online version at https://doi.org/
10.1016/j.clinthera.2020.12.008) provides a detailed,
step-by-step worked example of the TS-analysis
methodology used herein.

RESULTS
Overall Counts of Spontaneous Reports and
Confirmed COVID-19 Cases

The top 12 countries, ranked by the number of
confirmed COVID-19 cases as of May 8, 2020, were:
the United States, Spain, Italy, the United Kingdom,
Russia, France, Germany, Brazil, Turkey, Iran, China,
and Canada.8 These countries collectively accounted for
71.67% (501,960 of 700,362) of spontaneous reports
in the time period studied. With Taiwan and Japan
included, the percentage rose to 85.1%. Reporting from
Iran was extremely sparse, and therefore those data
were excluded from further national analysis.

There was a total of 700,362 spontaneous reports in
the time period studied. The median (range) number of
spontaneous reports per week was 5857 (3248e8798).
The corresponding number submitted by HCPs was
419,361 (median weekly count [range], 3481
[1320e5945]).

The Table displays the median (range) weekly
worldwide counts from the TPI (weeks 2e15 of
2020) and from the corresponding time intervals
from the previous 2 years. The minimum weekly
total global report count during the TPI was 73% of
the median weekly count for the entire TS (4269 of
5857). The corresponding figures for HCP versus
consumer, and serious versus nonserious, reports in
the TS were 60% (2097 of 3481) versus 93% (2154
of 2323), and 65% (966 of 1494) versus 71% (3134
of 4389), respectively.

ARIMA Time Series Modeling
An adequate model was fitted for 25 of 38 TSs.

Most models were pure low-order AR or MA
models, with a few countries requiring mixed AR and
MA models. Five TSs were fitted with seasonal
models. Detailed results from the fitted models are
provided in Supplemental Table I in Appendix 1 (see
the online version at https://doi.org/10.1016/j.
clinthera.2020.12.008).

Global
According to the combined ARIMA/SPC analysis,

total spontaneous reporting of serious cases did not
363
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Table. Spontaneous reports of adverse events in weeks 2e15 of 2018, 2019, and 2020. Data are given as
median (range) total weekly reports.

Parameter 2018 2019 2020

Total 5893 (5323e7949) 6457 (5561e8128) 5475 (4269e6061)
Reporter

HCP 3666 (3242e5631) 4029 (3404e5945) 3051 (2097e3457)
Consumer 2218 (2081e2661) 2294 (2157e2954) 2386 (2154e2604)

Seriousness
Serious 1532 (1201e1929) 1760 (1232e2675) 1398 (966e1576)
Nonserious 4489 (3906e6020) 4701 (4217e6134) 4115 (3134e4500)

HCP ¼ health care practitioner.

Clinical Therapeutics
show unexpected declines. Total spontaneous
reporting, total nonserious-event spontaneous
reporting, and total reporting by HCPs showed
unexpected declines either by ARIMA/SPC (when a
good-fitting model was obtained) or by visual
inspection (see Supplemental Table I in Appendix 1
in the online version at https://doi.org/10.1016/j.
clinthera.2020.12.008). The relative stability of the
Figure 1. Individual valueemoving range (I-MR) and expo
the residuals of the time series models of spont
A) and of nonserious events (B).

364
serious-event reporting was partly related to opposing
changes in HCP versus consumers reportsdthat is,
an increase in consumer reports coincident with a
decline in HCP reports.

Figure 1A shows the charts on HCP reporting. The
downward drift of overall and HCP spontaneous
reporting exceeded the control limits of the special-
causes charts by weeks 15 and 12 respectively, of
nentially weighted moving-average (EWMA) charts of
aneous reports from health care practitioners (HCPs;
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2020, and commenced earlier withHCP reporting (after
week 6 vs after week 8, respectively). The decline in
overall reporting, commencing after the World Health
Organization declared a public health emergency of
international concern, was detected on the EWMA
special-causes chart, not on the I-MR chart (see
Supplemental Table SI in Appendix 1 in the online
version at https://doi.org/10.1016/j.clinthera.2020.12.
008). A statistically signficant decline in HCP
reporting was first detected on the I-MR chart.

Figure 1B displays the corresponding charts for
reports of nonserious events, which showed a
decline in reporting commencing after week 9 and
exceeding model limits on the EWMA chart by
week 13 of 2020.

