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Abstract: Melatonin, along with its metabolites, have long been known to significantly reduce
the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a
result of free radicals produced in cells, especially in mitochondria. When measured, melatonin,
a potent antioxidant, was found to be in higher concentrations in mitochondria than in other
organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes
possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient.
Moreover, we predicted several years ago that, because of their origin from melatonin-producing
bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year
supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these
organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge
the radicals and reduce the degree of oxidative damage. In light of the “free radical theory of aging”,
including all of its iterations, high melatonin levels in mitochondria would be expected to protect
against age-related organismal decline. Also, there are many age-associated diseases that have, as a
contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset
or progression if mitochondrial levels of melatonin can be maintained into advanced age.

Keywords: oxidative stress; free radicals; electron transport chain; oxidative phosphorylation;
free radical theory of aging; melatonin uptake; melatonin synthesis

1. Introduction

A surplus of chemically-reduced oxygen derivatives, often referred to as reactive oxygen species
(ROS), some of which are free radicals (with an unpaired valence electron), commonly leads to
an augmented level of molecular damage identified as oxidative stress [1]. The excess of highly
reactive oxygen metabolites overwhelms a complex antioxidant defense network such that it does not
adequately defend against the consequent deleterious effects. All major molecular groups typically
sustain damage when attacked by free radicals, but the level of oxidative stress is most frequently
based on the quantities of damaged lipid products, protein carbonyls, and mutilated nucleic acids [2].
While many of the toxic derivatives of ground state oxygen are oxygen-based and therefore are
referred to as reactive oxygen species (ROS), others are nitrogen (RNS) or chlorine (RCS)-based.
For the purposes of the current report, these are all considered under the collective term of ROS.
Likewise, the damage inflicted by ROS, depending on the species involved, is referred to as either
oxidative stress or nitrosative stress. Herein, both are categorized as oxidative stress.
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The generation of ROS, including free radicals, is inevitable and continuous in aerobic
organisms [3]. Since their creation cannot be totally smothered, the alternative is to neutralize them
before they vandalize a neighboring critical molecule. This is obviously not a foolproof task for
cells, however, since invariably some radicals escape incapacitation and destroy bystander molecules,
thereby compromising organellar physiology. Less than optimal functioning of subcellular systems can
undermine cellular metabolism leading to physiological inefficiency and, in the worst case scenario,
cell death [4].

To make matters worse, once formed, free radicals can cause a chain reaction of events that
leads to massive molecular annihilation of healthy structures. This occurs when the first free radical
formed extracts an electron from an otherwise normal molecule in its vicinity, causing it to become
a destabilized free radical; in turn, it captures an electron from another molecule to sabotage it.
This domino process is especially well defined in reference to lipid peroxidation and is only interrupted
when an antioxidant intervenes and scavenges the perpetuating free radical or an intermediate toxic
derivative [5].

Not all free radicals are pariahs. While under conditions of oxidative stress in non-pathological
cells, they produce an imbalance between the reductive power of the cell and the oxidation state
in favor of the latter, under some conditions, they serve as beneficial signaling molecules [6,7].
Undoubtedly, ROS have several characteristics typical of second messengers, including their short
half-life, as well as the ability to amplify a series of reactions that are initiated by a primary ligand.
In particular, O2•− and H2O2 can function as intracellular signaling molecules; this is assisted,
especially in the case of H2O2, by its ability to readily pass through cellular membranes. The production
of the superoxide anion radical (O2•−) and hydrogen peroxide (H2O2) are carefully regulated
intracellularly [8,9]. This, however, does not apply to the hydroxyl radical (•OH). Finally, ROS and
free radicals are sometimes produced in abundance in cancer tissues that aid in the killing of
these disease-causing cells [9]. A notable conundrum that becomes apparent when considering the
differential actions of ROS and free radicals is how antioxidants/free radical scavengers discriminate
between those that are potentially harmful while mostly sparing those mediating beneficial signal
transduction processes [10]. Even when very large amounts of an antioxidant are given, the signaling
pathways that utilize ROS seem to be left functionally intact.

