# Diagnosis of isolated cardiac sarcoidosis based on new guidelines

Hideki Kawai<sup>1\*</sup> , Masayoshi Sarai<sup>1</sup>, Yasuchika Kato<sup>1</sup>, Hiroyuki Naruse<sup>1</sup>, Ayumi Watanabe<sup>2</sup>, Takahiro Matsuyama<sup>2</sup>, Hiroshi Takahashi<sup>3</sup>, Sadako Motoyama<sup>1</sup>, Junnichi Ishii<sup>1</sup>, Shin-ichiro Morimoto<sup>1</sup>, Hiroshi Toyama<sup>2</sup> and Yukio Ozaki<sup>1</sup>

<sup>1</sup>Department of Cardiology, Fujita Health University, 1-98 Dengakugakubo, Toyoake, Japan; <sup>2</sup>Department of Radiology, Fujita Health University, Toyoake, Japan; <sup>3</sup>Division of Statistics, Fujita Health University, Toyoake, Japan

# Abstract

**Aims** In the updated guidelines for cardiac sarcoidosis (CS) proposed by the Japanese Circulation Society (JCS), the definition of isolated CS (iCS) was established for the first time. This prompted us to examine the characteristics of patients with CS including iCS according to them by reviewing patients undergoing <sup>18</sup>F-fluoro-2-deoxyglucose positron-emission tomography/computerized tomography (FDG-PET/CT), compared with those with CS determined by the conventional international criteria.

**Methods and results** From 2013 to 2019, 94 patients ( $61 \pm 15$  years, 50 female patients) with suspected CS underwent whole-body and cardiac FDG-PET/CT scanning. In contrast to 22 patients with CS based on the international criteria, 34 [27 with systemic sarcoidosis including cardiac involvement (sCS) and 7 with definitive iCS] were diagnosed with CS according to the new JCS guidelines (P = 0.012), and 60 were not (4 suspected iCS, 13 systematic sarcoidosis without cardiac involvement, and 43 no sarcoidosis). In addition to 26 of 34 patients with CS, corticosteroids were also started in 6 of 60 without CS according to clinical need.

**Conclusions** Diagnostic yield with the new JCS guidelines was higher, with approximately 1.5-fold of the patients diagnosed with CS compared with the previous international criteria and definitive iCS accounting for approximately 20% of the whole CS cohort. In addition to 75% of the patients with sCS or definitive iCS in the updated guidelines, 10% in whom CS was not documented were also started on corticosteroids for clinical indications such as reduced cardiac function or arrhythmia.

Keywords Cardiac sarcoidosis; Fluorine-18-fluorodeoxyglucose positron emission tomography; Isolated cardiac sarcoidosis

Received: 25 February 2020; Revised: 25 May 2020; Accepted: 2 June 2020

\*Correspondence to: Hideki Kawai, Department of Cardiology, Fujita Health University, 1-98 Dengakugakubo, Toyoake, Japan. Tel: +81-562-93-2312, Fax: +81-562-93-2315. Email: hkawai@fujita-hu.ac.jp

The authors have no financial conflicts of interest, grants, or other sources of funding to disclose concerning this work.

# Introduction

Sarcoidosis is a systemic disease associated with non-caseating granulomas. Immunosuppression therapy, usually with corticosteroids, is suggested for the treatment of clinically manifest cardiac sarcoidosis (CS).<sup>1,2</sup> Compared with those with moderately reduced left ventricular ejection fraction (LVEF) (30–54%), immunosuppressive therapy does not improve the left ventricular (LV) function of patients with severely reduced LVEF ( $\leq$ 30%) whose higher scar burden precludes any improvement with immunosuppressive therapy.<sup>3,4</sup> Despite the need for early diagnosis and therapeutic interventions, diagnostic confirmation of CS is difficult because

endomyocardial biopsy has low sensitivity (less than 20%) due to the disease's focal nature.<sup>5,6</sup> That is the reason why multimodality cardiac imaging is essential for identification of patients with the early stage of CS. Meanwhile several reports about patients with isolated cardiac sarcoidosis (iCS) have been published.<sup>7–9</sup> The prevalence of iCS among patients with systemic sarcoidosis varies widely (23–54%),<sup>10,11</sup> mainly because of differences in the definitions used.

The guidelines for the diagnosis and treatment of CS from the Japanese Circulation Society (JCS) were recently updated<sup>1</sup> (*Table 1*). Several marked changes are suggested in this guideline. First, abnormally high tracer accumulation in the heart with <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

#### Table 1 JCS 2016 Guidelines on Diagnosis and Treatment of Cardiac Sarcoidosis

a. Criteria for cardiac involvement

Cardiac findings should be assessed based on the major criteria and the minor criteria. Clinical findings that satisfy the following 1) or 2) strongly suggest the presence of cardiac involvement.

1) Two or more of the five major criteria (a) to (e) are satisfied

2) One in the five major criteria (a) to (e) and two or more of the three minor criteria (f) to (h) are satisfied.

Maior criteria

(a) High-grade atrioventricular block (including complete atrioventricular block) or fatal ventricular arrhythmia (e.g., sustained ventricular tachycardia, and ventricular fibrillation)

(b) Basal thinning of the ventricular septum or abnormal ventricular wall anatomy (ventricular aneurysm, thinning of the middle or upper ventricular septum, regional ventricular wall thickening)

(c) Left ventricular contractile dysfunction (left ventricular ejection fraction less than 50%) or focal ventricular wall asynergy (d) <sup>67</sup>Ga citrate scintigraphy or <sup>18</sup>F-FDG PET reveals abnormally high tracer accumulation in the heart

(e) Gadolinium-enhanced MRI reveals delayed contrast enhancement of the myocardium

Minor criteria

(f) Abnormal ECG findings: Ventricular arrhythmias (non-sustained ventricular tachycardia, multifocal or frequent premature ventricular contractions), bundle branch block, axis deviation, or abnormal Q waves

(g) Perfusion defects on myocardial perfusion scintigraphy

(h) Endomyocardial biopsy: Monocyte infiltration and moderate or severe myocardial interstitial fibrosis

b. Diagnostic guidelines for cardiac sarcoidosis

1) Histological diagnosis group (those with positive myocardial biopsy findings)

Cardiac sarcoidosis is diagnosed histologically when endomyocardial biopsy or surgical specimens demonstrate non-caseating epithelioid granulomas.

2) Clinical diagnosis group (those with negative myocardial biopsy findings or those not undergoing myocardial biopsy)

The patient is clinically diagnosed as cardiac sarcoidosis (1) when epithelioid granulomas are found in organs other than the heart, and clinical findings strongly suggestive of the above-mentioned cardiac involvement are present; or (2) when the patient shows clinical findings strongly suggestive of pulmonary or ophthalmic sarcoidosis; at least two of the following five characteristic laboratory findings of sarcoidosis (bilateral hilar lymphadenopathy: high serum ACE activity or elevated serum lysozyme levels: high serum sIL-2R levels: significant tracer accumulation in <sup>57</sup>Ga citrate scintigraphy or <sup>18</sup>F-FDG PET: a high percentage of lymphocytes with a CD4/CD8 ratio of >3.5 in BAL fluid); and clinical findings strongly suggest the above-mentioned cardiac involvement. c. Diagnostic guidelines for isolated cardiac sarcoidosis

Prerequisite

1. No clinical findings characteristics of sarcoidosis are observed in any organs other than the heart (The patient should be examined in detail for respiratory, ophthalmic, and skin involvements of sarcoidosis. When the patient is symptomatic, other aetiologies that can affect the corresponding organs must be ruled out.). 2. <sup>67</sup>Ga scintigraphy or <sup>18</sup>F-FDG PET reveals no abnormal tracer accumulation in any organs other than the heart.

3. A chest CT scan reveals no shadow along the lymphatic tracts in the lungs or no hilar and mediastinal lymphadenopathy (minor axis >10 mm).

1) Histological diagnosis group

Isolated cardiac sarcoidosis is diagnosed histologically when endomyocardial biopsy or surgical specimens demonstrate non-caseating epithelioid granulomas.

2) Clinical diagnosis group

Isolated cardiac sarcoidosis is diagnosed clinically when the criterion (d) and at least three other criteria of the major criteria (a) to (e) are satisfied.

When the patient meets at least four criteria for cardiac involvement other than the criterion (d), or when the patient meets the criteria (b) and (d) plus one of the remaining criteria, the patient should be suspected to have isolated cardiac sarcoidosis.