The differential TS behavior between HCPs and
consumers was not explainable by differences in
noise/volatility of the corresponding TS, as the
CDI was numerically lower on the consumer TS
versus on the HCP TS, but not significantly so
(0.0936 vs 0.1556; P ¼ 0.764). The possibility
that the selectivity for reports of nonserious events
reflected increased noisiness of the TS of serious
events was discounted because the CDI for reports
of serious events was numerically higher versus
that of nonserious-event reports, but the difference
was not statistically significant (0.133 vs 0.123;
P ¼ 0.989).

Data from literature reports were very stable, but
with discrete year-end/beginning spikes due to the
entry of cases listed in annual reports from the
American Association of Poison Control Centers.
Figure 2. Time series of spontaneous reports from Japan

February 2021
National
With exception of Japan (Figure 2A), national TSs did

not show unexpected declines (see Supplemental Table I
in Appendix 1 in the online version at https://doi.org/10.
1016/j.clinthera.2020.12.008). The Japan TS displayed
a visually evident reporting decline during the TPI. It
also displayed an intricate structure with the usual
week-52 local minima superimposed on recurring local
minima at weeks 18 and 33 (mid-May and early
September, respectively). These periodic minima
corresponded temporally to national holidays in
Japan: Golden Week for the week-18 minima,
Mountain Day and Obon for the week-33 minima.

Interestingly, the Taiwan TS (both overall and from
HCPs) showed a positive level shift in reporting
starting in week 3 of 2020 (Figure 2B) that
confounded ARIMA modeling but was nonetheless
obvious on visual inspection. Notably, on January
20, Taiwan started implementing set of 124 action
items including active periodic patient health checks,9

so these intensified interactions with patients possibly
increased the ascertainment of all manner of health
information, including suspected adverse drug
reactions (ADRs).

The United Kingdom also showed a spike in
reporting that exceeded special-causes control limits
by week 11 of 2020. This spike reflected a
change commencing by week 7 on the I-MR chart
and week 8 on the EWMA chart. However, unlike
the data from Taiwan, the increase in reporting was
rather discrete, making it more difficult to rationalize
as an effect of the pandemic.
(A) and Taiwan (B).
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DISCUSSION
The present TS analysis of data from a large-scale,
pharmacologically and geographically diverse safety
database from a pharmaceutical company showed no
unexpected (ie, inconsistent with the TS model)
declines in overall spontaneous reporting of serious
suspected ADRs, and no unexpected decline in
consumer reports, in the TPI. This finding did not
disprove a pandemic-related effect, but deviations
from the models were not sufficient for rejecting the
null hypothesis of no effect. Statistically unexpected
declines in overall spontaneous reporting, reporting
by HCPs (total, serious, and nonserious events), and
nonserious-event reports were found. The decline in
spontaneous reporting by HCPs manifested primarily
as a downward drift rather than a large acute level
shift, commencing after week 6 and reaching
significance by week 13 of 2020, an onset somewhat
earlier than that of overall reporting (as early as after
week 8, and more clearly after week 11 of 2020). No
signals of a decline in the reporting were found in the
data from literature reports. Thus, selectivity of
model deviations for HCPs over consumers is
intuitively plausible, given the “front-line status” of
HCPs in fighting the pandemic. When unexpected
significant declines in spontaneous reporting were
detected, they were more often detected by EMWA
than I-MR charts, consistent with the superiority of
EMWA charts in detecting more gradual downward
drifts compared to I-MR charts, which are designed
for detecting acute large declines. A more gradual
decline seems to be the more intuitively plausible
scenario of for a pandemic than a large, sudden
change point. However, when both SPC charts
demonstrated a significant decline, the I-MR chart
tended to show an earlier decline.

The lack of unexplainable country-specific declines
had several possible, not mutually exclusive
explanations:

1. Although “sample size” with regard to TSs
typically refers to the number of included time
periods, TS “noisiness” also affects power. The
CDI for global reporting was in fact less than
that for individual countries and the top 12
countries pooled;

2. A contribution to global spontaneous reporting
by countries other than those examined with
366
more fragile or underdeveloped health care
systems, including pharmacovigilance, and
decreased availability of COVID-19 testing, that
may have contributed disproportionately to
global declines;

3. Numbers of confirmed COVID-19 cases may
have correlated imperfectly with health care
system strain (eg, per-capita COVID-19 cases,
COVID-19 case counts/physician or hospital
bed ratios may have been better indicators);

4. The data from the Johns Hopkins University
Resource Center may have been a lagging
indicator of relative disease activity. The
ranking was rechecked on May 20, 2020, with
observed relative ordinal stability, the only
changes being the displacement of China and
Canada by India and Peru in the top-ranked set.