2. Melatonin Origin and Distribution

While there are many molecules that potentially function as free radical scavengers, in the
current survey, we only summarize the actions and mechanisms of melatonin and its metabolites in
terms of their ability to forestall the cellular damage associated with an excess of ROS. Because of its
presence in bacteria [11,12], which evolved several billion years ago, we have speculated that melatonin
is phylogenetically the oldest antioxidant in existence [13]. Considering its longevity, throughout
evolution melatonin has had ample opportunity to hone and diversify its functions in its quest to
vanquish toxic oxygen derivatives [14,15], as well as to inherit other functions [16–18]. In addition
to its presence in all taxa of the animal kingdom (where attempts to measure it have been made),
its discovery in land plants [19,20], along with its verification and functional definition in many plant
species [19–22], suggests there is no organism on Earth that lacks this important molecule. Melatonin
(and its metabolites) in plants have many of the same functions as this indole has in animals [23–26].

It has been argued that because of its seemingly lower concentration intracellularly relative to
other well-documented antioxidants, e.g., glutathione in neurons and hepatocytes, melatonin would
not successfully compete as a free radical scavenger, e.g., of the •OH, which has an extremely short
half-life and creates damage only in the immediate vicinity of where it is generated [27]. For any
radical scavenger to neutralize the •OH, it is essential that it be at the immediate vicinity of the toxic
species. Thus, the total concentration of an antioxidant within a cell may be less important than its
concentration at the site of free radical generation. Recently, it was demonstrated that melatonin is
in especially high concentrations in mitochondria, an organelle in which free radicals are produced
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in abundance [28,29]. At least relative to this organelle, melatonin may be “in the right place all
of the time” to resist oxidative stress. Thus, melatonin may have a positional advantage that other
antioxidants do not share that improves its ability to scavenge toxic radicals and reduce the associated
oxidative stress [30]. Judging from its very different concentrations in the bodily fluids of organisms,
e.g., blood versus cerebrospinal fluid (CSF) [31], versus ovarian follicular fluid [32], versus bile [33],
etc., this may speak to a positional advantage melatonin may have in terms of protecting against
oxidative stress. Undoubtedly, any judgement about the levels of melatonin throughout an organism
based solely on its concentrations in the blood is erroneous [30].

The specific concentrations of melatonin in a given bodily fluid varies widely depending on
a number of factors, e.g., time of day of fluid collection (blood and cerebrospinal fluid (CSF),
levels are much higher at night than during the day [31,34]) and the site of fluid collection (melatonin
concentrations measured in blood obtained from the vascular sinus surrounding the pineal gland differ
from levels in peripherally-collected blood [35,36]); for cerebrospinal fluid (CSF), melatonin levels are
higher in this fluid collected from the third ventricle when compared to values in CSF collected via
lumbar puncture [31,37]. In reference to ovarian follicles, the fluid of small vesicular follicles has lower
melatonin levels than the fluid obtained from large follicles [38]. Moreover, circulating concentrations
of melatonin may vary depending on food recently consumed [39], level of stress [40], quality of light
exposure [41], age [42], reproductive state [43], use of drugs (medications) [35], presence or absence of
disease [44], opacity of the lens in the eye [45], etc.