<sup>67</sup>Ga, gallium-67; <sup>18</sup>F-FDG PET, fluorine-18 fluorodeoxyglucose positron emission tomography; ACE, angiotensin converting enzyme; BAL, bronchoalveolar lavage; CT, computed tomography; ECG, electrocardiography; MRI, magnetic resonance imaging; slL-2R, soluble interleukin 2 receptor.

tomography/computed tomography (FDG-PET/CT), which was categorized in the remarks in the 'Guidelines for the Diagnosis of Cardiac Involvement in Patients with Sarcoidosis' in 2006,<sup>12</sup> was raised to the major criteria as well as late-gadolinium enhancement (LGE) of the myocardium in gadolinium-enhanced magnetic resonance imaging (MRI). Whole-body FDG-PET is useful for the evaluation of inflammatory lesions in patients with suspected CS; it can demonstrate extra-cardiac uptake in some patients who have not been diagnosed with extra-cardiac sarcoidosis. Second, in the guidelines proposed by the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) in 2014<sup>13</sup> or the Heart Rhythm Society (HRS) in the United States in

2014,<sup>14</sup> the histologic evidence of granulomatous inflammation of unknown cause needed to be demonstrated in at least one organ. However, in the JCS guideline, the patient is also clinically diagnosed with CS when he/she shows clinical findings strongly suggestive of cardiac involvement and those of pulmonary or ophthalmic sarcoidosis, and at least two of the five characteristic laboratory findings of sarcoidosis (Table 1a and 1b). Last, the definition of iCS was established for the first time (Table 1c). It is also important for the patients with iCS to start appropriate treatment without delay, because iCS is considered not to differ from systemic sarcoidosis with cardiac involvement (sCS) as well as in terms of pathophysiology and prognosis.<sup>11</sup>

Here, we examined retrospectively a group of consecutive patients undergoing FDG-PET/CT for suspected CS to determine the characteristics of CS including iCS according to the new guidelines, as compared with those based on the conventional international criteria.<sup>13,14</sup>

## Methods

#### **Study populations**

We retrospectively examined all patients with suspected CS who underwent whole-body and cardiac FDG-PET/CT scanning from January of 2013 to August of 2019 after excluding those who were already taking corticosteroid. For the diagnosis of systemic sarcoidosis, the enrolled patients were also examined with electrocardiography, chest X-ray, Holter monitoring, echocardiography, chest CT, and gadolinium-enhanced cardiovascular magnetic resonance (CMR) for those without a pacemaker or with an MRI-compatible pacemaker. The presence or absence of systemic involvement was determined by ophthalmologic, dermatologic, and other examinations in all included patients. For the patients needing a differential diagnosis, coronary angiography, invasive coronary CT angiography, endomyocardial biopsy, or perfusion scintigraphy was added. Cut-off levels of the angiotensin converting enzyme (ACE), soluble interleukin-2 receptors (sIL-2Rs), troponin I, and N-terminal pro-Brain Natriuretic Peptide were decided as 21.4 U/L, 500 U/mL, 0.0473 ng/mL, and 125 pg/mL, respectively. On echocardiography, the presence of any ventricular septal thinning (<4 mm thick at 10 mm from the aortic annulus in the LV long axis view),<sup>15</sup> ventricular aneurysm, localized wall motion abnormality, and the value of LVEF were determined. High-grade atrioventricular block (including complete atrioventricular block) or fatal ventricular arrhythmia (e.g., sustained ventricular tachycardia and ventricular fibrillation) on Holter monitoring and the presence of LGE of the myocardium in CMR were also examined. According to the updated guidelines for the diagnosis and treatment of CS from JCS,<sup>1</sup> the examined patients were divided into five groups: sCS, definitive iCS, suspected iCS, systemic sarcoidosis without cardiac involvement, and no sarcoidosis (Table 1). The patients were also determined as having CS when they met the criteria for the diagnosis of CS on expert consensus recommendations from HRS<sup>14</sup> in accordance with A Case Control Aetiology of Sarcoidosis Study set of criteria published and updated by the WASOG.<sup>13</sup> All examinations were performed before steroid treatment in Fujita Health University. The study was approved by the Institutional Review Board and ethics committee of our university. We applied an opt-out method to obtain consent for this study on the website of our department.

## <sup>18</sup>F-fluoro-2-deoxyglucose positron-emission tomography/computerized tomography procedure and image analysis

<sup>18</sup>F-fluoro-2-deoxyglucose positron-emission tomography/ computerized tomography scans were performed with a dedicated PET/CT scanner (Biograph mCT, Siemens Healthineers AG, Erlangen, Germany). Patients were instructed to ingest a low-carbohydrate, fat-rich, and protein-permitted diet the day before the examination, followed by a fast of at least 18 h immediately before it. The CT data were obtained in 2 mm slices with a 0.35 helical pitch at 120 kV and 82 mA on average that auto exposure control adjusted (CARE Dose 4D, Siemens Healthineers AG, Erlangen, Germany) with a matrix of 512 × 512 pixels. After CT scanning, patients also received a low dose (50 IU/kg) of intravenous unfractionated heparin unless contraindicated. Finally, the patients received a whole-body acquisition 60 min after the intravenous injection of 185 MBq of <sup>18</sup>F-FDG, followed immediately by a cardiac acquisition with electrocardiography gating for evaluation of LV function. The FDG-PET data were obtained in three-dimensional mode for 2 min in each bed position. The FDG-PET data consisted of a matrix of 200 × 200 pixels. The CT and FDG-PET images were fused to match a matrix of 512 × 512 pixels.

<sup>18</sup>F-fluoro-2-deoxyglucose positron-emission tomography/ computerized tomography data were analysed by one cardiologist (M.S.) and two radiologists (H.T. and A.W.) blinded to the clinical data. Sites of disease involvement were defined as positive when abnormal FDG uptake in a pattern consistent with sarcoidosis was present. Regarding lymph node involvement, FDG uptake above that of the mediastinal blood pool was considered significant.<sup>16</sup> As a visual assessment for cardiac FDG-PET/CT, 'focal' or 'focal on diffuse' pattern myocardial uptake was defined as positive, and 'diffuse' or 'none' as negative.<sup>17</sup>

# **Statistical analysis**

Variables with a normal distribution are expressed as mean values  $\pm$  standard deviation, and asymmetrically distributed data are given as the median and interquartile range. Categorical variables were presented as frequency (percentage). Differences among five groups were evaluated using ANOVA or Kruskal–Wallis test for continuous variables, and  $\chi^2$ -square test for categorical variables. McNemar's test was used to compare the prevalence of each factor in the patients determined as having CS between JCS and WASOG/HRS guidelines. Multiple comparison was also performed by Dunnet's test or Steel's test for contentious variables, and  $\chi^2$ -square test with Bonferroni correction for categorical variables. All statistical analyses were carried out using JMP version 13 (SAS Institute, Cary, NC, USA).

## Results

#### **Study population**

Of 94 patients (mean age 61 ± 15 years, 50 female patients), 36 had received a diagnosis of extra-CS before FDG-PET/CT, while the remaining 58 had not. Of the 36 with extra-cardiac sarcoidosis, cardiac FDG was positive (focal or focal on diffuse) in 21 and negative in 15. Finally, 20 of 21 judged as FDG positive and 3 of 15 judged as FDG negative were diagnosed with systemic sarcoidosis including myocardium after all examinations were completed. On the other hand, of 58 in whom extra-CS had not been identified before FDG-PET/CT, extra-cardiac FDG uptake was seen in four; these four were also considered to have sCS. Of the remaining 54, cardiac FDG was positive in 17 and negative in 37. Of the 17 judged cardiac FDG positive, seven were finally diagnosed with definitive iCS and two with suspected iCS. Of the 37 with negative findings in cardiac FDG, 35 were diagnosed as not having sarcoidosis and the remaining two with suspected iCS. Finally, 27 and 7 patients were diagnosed with sarcoidosis with CS and definitive iCS, respectively (Figures 1 and 2).