5. Some countries may have experienced delayed
peaks in COVID-19 cases (eg, Eastern Europe/
Russia)18;

6. Overestimation of pandemic impacts.

Japan was the only country to demonstrate declines
in overall and HCP reporting in the TPI. Of the few
countries showing unexpected reporting increases,
Taiwan had more sustained increases. Taiwan's
intensive response to COVID-19, with 124 action
items published on January 20, including periodic
patient health checks,9 potentially increased the
ascertainment of various health outcomes, including
suspected ADRs. It would be interesting to determine
whether the increased reporting was generalized, or
drug, event, and/or drugeevent combinations
selective. Other interesting observations include
highly prevalent year-end/beginning local minima,
and more complex periodic patterns as in Japan.

The stability of the literature reporting TSs may
have reflected the backlog of articles in press and in
late-stage production, with delayed declines possible.

This analysis had limitations. ARIMA models are
one methodologic choice for use in TS analysis, with
advantages and disadvantages relative to others.
Advantages include relative robustness to data
fluctuations, and no required parameter selection.
Disadvantages include the need for substantial
amounts of data, especially for estimating seasonal
effects; an inability to include effect modification; and
sensitivity of results to model specification. While
Volume 43 Number 2
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structured criteria for model fitting were followed,
there is an element of trial and error, and some
models fall between exemplars of good fit (eg,
worked example in Appendix 2 in the online version
at https://doi.org/10.1016/j.clinthera.2020.12.008)
and poor fit, with subjective judgment sometimes
needed. Similarly, the field of SPC charts is marked
by vigorous controversy and debate on the
robustness of these methods to theoretical
assumptions, and optimum application.19,20

Levels of reporting, not signal-detection
performance, were studied. But these are related, as
signals may be detected from individual cases or by
aggregate quantitative analysis. Decreased
spontaneous reporting, if significant, could plausibly
have hampered signal detection at the case level,
although the decrease was within the range of the
prepandemic TSs. The lack of an unexpected decline
in reports of serious events is reassuring. However,
altered ratios of different types of events (eg, serious
vs nonserious) could positively or negatively affect
disproportionality analysis in unpredictable and
situation-dependent ways due to temporary changes
in the distribution of reported drugs, events, and
drugeevent pairs, by COVID-19 diseaseedrug
interactions/novel ADR phenotypes, and/or
misattribution of clinical COVID-19 signs/symptoms
to suspected ADRs. A dedicated online site for
reporting suspected adverse reactions to medicines,
future vaccines, and medical equipment related to
COVID-19 treatment was launched by the UK's
Medicines and Healthcare Products Regulatory
Agency on May 4, 2020.21

Finally, while large-scale and diverse data from a
pharmaceutical-company database were analyzed, it
remains to be determined whether the results are
generalizable to larger public databases containing
data from numerous pharmaceutical companies.

CONCLUSIONS
In data from a large-scale and diverse pharmaceutical-
company database, a significant global decline in total
spontaneous reporting was detected, driven by HCPs,
not consumers, and nonserious-event reports,
consistent with the pandemic as an assignable cause,
but the reporting remained within long-term
ranges suggesting a relative durability. Importantly,
February 2021
the analyses showed no unexpected decline in overall
serious-event reporting. Future avenues of research
include assessing whether these effects impaired
signal detection, performing the same analysis on
data from a large-scale public spontaneous reporting
system to assess the generalizability of the findings,
and a follow-up analysis of whether the effects on
spontaneous reporting abates following the pandemic.
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M. Hauben and E. Hung
APPENDIX 1
Table 1 Time Series Analysis of Spontaneous Reporting

World/Countries Overall/Subsets Visual Inspection
of Original Time

Series for
Special Causesa

Be
ARIM

(p,q,d

World Overall Y Week 13 (1,0,0
HCP Y Week 15 (4,0,0
Consumer / (1,0,0
Serious / (1,0,0
Non-serious Y Week 13 (0,0,1
HCP,
Non-serious