Clinical characteristics of the patients undergoing FDG-PET/CT were shown in *Table 2*. There were significant differences in ACE, sIL-2R, limited thinning of interventricular septum (IVS) or ventricular aneurysms, LV dysfunction (ejection fraction < 50%) or local LV wall motion abnormality, LGE uptake in heart, FDG-PET/CT findings, and the number of major criteria among the five groups. The prevalence of LV wall motion abnormality (100% vs. 44%, P = 0.042) and the number of major criteria (4.0 [4.0-4.0] vs. 2.0 [2.0-4.0], P = 0.028) were higher in the definitive iCS group than sCS group. Similarly, there were differences in the prevalence of LV wall motion abnormality (100% vs. 23%, P = 0.004), IVS thinning or ventricular aneurysms (86% vs. 8%, P = 0.002), cardiac FDG findings (100% vs. 8%, P = 0.004), and the number of major criteria (4.0 [4.0–4.0] vs. 0 [0–1.0], P < 0.001) between the definitive iCS group and systemic sarcoidosis without cardiac involvement one. Furthermore, between definitive iCS and no sarcoidosis group, there were significant differences in the prevalence of IVS thinning (86% vs. 26%, P = 0.0148), cardiac FDG findings (100% vs. 19%, P < 0.001), and the number of major criteria (4.0 [4.0-4.0] vs. 2.0 [1.0-3.0], P < 0.001). Except for the patients with definitive or suspected iCS or sCS, one patient in the sCS without cardiac involvement group and eight in the no sarcoidosis group had positive findings on cardiac FDG. Of them, seven had similarities with CS clinically (but did not fulfil the criteria for it), and the remaining two were finally diagnosed with muscular dystrophy and myocarditis, respectively.

### Comparison between Japanese Circulation Society guidelines and international criteria from World Association of Sarcoidosis and Other Granulomatous Disorders/Heart Rhythm Society

Of 94 patients, 34 (27 with sCS and 7 with iCS) were diagnosed with CS based on the new JCS guidelines, and 60 were not. Based on the international criteria from WASOG/HRS, 22

Figure 1 Patient population. AF, atrial fibrillation; AVB, atrioventricular block; CS, cardiac sarcoidosis; ECG, electrocardiogram; e-CS, extra cardiac sarcoidosis; FDG, <sup>18</sup>F-fluorodeoxyglucose; HF, heart failure; iCS, isolated cardiac sarcoidosis; LVEF, left ventricular ejection fraction; PVC, premature ventricular contraction; SVT, sustained ventricular tachycardia; UCG, ultrasonic cardiogram.



**Figure 2** Representative case of isolated cardiac sarcoidosis. Sixty-five-year-old asymptomatic man presented with electrocardiography abnormality. Cardiac ultrasound showed left ventricular ejection fraction of 26% and thinning of interventricular septum (A), and magnetic resonance imaging (MRI) showed late-gadolinium enhancement (LGE) uptake in basal septum (B). <sup>18</sup>F-fluorodeoxyglucose positron emission tomography/computed to-mography (FDG-PET/CT) revealed focal uptake in septum (C) and no uptake outside the heart (D). No caseating granuloma was found in myocardial tissue.



of 94 patients were determined to have CS, while 72 were not. In the new JCS guidelines, 16 of 72 with negative results according to WASOG/HRS criteria were newly diagnosed with CS, whereas 4 of 22 with positive results on WASOG/HRS criteria did not meet the new criteria (P = 0.012). Between CS from JCS guidelines and WASOG/HRS criteria, there were significant differences in the proportion of females (P = 0.039), ACE negative status (P = 0.022), N-terminal probrain natriuretic peptide positive status (P = 0.002), incidences of high-grade atrioventricular block or fatal ventricular arrhythmia (P = 0.021), thinning of IVS or ventricular aneurysms (P = 0.003), LV dysfunction of local LV wall motion abnormality (P = 0.022), LGE in CMR (P = 0.039), and cardiac uptake on FDG-PET/CT (P < 0.001).

## Clinical characteristics of the patients with isolated cardiac sarcoidosis/suspected isolated cardiac sarcoidosis

Details of the seven definitive iCS and four suspected iCS cases are shown in *Table 4*. All of the seven patients with

iCS fulfilled four criteria including positive findings on FDG-PET/CT. Two with suspected iCS (Nr. 8 and 9) met three criteria with positive findings on FDG-PET/CT and the remaining two (Nr. 10 and 11) met four criteria except for it (*Table 4*).

#### Initiation of corticosteroids

The indication for corticosteroid administration was decided based not only on the guidelines but also other clinical requirements. Corticosteroids were initiated in 5/7 cases with definitive iCS and 1/4 with suspected iCS after the first FDG-PET/CT. Patient Nr. 3 rejected them because of advanced age, and Nr. 6 was not started on them because atypical my-cobacterial disease was present. Because Nr. 11 showed high uptake in the heart on the repeated FDG-PET/CT, he was confirmed to have CS and started corticosteroid then. In addition to them, corticosteroids were initiated in 5/56 cases in the no CS group as well as 21/27 in the sCS group. In contrast, in the international criteria, corticosteroids were initiated in 18 of 22 patients with CS and 14 of 72 without it.

| characteristics |  |
|-----------------|--|
| Patient         |  |
| Table 2         |  |

| Characteristic                                                                                 | Definitive i $(n = 7)$                   | CSSystemic<br>cardiac invo        | sarcoidosis wi<br>lvement (n = 27)     | thSuspected $(n = 4)$                      | iCSSystemic<br>cardiac inv       | sarcoidosis<br>olvement ( <i>n</i> = | withoutNo $(n = 13)$           | sarcoidosi<br>43)                | P value                |
|------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|----------------------------------------|--------------------------------------------|----------------------------------|--------------------------------------|--------------------------------|----------------------------------|------------------------|
| Cardiac sarcoidosis<br>Extra-cardiac sarcoidosis                                               | (+)<br>(+)                               |                                   | (+)<br>(+)                             | (∓)<br>(−)                                 |                                  | (+)<br>(+)                           |                                | (-)                              |                        |
|                                                                                                |                                          |                                   |                                        |                                            |                                  |                                      | ľ                              | 0                                |                        |
| Age (years mean ± SU)                                                                          | $59.4 \pm 14.9$                          | 97.7                              | = 13.0                                 | $1.21 \pm 0.13$                            | 59                               | J.5 ± 9.8                            | C./C                           | ± 16.0                           | 0.0938                 |
| Female, <i>n</i> (%)                                                                           | 3 (43%                                   | (9                                | 17 (63%)                               | 2 (50%                                     | (%)                              | (%69) 6                              |                                | 19 (43%)                         | 0.3932                 |
| ACE $> 21.4$ U/L, n (%)                                                                        | 1/5 (20%                                 | (0                                | 9/26 (35%)                             | 0/4 (0%)                                   |                                  | 4/13 (31%)                           |                                | 2/38 (5%)                        | 0.0259                 |
| slL-2R > 500 U/mL, n (%)                                                                       | 2/5 (40%                                 | (0)                               | 13/24 (54%)                            | 1/4 (25%                                   | (%)                              | 6/10 (60%)                           |                                | 4/26 (15%)                       | 0.0346                 |
| Tnl > 0.0473 ng/mL, $n$ (%)                                                                    | 2/5 (40%                                 | ()                                | 7/25 (28%)                             | 2/4 (50%                                   | (%)                              | 3/10 (30%)                           |                                | 14/37 (38%)                      | 0.8731                 |
| NT-proBNP $> 125$ pg/mL, <i>n</i> (%)                                                          | 5/5 (100                                 | (%)                               | 20/26 (77%)                            | 4/4 (100                                   | (%)                              | 5/12 (42%)                           |                                | 29/40 (73%)                      | 0.0524                 |
| Non-caseating granuloma on myocardial tissue                                                   | , п 0/5 (0%)                             |                                   | 2/12 (16.7%)                           | 0/4 (0%)                                   |                                  | 0/1 (0%)                             |                                | 0/22 (0%)                        | 0.2322                 |
| (0/2)                                                                                          |                                          |                                   |                                        |                                            |                                  |                                      |                                |                                  |                        |
| Sustained VT/VF, Mobitz type II or third degr<br>AVB. n (%)                                    | ee 4 (57%                                | (9                                | 15 (56%)                               | 2 (50%                                     | (%)                              | 1 (8%)                               |                                | 19 (44%)                         | 0.0616                 |
| Thinning of interventricular septum or ventricul                                               | lar 6 (86%                               | (9                                | 12 (44%)                               | 4 (100                                     | (%)                              | 1 (8%)*                              |                                | 11 (26%)                         | 0.0002                 |
| aneurysms, <i>n</i> (%)                                                                        |                                          |                                   |                                        |                                            |                                  |                                      |                                |                                  |                        |
| LV dysfunction (ejection fraction $< 50\%$ ) or loc                                            | cal7 (100%)                              | 12 (44%) <sup>*</sup>             |                                        | 2 (50%)                                    | 3 (23%) <sup>*</sup>             |                                      | 29 (6                          | 7%)                              | 0.0055                 |
| LV wall motion abnormality, <i>n</i> (%)                                                       |                                          |                                   |                                        |                                            |                                  |                                      |                                |                                  |                        |
| LGE uptake in cardiac MRI, <i>n</i> (%)                                                        | 4/4 (100%)                               | 12/15 (80.0                       | (%)                                    | 4/4 (100%)                                 | 1/7 (14%)                        |                                      | 11/22                          | (20%)                            | 0.0047                 |
| Cardiac uptake in FDG-PET/CT, n (%)                                                            | 7 (100%)                                 | 24 (89%)                          |                                        | 2 (50%)                                    | 1 (8%)                           |                                      | 8 (19                          | %) ~                             | <0.0001                |
| (Focal)                                                                                        | 5 (71%)                                  | 19 (70%)                          |                                        | 0 (0%)                                     | 1 (8%)                           |                                      | 6 (14                          | (%)                              |                        |
| (Focal on diffuse)                                                                             | 2 (29%)                                  | 5 (19%)                           |                                        | 2 (50%)                                    | 0 (0%) (                         |                                      | 2 (5%                          | (9                               |                        |
| (Diffuse)                                                                                      | (%0) 0                                   | (%0) 0                            |                                        | 1 (25%)                                    | 1 (8%)                           |                                      | 9 (21                          | (%)                              |                        |
| (No)                                                                                           | (%0) 0                                   | 3 (11%)                           |                                        | 1 (25%)                                    | 11 (85%)                         |                                      | 26 (6                          | (%0                              |                        |
| The number of major criteria                                                                   | 4.0 [4.0-4.0]                            | 2.0 [2.0–4.0                      | *                                      | 3.5 [3.0–4.0]                              | 0 [0–1.0]*                       |                                      | 2.0 [1                         | .0-3.0]                          | <0.0001                |
| ACE, angiotensin converting enzyme; AVB, atr<br>hancement: LV. left ventricular: MRI. magnetic | ioventricular block<br>resonance imaging | ; FDG-PET/CT, 1<br>; NT-proBNP, N | luorodeoxyglucos<br>-terminal pro-brai | e positron emissio<br>n natriuretic peptic | n tomography<br>de: slL-2R, solu | y/computed tor<br>uble interleukin-  | nography; LG<br>2 receptors; T | E, late-gadoli<br>nl. troponin l | nium en-<br>: VF, ven- |