Y Week 13 (4.0,0

HCP, Serious Y Week 15 (1,0,0
Consumer,
Non-serious

/ (1,0,0

Consumer,
Serious

/ (1,0,0

Pooled Top
Countries by
Confirmed
COVID-19
Cases

Overall Y Week 13d (0,0,0
HCP Y Week 15 (0,0,1

China Overall / NAe

HCP / NAe

Spain Overall / (0,0,1
HCP / (0,0,1

Russia Overall / (1,1,1
HCP / (1,1,1

France Overall /d (0,0,0
HCP /d (0,0,0

Brazil Overall Y Week 9 (1,0,1
HCP Y Week 9d (0,0,0

Italy Overall Y Week 10 (2,0,0
HCP Y Week 10 (2,0,0

Japan Overall Y Week 15 (1,0,0
HCP Y Week 15 (1,0,0

United States Overall Y Week 13 (0,0,1
HCP Y Week 13 (1,1,2

Canada Overall [ Week 6 (2,0,0
HCP [ Week 6 (1,0,2

Taiwan Overall [ Week 4 (4,0,0

HCP [ Week 4 (1,0,0

February 2021
st Fitting
A Model
) (P,Q,D)b

Adequate
Fit?

Special Causes by Chart?

I-MR EWMA

) Yes No Y Week 15
) (0,0,1)52 Yes Y Week 12 Y Week 13
) Yes No No
) Yes No No
) Yes No Y Week 13
) (0,0,1)52 Yes Y Week 12 Y Week 13

) (0,0,1)52 Yes Y Week 12 Y Week 12
) No No No

) Yes No No

) NA NA NA
) Yes No Y Week 15

No NA NA
No NA NA

) Yes No No
) Yes No No
) Yes No No
) Yes No No
) NA Noc Noc

) NA NA NA
) Yes No No
) NA NA NA
) Yes No No
) Yes No No
) (0,0,1)52 No No Y Week 12
) (0,0,1)52 No No Y Week 12
) Yes No No
) Yes No No
) Yes No No
) No No No
) No [ Weeks 3,4,6 [ Weeks 4,

6-13
) No [ Weeks 3,4,6 [ Weeks 4,

6e8, 10-12

(continued on next page)
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. (Continued)

World/Countries Overall/Subsets Visual Inspection
of Original Time

Series for
Special Causesa

Best Fitting
ARIMA Model

(p,q,d) (P,Q,D)b

Adequate
Fit?

Special Causes by Chart?

I-MR EWMA

United
Kingdom

Overall [ Week 11 (0,0,1) Yes [ Week 11 No
HCP [ Week 11 (0,0,1) Yes [ Week 11 [ Week 11

Germany Overall [ Week 11 (0,0,1) Yes [ Week 10 No
HCP Y Week 14 (1,0,0) Yes No No

Turkey Overall [ Week 11 (2,0,0) Yes No No
HCP / (1,0,0) Yes No No

Iran Overall NA NAe NA NA NA

ARIMA ¼ auto-regressive integrated moving average; EWMA ¼ exponentially weighted moving average; I-MR¼ Individual value-
moving range; Y ¼ decreased reporting; [ ¼ increased reporting; / ¼ steady reporting.
a Visually obvious local minimum during 1st quarter 2020 after week 1: (as assessed by Manfred Hauben).
b Numbers in the first parenthesis define the non-seasonal model, numbers in second parenthesis, if present, define the seasonal
mode with the subscript defining the temporal unit of observation, in this case weekly. (p/P ¼ autoregressive; component; q/
Q ¼ integrated/trend component; d/D ¼ moving average component).
c Using first differenced series.
d Based on original time series not residuals because of (0,0,0) ARIMA model.
e No model achieved and even remotely acceptable fit.

Clinical Therapeutics
Appendix 2
Table 1 Final Estimates of Parameters

Type Coef SE Coef T-Value P-Value

AR 1 0.2191 0.0908 2.41 0.017
AR 2 0.2806 0.0908 3.09 0.003
Constant 73.69 4.33 17.03 0.000
Mean 147.30 8.65

Table 2 Modified Box-Pierce (LjungeBox) Chi-
Square Statistic

Lag 12 24 36 48

Chi-Square 10.77 36.57 48.61 75.34
DF 9 21 33 45
P-Value 0.292 0.019 0.039 0.003
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