tricular fibrillation; VT, ventricular tachycardia.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (+)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-)         (-) <th>.haracteristic</th> <th>JCS Gu</th> <th>ideline</th> <th>μ</th> <th>WASOG/H</th> <th>RS Criteria</th> <th>μ</th> <th>P</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .haracteristic                                      | JCS Gu                     | ideline                    | μ      | WASOG/H                   | RS Criteria                | μ      | P              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|----------------------------|--------|---------------------------|----------------------------|--------|----------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(w_{1}, w_{1}, w_{2}, w_{1}, w_{2}, w_{1}, w_{2}, w_{1}, w_{2}, w_{1}, w_{2}, w_{2$ |                                                     | (+)                        | (-)                        |        | (+)                       | (-)                        |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operations $6.2.1 \pm 13.2$ $5.7.1 \pm 16.0$ $0.5708$ $6.0.4 \pm 13.2$ $6.56.5 \pm 15.7$ $0.2553$ $0.2563$ $0.2563$ $0.2563$ $0.2563$ $0.2563$ $0.2563$ $0.010$ $0.2563$ $0.010$ $0.2563$ $0.010$ $0.2563$ $0.010$ $0.25633$ $0.001$ $0.113$ $0.25633$ $0.001$ $0.113$ $0.0101$ $0.21333$ $0.001$ $0.11333$ $0.001$ $0.11333$ $0.001$ $0.11333$ $0.001$ $0.1143$ $0.001$ $0.011$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0101$ $0.0011$ $0.00101$ $0.00101$ $0.00101$ $0.00101$ $0.00101$ $0.010101$ $0.00101$ $0.00101$ $0.00101$ $0.00101$ $0.00101$ $0.00101$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.000100$ $0.0001000$ 0.000100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | (N = 34)                   | (N = 60)                   |        | (N = 22)                  | (N = 72)                   |        | 0.012          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Age (years, mean ± SD)                              | 62.0 ± 13.2                | 59.7 ± 16.0                | 0.5708 | 60.4 ± 13.2               | 60.6 ± 15.7                | 0.8512 |                |
| Negative<br>Nordsame         14 (41%)         30 (50%)         -0.001         32 (49%)         -0.001         0.227           Nordsame<br>Nordsame         16 (47%)         5 (13%)         10 (17%)         5 (13%)         0 (17%)         5 (3%)         0 (17%)         5 (3%)         0 (12%)         0 (12%)         0 (12%)         0 (11%)         0 (12%)         0 (11%)         0 (12%)         0 (12%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%)         0 (11%) <td>Ortesting<br/>on cogning         14 (41%)         30 (50%)         <math>&lt; 0.011</math>         9 (41%)         33 (49%)         <math>&lt; 0.001</math>           or organin<br/>or organin<br/>organin         <math>&lt; 0.011</math> <math>&lt; 0.011</math> <math>&lt; 10.17\%</math> <math>&lt; 0.011</math> <math>&lt; 0.001</math> <math>&lt; 0.011</math> <math>&lt; 0.011</math> <math>&lt; 0.001</math> <math>&lt; 0.011</math> <math>&lt; 0.</math></td> <td>ennare, n. (20)<br/>Positive</td> <td>20 (59%)</td> <td>30 (50%)</td> <td>0.4104</td> <td>13 (59%)</td> <td>37 (51%)</td> <td>C07C.0</td> <td>0.039</td> | Ortesting<br>on cogning         14 (41%)         30 (50%) $< 0.011$ 9 (41%)         33 (49%) $< 0.001$ or organin<br>or organin<br>organin $< 0.011$ $< 0.011$ $< 10.17\%$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.001$ $< 0.011$ $< 0.011$ $< 0.001$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.011$ $< 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ennare, n. (20)<br>Positive                         | 20 (59%)                   | 30 (50%)                   | 0.4104 | 13 (59%)                  | 37 (51%)                   | C07C.0 | 0.039          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Negative<br>Jon-caseating granuloma in              | 14 (41%)                   | 30 (50%)                   | <0.001 | 9 (41%)                   | 35 (49%)                   | <0.001 | 0.227          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Positive<br>Medition         Dot (17%) $20(17\%)$ $10(17\%)$ $20(16\%)$ $6(32\%)$ $0.01$ $0.1$ CE 271 d UL, n (%) $10(3(3\%)$ $50(33\%)$ $0.0146$ $921(43\%)$ $56(5(1\%)$ $0.001$ $0.01$ Negative<br>LLTS 5500 (mL, n (%) $10(3(3\%)$ $50(33\%)$ $0.0146$ $921(43\%)$ $56(5(1\%)$ $0.001$ $0.01$ Negative<br>LLTS 5500 (mL, n (%) $10(3(3\%)$ $2833(72\%)$ $0.3073$ $920(45\%)$ $3348(63\%)$ $0.014$ $0.0146$ $0.01146$ $0.0011$ $0.01166$ $0.01146$ $0.01166$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.01146$ $0.00146$ $0.01146$ $0.00146$ $0.001146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.00146$ $0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ny organ, <i>n</i> (%)                              |                            |                            |        |                           |                            |        |                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Positive<br>Negative                                | 18 (53%)<br>16 (47%)       | 10 (17%)<br>50 (83%)       |        | 22 (100%)<br>0            | 6 (8%)<br>66 (92%)         |        | 0.125<br>N.A.  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name         21/31 (68%)         49/55 (89%)         12/21 (57%)         58/55 (89%)         00663         00           Restine         11/20 (35%)         15/48 (61%)         21/31 (68%)         2031 (37%)         0.0464         11/20 (55%)         15/48 (61%)         0.0663         0.0           Negative         11/20 (373 mjmL, n (%)         15/23 (37%)         0.0484         11/20 (55%)         15/48 (61%)         0.01144         0.0           Positive         2/31 (97%)         2/32 (37%)         0.5073         9/20 (45%)         3/34 (69%)         0.01144         0.0           Positive         2/33 mjmL, n (%)         2/37 (97%)         3/35 (68%)         0.2012         15/20 (35%)         0.3379         0.0           Positive         5/31 (19%)         38/56 (68%)         0.0711         7/20 (35%)         0.346 (39%)         0.0           Positive         6/31 (19%)         38/56 (68%)         0.0711         7/20 (35%)         0.36/57 (35%)         0.326           Positive         6/31 (19%)         38/56 (68%)         0.0711         7/20 (35%)         0.4903         0.0           Positive         6/31 (19%)         38/63 (63%)         0.0711         7/20 (35%)         0.4903         0.0         0.0           Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACE > 21.4 U/L, 11 (70)<br>Docitive                 | 10/31 (32%)                | 6/55 (11%)                 | 0.0140 | 9/21 (43%)                | 7/65 (11%)                 | 0.00   | -              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notice<br>Negative<br>II-78 > 510 11/ml n (%)       | 21/31 (68%)                | 49/55 (89%)                | 0 0484 | 12/21 (57%)               | 58/65 (89%)                | 0 0663 | 0.022          |
| $ \begin{array}{cccccc} \mbox{model} \mbox$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Positive                                            | 15/29 (52%)<br>14/29 (48%) | 11/39 (28%)<br>28/39 (72%) |        | 11/20 (55%)<br>9/20 (45%) | 15/48 (31%)<br>33/48 (69%) |        | 0.289<br>0.18  |
| $ \begin{array}{ccccc} \mbox{Positive} & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Positive         930 (30%)         1951 (37%)         1951 (37%)         24/61 (39%)         24/61 (39%)         20         0           Positive         21/30 (70%)         32/51 (63%)         0.2012         16/20 (60%)         37/61 (61%)         0.3979         0.0           Positive         23/31 (19%)         38/56 (68%)         0.2012         13/20 (65%)         50/67 (75%)         0.3979         0.0           Positive         531 (19%)         38/56 (68%)         0.0711         7/20 (35%)         17/67 (25%)         0.4903         1           Positive         531 (19%)         38/56 (68%)         0.0711         7/20 (35%)         11/67 (25%)         0.3903         0.0           Positive         19 (56%)         22 (37%)         0.0109         11 (50%)         32 (38%)         0.33         0.3           Positive         18 (53%)         16 (47%)         38 (53%)         0.0109         11 (50%)         32 (38%)         0.33         0.3           Positive         18 (54%)         38 (53%)         0.0109         11 (50%)         32 (38%)         0.23         0.3           Positive         18 (54%)         16 (47%)         16 (47%)         16 (47%)         0.23         0.23         0.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Negative<br>inl > 0.0473 na/mL, <i>n</i> (%)        |                            |                            | 0.5073 |                           |                            | 0.1144 | 0              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ur-proBNP > 125 pg/mL, n (%)         0.3071         0.3072         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3975         0.3979         0.3975         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3979         0.3975         0.3976         0.3976         0.3976         0.3976         0.3976         0.3976         0.3976         0.3074         0.30677         0.3967         0.3967         0.3067         0.3967         0.3067         0.3967         0.3067         0.3067         0.3966         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067         0.3067<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Positive<br>Negative                                | 9/30 (30%)<br>21/30 (70%)  | 19/51 (37%)<br>32/51 (63%) |        | 4/20 (20%)<br>16/20 (80%) | 24/61 (39%)<br>37/61 (61%) |        | 0.063<br>0.227 |
| Negative<br>trining degree AVB, $n$ (%) $0.311(19\%)$ $0.301(12\%)$ $0.201(12\%)$ $0.4903$ $0.4903$ $n$ trinind degree AVB, $n$ (%) $10$ (56%) $22 (37\%)$ $0.0711$ $1.00/(25\%)$ $0.4903$ $0.321$ $n$ trinind degree AVB, $n$ (%) $15 (44\%)$ $22 (37\%)$ $0.0109$ $11 (50\%)$ $30 (42\%)$ $0.324$ $n$ hundradive<br>introductar aneurysms, $n$ (%) $19 (56\%)$ $22 (37\%)$ $0.0109$ $11 (50\%)$ $27 (38\%)$ $0.003$ $n$ ventricular aneurysms, $n$ (%) $18 (53\%)$ $16 (47\%)$ $44 (73\%)$ $0.0109$ $17 (50\%)$ $27 (38\%)$ $0.003$ $n$ ventricular aneurysms, $n$ (%) $18 (53\%)$ $16 (27\%)$ $0.0109$ $17 (50\%)$ $27 (38\%)$ $0.003$ $n$ ventricular aneurysms, $n$ (%) $18 (53\%)$ $0.9413$ $7 (32\%)$ $27 (38\%)$ $0.2376$ $0.003$ $n$ ventricular aneurysms, $n$ (%) $16 (47\%)$ $0.9413$ $0.0013$ $0.003$ $0.003$ $n$ ventricular aneurysms, $n$ (%) $19 (58\%)$ $0.9413$ $0.2374$ $0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Negative<br>ustained/TV/F. Mobitz type II         0.31 (19%)         18/36 (32%)         0.0711         //20 (35%)         0.4903 $\alpha$ ustained/TV/F. Mobitz type II         0.0711         0.0711         0.0711         0.4903         0.4203 $\alpha$ rthird degree AVB, $n$ (%)         19 (56%)         23 (37%)         11 (50%)         30 (42%)         0.30 $Positive         15 (44%)         38 (63%)         0.0109         11 (50%)         32 (58%)         0.2374         0.30           Positive         15 (44%)         38 (63%)         0.0109         11 (50%)         32 (58%)         0.2374         0.30           Positive         16 (47%)         44 (73%)         0.9413         15 (68%)         42 (58%)         0.2376         0.10           Positive         16 (47%)         34 (57%)         0.9413         15 (68%)         27 (38%)         0.2376         0.1           Positive         16 (47%)         16 (43%)         0.9413         0.2134         0.2           Positive         19 (64%)         16 (43%)         26 (43%)         0.2376         0.2           Positive         15 (68%)         26 (43%)         27 (38%)         0.2744         0.2           Positive         16 (14%)       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VT-proBNP > 125 pg/mL, <i>n</i> (%)<br>Positive     | 25/31 (81%)                | 38/56 (68%)                | 0.2012 | 13/20 (65%)               | 50/67 (75%)                | 0.3979 | 0.002          |
| $ \begin{array}{cccccc} \math math math math math math math math $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Negative<br>ustained VT/VF, Mobitz type II          | (0/21) 15/0                | (0%.75) 05/01              | 0.0711 | (%,66) 07/1               | (%, 67) / 0// 1            | 0.4903 | -              |
| Negative<br>hinming of interventricular septum         15 (44%)         38 (63%)         11 (50%)         42 (58%)         0.5274         0.344           hinming of interventricular septum<br>remtricular aneurysms, $n$ (%)         18 (53%)         16 (27%)         27 (38%)         0.6274         0.344           remtricular aneurysms, $n$ (%)         18 (53%)         16 (27%)         44 (73%)         0.109         1         0.003           restricular aneurysms, $n$ (%)         18 (53%)         16 (47%)         44 (73%)         0.9413         0.003         1         0.003           Negative<br>Nobality         Negative         0.9413         0.9413         0.9413         0.2376         0.003         0.003           V dysfunction (ejection fraction < 50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Negative<br>himming of interventricular septum         15 (44%)         38 (63%)         0.0109         11 (50%)         42 (58%)         0.6274         0.3           himming of interventricular septum         15 (44%)         16 (27%)         16 (27%)         15 (58%)         0.6274         0.3           Positive         16 (47%)         16 (27%)         16 (27%)         15 (68%)         27 (38%)         0.010           Positive         16 (47%)         16 (47%)         44 (73%)         0.9413         2 (58%)         2 (58%)         0.2376         1           Vegative         15 (44%)         16 (27%)         3 (57%)         0.9413         0.0108         0.1016         0.0108         0.2376         0.0         0         0           Negative         15 (44%)         15 (43%)         0.0108         10 (45%)         23 (40%)         0.2744         0.0         0           Positive         15 (44%)         16/3 (43%)         0.0108         9/12 (55%)         23 (40%)         0.2744         0.0           Positive         3/19 (16%)         17/33 (52%)         0.0108         9/12 (25%)         23 (40%)         0.2         0.0         0           Negative         3/19 (16%)         17/33 (52%)         10/12 (25%) <t< td=""><td>or third degree AVB, <i>n</i> (%)<br/>Positive</td><td>19 (56%)</td><td>22 (37%)</td><td></td><td>11 (50%)</td><td>30 (42%)</td><td></td><td>0.021</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or third degree AVB, <i>n</i> (%)<br>Positive       | 19 (56%)                   | 22 (37%)                   |        | 11 (50%)                  | 30 (42%)                   |        | 0.021          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or centricular a neurysms, $n$ (%)       18 (53%)       16 (27%)       16 (27%)       16 (27%)       15 (68%)       27 (38%)       0.0         Positive       16 (47%)       44 (73%)       16 (27%)       45 (63%)       27 (38%)       0.0         Negative       16 (47%)       44 (73%)       0.9413       0.9413       0.2376       0.2376         Negative       16 (47%)       19 (56%)       34 (57%)       0.9413       0.29 (40%)       0.2376         Notstruction (ejection fraction < 50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Negative<br>hinning of interventricular septum      | 15 (44%)                   | 38 (63%)                   | 0.0109 | 11 (50%)                  | 42 (58%)                   | 0.6274 | 0.344          |
| Negative<br>Version         15 (68%)         45 (63%)         45 (63%)         1         1           Negative<br>V dysfunction (ejection fraction < 50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Negative<br>Vdysfunction (ejection fraction < 50%)         16 (47%)         44 (73%)         15 (68%)         45 (63%)         45 (63%)         15 (68%)         15 (68%)         15 (68%)         15 (68%)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         10 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376)         0.0 (2376) <th0.0 (2376)<="" t<="" td=""><td>or ventricular aneurysms, <i>n</i> (%)<br/>Positive</td><td>18 (53%)</td><td>16 (27%)</td><td></td><td>7 (32%)</td><td>27 (38%)</td><td></td><td>0.003</td></th0.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or ventricular aneurysms, <i>n</i> (%)<br>Positive  | 18 (53%)                   | 16 (27%)                   |        | 7 (32%)                   | 27 (38%)                   |        | 0.003          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or local LV wall motion abnormality, <i>n</i> (%)<br>Positive<br>C H wall motion abnormality, <i>n</i> (%)<br>Positive<br>G E uptake in cardiac MRI, <i>n</i> (%)<br>15 (44%)<br>15 (44%)<br>15 (44%)<br>15 (44%)<br>16 (33 (48%)<br>16 (33 (48%)<br>17 (16 (33)<br>17 (40 (43%)<br>17 (40 (43%)<br>10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Negative<br>V dysfunction (ejection fraction < 50%) | 16 (47%)                   | 44 (73%)                   | 0.9413 | 15 (68%)                  | 45 (63%)                   | 0.2376 | -              |
| Positive         Positive $15 (43\%)$ $24 (57\%)$ $24 (50\%)$ $45 (00\%)$ $0.022$ Negative         15 (44\%)         26 (43\%)         26 (43\%)         12 (55\%)         29 (40\%)         0.2744         0.453           Regative         15 (19 (84\%)         16/33 (48\%)         0.0108         9/12 (75\%)         29 (40\%)         0.2744         0.039           Positive         3/19 (16\%)         17/33 (52\%)         0.1108         9/12 (25\%)         17/40 (43\%)         0.039           Neositive         3/19 (16\%)         17/33 (52\%)         2.1001         0.0025         1         0.0039           Neositive         3/19 (16\%)         17/33 (52\%)         0.001         3/12 (25\%)         17/40 (43\%)         0.0025           Notative         NFDG-PET/CT, n (%)         31 (91\%)         11 (18\%)         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Positive       Desitive       Desitive <thdesitive< th="">       Desitive       <thd< td=""><td>or local LV wall motion abnormality, <i>n</i> (%)</td><td>10 (550) )</td><td>(/023/ 00</td><td></td><td>10 (1E0/)</td><td></td><td></td><td></td></thd<></thdesitive<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or local LV wall motion abnormality, <i>n</i> (%)   | 10 (550) )                 | (/023/ 00                  |        | 10 (1E0/)                 |                            |        |                |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Generative} \\ \mbox{Generative} \\ \mbox{Positive} \\ \mbox{Positive} \\ \mbox{ocal or focal on diffuse type cardiac} \\ \mbox{MR}, n (\%) \\ \mbox{Positive} \\ \mbox{Positive} \\ \mbox{Ocal or focal on diffuse type cardiac} \\ \mbox{Positive} \\ \mb$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GE update<br>builds       in cardiac MRI, n (%)       0.2744       0.2744         Positive<br>Positive       16/19 (84%)       16/33 (48%)       0.0108       9/12 (75%)       23/40 (58%)       0.2744         Positive<br>patake in FDG-PET/CT, n (%)       3/19 (16%)       17/33 (52%)       17/30 (52%)       17/40 (43%)       0.00         Positive<br>ptake in FDG-PET/CT, n (%)       31 (91%)       11 (18%)       <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Positive<br>Necetive                                | 15 (44%)                   | 34 (57%)<br>26 (43%)       |        | 10 (45%)                  | 43 (60%)<br>29 (40%)       |        | 0.022          |
| Positive         16/19 (84%)         16/33 (48%)         9/12 (75%)         23/40 (58%)         0.039           Negative         3/19 (16%)         17/33 (52%)         17/40 (43%)         1         1           ocal or focal on diffuse type cardiac         3/19 (16%)         17/33 (52%)         23/40 (58%)         0.039           uptake in FDG-PET/CT, n (%)         3/12 (25%)         17/40 (43%)         0.0025         1           oral or diffuse type cardiac         31 (91%)         11 (18%)         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Positive       16/19 (84%)       16/33 (48%)       16/33 (48%)       0.0         Negative       3/19 (16%)       17/33 (52%)       2,12 (75%)       2,340 (58%)       0.0         Negative       3/19 (16%)       17/33 (52%)       17/32 (25%)       17/40 (43%)       1         ocal or focal on diffuse type cardiac       3/19 (16%)       17/33 (52%)       2,001       1       1         optake in FDG-PET/CT, n (%)       31 (91%)       11 (18%)       <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Negative<br>.GE uptake in cardiac MRI, <i>n</i> (%) |                            |                            | 0.0108 |                           |                            | 0.2744 |                |
| Negative         3/12 (25%)         1 //40 (43%)         1           Ocal or focal on diffuse type cardiac         3/12 (25%)         1 //40 (43%)         0.0025           ocal or focal on diffuse type cardiac         3/19 (16%)         1 //33 (52%)         0.0025         0.0025           optake in FDG-PET/CT, n (%)         31 (91%)         11 (18%)         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Negative       3/12 (25%)       1 //40 (43%)       3/12 (25%)       1 //40 (43%)         ocal or focal on diffuse type cardiac        <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Positive                                            | 16/19 (84%)                | 16/33 (48%)                |        | 9/12 (75%)                | 23/40 (58%)                |        | 0.039          |
| Positive 11 CO-FET/CL, 11 (70) 31 (91%) 11 (18%) 16 (73%) 26 (36%) <0001 <0001 Nositive 3 (9%) 49 (82%) 6 (27%) 46 (64%) 0.375 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | upuere III FUG-FE (/ 1/ 7%) 31 (91%) 11 (18%) 16 (73%) 26 (36%) < 0.1<br>Positive 3 (9%) 49 (82%) 6 (27%) 46 (64%) 46 (64%) 0.3<br>Negative 46 (64%) 20 (64%) 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Negative<br>ocal or focal on diffuse type cardiac   | (%01) 61/E                 | (%2¢) ££// [               | <0.001 | (%52) 21/8                | 1/40 (43%)                 | 0.0025 | <del></del>    |
| Negative 3 (9%) 49 (82%) 6 (27%) 46 (64%) 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nogative<br>Negative<br>VCE analistania communities communities how the stimulated better functed consistent consisting to moderably on the Host Bhithm Soci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | 31 (91%)                   | 11 (18%)                   |        | 16 (73%)                  | 26 (36%)                   |        | < 0.001        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VE maintaine convertine and maintained a file flict flueredoweduces position amission famouraed famouraed to brithm Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Negative                                            | 3 (9%)                     | 49 (82%)                   |        | 6 (27%)                   | 46 (64%)                   |        | 0.375          |

Table 3 Comparison between the updated JCS guidelines and international criteria from WASOG/HRS

JCS, Japanese Circulation Society; LGE, late-gadolinium enhancement; LV, left ventricular; MRI, magnetic resonance imaging; NT-proBNP, N-terminal pro-brain natriuretic peptide; slL-2R, soluble interleukin-2 receptors; Tnl, troponin I; VF, ventricular fibrillation; VT, ventricular tachycardia; WASOG, World Association of Sarcoidosis and Other Granulomatous Disorders. The updated JCS guidelines<sup>1</sup>; international criteria from WASOG/HRS.<sup>13,14</sup> ?: comparison of positive rate between positive vs. negative in each category.

2668

ESC Heart Failure 2020: 7; 2662–2671 DOI: 10.1002/ehf2.12853

| No.AgeSex Definitive on<br>suspected                                         | · EMB Clinical<br>Criteria of iC                                     | FDG-PE<br>S CT          | T/ VT/ Advanced<br>VF AVB                                    | d Pacemaké                                 | r Thinning septal wall or ventricular aneurysms                   | LVEF < 50 or local<br>motion abnorm         | LV wall LGE uptal<br>ality in heart          | <pre>ke Initiation of corticosteroid after FDG examination</pre>           |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|
| 1 45 F D                                                                     | (-) 4                                                                | Focal                   | (-) (-)                                                      | (-)                                        | (+)                                                               | 47%, inferior<br>hynokinesis                | severe(+)                                    | (+)                                                                        |
| 2 53 M D                                                                     | (-) 4                                                                | Focal                   | (-) (-)                                                      | (-)                                        | (+)                                                               | 27%                                         | (+)                                          | (+)                                                                        |
| 3 80 M D                                                                     | NA 4                                                                 | Focal (                 | on(-) (+)                                                    | PM                                         | (+)                                                               | 36%                                         | NA                                           | Reject                                                                     |
| 4 63 F D                                                                     | (-) 4                                                                | Focal                   | (+)(-)                                                       | CRTD                                       | (+)                                                               | 35%                                         | NA                                           | (+)                                                                        |
| 5 72 F D                                                                     | NA 4                                                                 | Focal                   | (+)(-)                                                       | PM                                         | (+)                                                               | 48%                                         | NA                                           | (+)                                                                        |
| 6 65 M D                                                                     | (-) 4                                                                | Focal                   | (-)(-)                                                       | (-)                                        | (+)                                                               | 26%, inferior                               | severe(+)                                    | Not possible                                                               |
|                                                                              |                                                                      |                         |                                                              |                                            |                                                                   | hypokinesis                                 |                                              |                                                                            |
| 7 38 M D                                                                     | NA 4                                                                 | Focal (                 | (-)(+)uc                                                     | CRTD                                       | (-)                                                               | 28%                                         | (+)                                          | (+)                                                                        |
|                                                                              |                                                                      | diffuse                 |                                                              |                                            |                                                                   |                                             |                                              |                                                                            |
| 8 68 M S                                                                     | E (-)                                                                | Focal (<br>diffuse      | on(-) (-)                                                    | (-)                                        | (+)                                                               | 52%                                         | (+)                                          | (+)                                                                        |
| 9 31 F S                                                                     | NA 3                                                                 | Focal (<br>diffuse      | on(-) (-)                                                    | (-)                                        | (+)                                                               | 59%                                         | (+)                                          | (-)                                                                        |
| 10 34 F S                                                                    | NA 4                                                                 | None                    | (-)(+)                                                       | <u>0</u>                                   | (+)                                                               | 32%                                         | (+)                                          | (-)                                                                        |
| 11 73 M S                                                                    | (-) 4                                                                | None                    | (+)(-)                                                       | PM                                         | (+)                                                               | 59%, ant<br>hypokinesis                     | teroseptal(+)                                | After second PET                                                           |
| AVB, atrioventricular blc<br>computed tomography;<br>fraction; PM, pacemaker | ock; CRTD, Cardiac F<br>ICD, implantable ca<br>: VF, ventricular fib | Resynchrc<br>ardioverte | onization Therager<br>ar defibrillator; in<br>VT_ventricular | oy with Det<br>CS, isolated<br>tachvcardii | ibrillator; EMB, endomyocard<br>l cardiac sarcoidosis; LGE, late- | ial biopsy; FDG-PET/C<br>gadolinium enhance | T, fluorodeoxygluco<br>ment; LV, left ventri | se positron emission tomography/<br>:ular; LVEF, left ventricular ejection |

## Discussion

Of the consecutive 94 patients who underwent FDG-PET/ CT because of suspicion of cardiac sarcoidosis, 34 were given a definitive diagnosis based on the updated guidelines for the diagnosis and treatment of CS from the JCS.<sup>1</sup> Of the 34 patients with cardiac sarcoidosis, 27 had systemic sarcoidosis with cardiac involvement, and 7 had definitive iCS. Of the remaining 60, 4 were judged to have suspected iCS, 13 systemic sarcoidosis without cardiac involvement, and 43 no sarcoidosis. Among the five groups, there were significant differences in ACE, sIL-2R, LV dysfunction or local wall motion abnormality, any structural changes on echocardiography (limited thinning of IVS or ventricular aneurysms), and LGE uptake in the heart in addition to the FDG-PET/CT findings. In marked contrast, only 22 patients were diagnosed based on the international criteria in which histologic evidence of granulomatous inflammation in at least one organ is indispensable.<sup>13,14</sup> In addition to 75% of the patients with sCS or definitive iCS in the updated guidelines, 10% in whom CS was not documented were also started on corticosteroids for clinical indications such as reduced cardiac function or arrhythmia. In the present study, all of the included patients underwent FDG-PET/CT and had not been taking corticosteroids before the examination. In this way, the present study is the first to focus on the diagnosis of CS based on the updated guidelines, in which notably high uptake in the heart on FDG-PET/CT is set as the major criterion and a definition of iCS provided for the first time.

When the diagnosis according to the updated JCS guideline is regarded as correct, the positive and negative predictive values of FDG-PET/CT were 74% and 94%, respectively. In our study, 11 PET-positive cases were cardiac sarcoidosis-negative based on the new guideline. One of the limiting factors of FDG-PET is the false positives that occur due to physiological uptake. Although we divided all cases into four types and diagnosed the patients with 'diffuse' type indicating physiological uptake as negative, some false positive cases may have been included. Some of them, of course, may meet the criteria of CS at some time in the future, even though they do not now. On the other hand, three PET-negative cases were diagnosed with CS based on the new guideline. We surmise that they likely have CS but without myocardial inflammation at this time.

Because high tracer accumulation in the heart with FDG-PET/CT is emphasized in the new guidelines especially for the diagnosis of iCS, all seven patients showing a positive finding on FDG-PET/CT were determined to have definitive iCS. Although two of four patients with suspected iCS had a negative finding on FDG-PET/CT initially, one obtained a positive finding at the second examination. Furthermore, it is not impossible but still difficult to perform cardiac MRI for patients after pacemaker implantation. So, such patients need to meet all of the remaining four criteria except for LGE to be diagnosed with definitive iCS. Consequently, several cases after pacemaker implantation have been assigned to the suspected iCS or no sarcoidosis groups, despite being strongly suspected of having had definitive iCS at that time. They did not meet the criteria of CS then but will possibly be diagnosed with CS subsequently with disease progression.

To meet the criteria of CS in WASOG/HRS, histologic evidence of granulomatous inflammation in at least one organ has been needed. However, in the updated JCS guidelines, the diagnosis of CS is made for patients showing clinical findings strongly suggestive of pulmonary or ophthalmic sarcoidosis, with at least two of the five characteristic laboratory findings of sarcoidosis even in the absence of histological evidence. So 16 of 72 with negative on WASOG/HRS criteria were newly diagnosed as CS, whereas 4 of 22 positive on WASOG/HRS did not meet the criteria on the new JCS guidelines. Because of the respective clinical circumstances, corticosteroids were also initiated in 1 of 4 with suspected iCS and 5 of 56 with no cardiac sarcoidosis, as well as 21 of 27 patients with sCS and 5 of 7 with definitive iCS. Additionally, two cases with initially negative findings on FDG-PET/CT in the suspected iCS or no sarcoidosis group showed high uptake in the heart and were started on these agents. On the other hand, in the international criteria, corticosteroids were initiated in 18 of 22 patients (82%) with CS and 14 of 72 (19%) without CS. In clinical practice, corticosteroids are initiated for patients with severe ventricular arrhythmia (sustained VT/VF) or reduced LVEF who are strongly suspected of having CS even if they do not satisfy the criteria. Careful follow-up is needed for patients highly suspected of having of CS clinically even when the first FDG-PET/CT is negative.

Several papers have quantified the prevalence and proportion of iCS. The reported proportion of iCS varies widely (23% to 54% of CS) due to differences in its definition.<sup>10,11,18–20</sup> Isobe *et al.* describe various possible clinical scenarios in which CS may involve only the heart: (i) lesions of sarcoidosis may arise in the heart but spread to other organs over time, (ii) a subtype of sarcoidosis that is confined to the heart may exist, and (iii) lesions are present also in other organs but remain silent or clinically undetectable because the degree of inflammation is too low or for some other as yet unrecognized reasons.<sup>11</sup> It is important that the manifestation of extra-CS be searched for in patients who are diagnosed with definitive or suspected iCS, and by the same token that those of CS not be overlooked in patients diagnosed as having no sarcoidosis, and their clinical course and outcome carefully followed. This would help to facilitate elucidation of the pathogenetic mechanisms underlying iCS and assess and validate the established criteria in the updated guidelines.

## Limitations

The present study was a retrospective investigation of a relatively small sample population from a single centre, although a few similar reports on patients with suspected CS before the initiation of corticosteroids have been published previously. Endomyocardial biopsy was performed in only 44 patients and revealed non-caseating granuloma in only two with sCS. The low sensitivity of biopsy in this condition was consistent with that noted in a past report.<sup>5</sup> Previously, we reported the one patient with pathologically proven iCS<sup>20</sup> but did not include him in the present study because he had already been started on corticosteroid before FDG-PET/ CT. It has been reported that the detection rate of non-caseating granulomas can be improved by repetition of endomyocardial biopsy in the same patients,<sup>21</sup> although this is not standard in daily clinical practice.<sup>22,23</sup>

## Conclusions

The diagnostic yield of the updated JCS guidelines in which the definition of iCS was established for the first time was high, with more than 1.5-fold of patients diagnosed with CS as compared with the previous international criteria. Approximately 20% of the whole CS population were determined to have definitive iCS. In addition to the 75% of patients with sCS or definitive iCS, 10% of them who were not diagnosed as having CS were also started on corticosteroids based on clinical necessity. Because some cases show a positive finding at subsequent examinations, careful observation is needed especially for those highly suspected of having CS clinically even when their first FDG-PET/CT is negative.

# **Conflict of interest**

None declared.

# References

 Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, Inomata T, Ishibashi-Ueda H, Eishi Y, Kitakaze M, Kusano K, Sakata Y, Shijubo N, Tsuchida A, Tsutsui H, Nakajima T, Nakatani S, Horii T, Yazaki Y, Yamaguchi E, Yamaguchi T, Ide T, Okamura H, Kato Y, Goya M, Sakakibara M, Soejima K, Nagai T, Nakamura H, Noda T, Hasegawa T, Morita H, Ohe T, Kihara Y, Saito Y, Sugiyama Y, Morimoto SI, Yamashina A, Japanese Circulation Society Joint Working Group. JCS. 2016 Guideline on diagnosis and treatment of cardiac sarcoidosis digest version. *Circ J* 2019; **83**: 2329–2388.

- Yazaki Y. How should we evaluate the activity of myocardial inflammation and guide corticosteroid treatment in patients with cardiac sarcoidosis? *Circ J* 2015; **79**: 1450–1452.
- Kato Y, Morimoto S, Uemura A, Hiramitsu S, Ito T, Hishida H. Efficacy of corticosteroids in sarcoidosis presenting with atrioventricular block. *Sarcoidosis Vasc Diffuse Lung Dis* 2003; 20: 133–137.
- Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, Kitakaze M, Tomoike H, Miyatake K. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. *Am J Cardiol* 2005; **95**: 143–146.
- Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H. Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. *Am Heart J* 1999; 138: 299–302.
- Bennett MK, Gilotra NA, Harrington C, Rao S, Dunn JM, Freitag TB, Halushka MK, Russell SD. Evaluation of the role of endomyocardial biopsy in 851 patients with unexplained heart failure from 2000–2009. *Circ Heart Fail* 2013; 6: 676–684.
- 7. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007; **357**: 2153–2165.
- Birnie DH, Nery PB, Ha AC, Beanlands RS. Cardiac sarcoidosis. J Am Coll Cardiol 2016; 68: 411–421.
- Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. *Heart* 2016; 102: 184–190.
- Okada DR, Bravo PE, Vita T, Agarwal V, Osborne MT, Taqueti VR, Skali H, Chareonthaitawee P, Dorbala S, Stewart G, Di Carli M, Blankstein R. Isolated cardiac sarcoidosis: a focused review of an

under-recognized entity. J Nucl Cardiol 2018; 25: 1136–1146.

- Isobe M, Tezuka D. Isolated cardiac sarcoidosis: clinical characteristics, diagnosis and treatment. *Int J Cardiol* 2015; 182: 132–140.
- 12. The Japan Society of Sarcoidosis and Other Granulomatous Disorders, the Diffuse Pulmonary Study Group of the Health and Labor Sciences Research Grant-supported Rare/Intractable Disease Project et al. Committee for revision of the diagnostic standard for sarcoidosis. Diagnostic standard and guideline for sarcoidosis - 2006. JJSOG 2007; 27: 89–102 [In Japanese].
- Judson MA, Costabel U, Drent M, Wells A, Maier L, Koth L, Shigemitsu H, Culver DA, Gelfand J, Valeyre D, Sweiss N, Crouser E, Morgenthau AS, Lower EE, Azuma A, Ishihara M, Morimoto S, Yamaguchi T, Shijubo N, Grutters JC, Rosenbach M, Li H, Rottoli P, Inoue Y, Prasse A, Baughman RP, The Wasog Sarcoidosis Organ Assessment Instrument Investigators. The WASOG Sarcoidosis Organ Assessment Instrument: an update of a previous clinical tool. Sarcoidosis Vasc Diffuse Lung Dis 2014; 31: 19–27.
- Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, Judson MA, Kron J, Mehta D, Cosedis Nielsen J, Patel AR, Ohe T, Raatikainen P, Soejima K. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. *Heart Rhythm* 2014; 11: 1305–1323.
- Kato Y, Morimoto S. Diagnosis and treatment of cardiac sarcoidosis. JJSOG 2008; 28: 15–24.
- Criado E, Sánchez M, Ramírez J, Arguis P, de Caralt TM, Perea RJ, Xaubet A. Pulmonary sarcoidosis: typical and atypical manifestations at high-resolution CT with pathologic correlation. *Radiographics* 2010; **30**: 1567–1586.
- Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, Ito N, Ohira H, Ikeda D, Tamaki N, Nishimura M. Focal uptake on <sup>18</sup>Ffluoro-2-deoxyglucose positron emission

tomography images indicates cardiac involvement of sarcoidosis. *Eur Heart J* 2005; **26**: 1538–1543.

- Tavora F, Cresswell N, Li L, Ripple M, Solomon C, Burke A. Comparison of necropsy findings in patients with sarcoidosis dying suddenly from cardiac sarcoidosis versus dying suddenly from other causes. *Am J Cardiol* 2009; 104: 571–577.
- 19. Tezuka D, Terashima M, Kato Y, Toriihara A, Hirasawa K, Sasaoka T, Yoshikawa S, Maejima Y, Ashikaga T, Suzuki J, Hirao K, Isobe M. Clinical characteristics of definite or suspected isolated cardiac sarcoidosis: application of cardiac magnetic resonance imaging and <sup>18</sup>F-Fluoro-2-deoxyglucose positron-emission

tomography/computerized tomography. *J Card Fail* 2015; **21**: 313–322.

- Kato Y. Solitary cardiac involvement of sarcoidosis, *JJJSOG* 2012; 32: 51–54 (Japanese with English abstract).
- Kandolin R, Lehtonen J, Graner M, Schildt J, Salmenkivi K, Kivistö SM, Kupari M. Diagnosing isolated cardiac sarcoidosis. J Intern Med 2011; 270: 461–468.
- 22. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, Levine GN, Narula J, Starling RC, Towbin J, Virmani R, American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol 2007; 50: 1914-1931.
- Ishibashi-Ueda H, Matsuyama TA, Ohta-Ogo K, Ikeda Y. Significance and value of endomyocardial biopsy based on our own experience. *Circ J* 2017; 81: 417–426.