Melatonin also works via multiple means to limit oxidative stress. While melatonin is capable of
directly or indirectly scavenging toxic oxygen species [46–48], it has other means at its disposal
for combatting free radical damage. When a molecule such as melatonin merely renders one
of its delocalized electrons to neutralize a free radical, this action is achieved without receptor
intervention [47,49]. It is well documented, however, that melatonin’s ability to limit oxidative stress
sometimes also relies on its interaction with melatonin membrane receptors that are present in many,
perhaps all, cells [50,51]. These antioxidant actions of melatonin rely on an interaction with membrane
receptors located on the cell membrane or on intracellular organelles [52–54]; membrane receptors
for melatonin also may exist in all organisms [30]. These receptor-mediated actions of melatonin are
indirect and likely involve stimulation of antioxidant enzymes, e.g., glutathione peroxidase (GPx),
superoxide dismutase (SOD1, 2), SIRT3, etc. [55,56]. When melatonin acts via receptors to carry out
its antioxidant actions, it can achieve this effect at much lower concentrations than those required
when it functions as a direct free radical scavenger. This relates to the fact that the signal transduction
pathways associated with receptors serve to magnify the response. A final feature that characterizes
melatonin as an important antioxidant is its availability from multiple sites. Vitamins C and E are
only available to humans when they are consumed in the diet. In contrast, given its widespread
presence in edible plants [21,26], melatonin is obtained from the food consumed and, furthermore,
it is produced in all organisms, perhaps in every cell that has mitochondria or chloroplasts [57–59].
As with animals, the concentrations of melatonin in plants vary widely and depend on the plant organ
in which melatonin is measured [20,21,60], the physiological state of the plant [26], etc.

Historically, melatonin was thought to be uniquely of pineal gland origin [61,62]. It is now
clear that this is not the case, since only vertebrates have a pineal gland, while other animal species
and plants lack even a homologous organ. In vertebrates, the circadian synthesis and secretion of
melatonin, particularly into the CSF, has a two-fold function; the melatonin rhythm in the CSF is
for the purpose of circadian rhythm regulation at the level of the suprachiasmatic nucleus (SCN)
and perhaps to protect the brain from oxidative stress [63,64]. However, the pineal gland is not a
requirement for the circadian production of melatonin. In the microalga, Gonyaulax polyhedra (also
known as Lingulodinium polyedrum), there is a distinct light:dark-driven melatonin cycle similar to that
in vertebrates, but this is a single cell species that obviously has no organs [65].
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3. Sites of Reactive Oxygen Species Generation

Mitochondria are a major site for the generation of ROS including free radicals. ROS species,
as mentioned in the Introduction, may or may not be damaging to cellular constituents. The oxygen-
derived species that have generally low reactivity, e.g., the product of the single reduction of ground
state oxygen, the superoxide anion radical (O2•−), and its enzymatic product hydrogen peroxide
(H2O2) can sometimes serve as second messengers within cells [7,66] while also being precursors of
more reactive and destructive species, e.g., the hydroxyl radical (•OH) and peroxynitrite (ONOO−),
a non-radical but highly oxidizing species (Figure 1). Furthermore, ONOO− may degrade into
the •OH [67].
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Figure 1. The chemical reduction or the addition of energy to ground state oxygen generates products
referred to as reactive oxygen species (ROS). The most reactive of these derivatives are peroxynitrite
and the hydroxyl radical. The conversion of hydrogen peroxide to the hydroxyl radical requires
a transition metal with the conversion usually being referred to as the Fenton reaction. The red
asterisk (*) identifies products that have been reported to be directly scavenged by melatonin and
its metabolites. The evidence of these scavenging reactions is much stronger for some ROS than for
others. Melatonin also stimulates antioxidant enzymes, e.g., superoxide dismutases (SOD), glutathione
peroxidases (GPx), and glutathione reductase (GRd) to indirectly remove toxic ROS. The most toxic
species, i.e., peroxynitrite and the hydroxyl radical, are not enzymatically degraded; they can only be
removed by a direct scavenger. CAT = catalase.

The molecular damage inflicted by especially highly-reactive ROS can be controlled by either
preventing the formation of their precursors, i.e., the weakly reactive ROS, or by scavenging them as
soon as they are produced. Melatonin has both these capabilities; it reduces O2•− formation at the level
of the mitochondrial electron transport chain (ETC) by a process referred to as radical avoidance [68],
and it is a direct ROS scavenger [15,30,69–71] (Figure 1). In addition, melatonin lowers the ROS
burden by promoting enzymes that metabolize low reactive ROS to oxygen and water. These enzymes
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include the superoxide dismutases (SOD1, SOD2), which remove O2•−, the glutathione peroxidases
(GPx), and the peroxiredoxins (PRs), which rids the cellular microenvironment of H2O2. There are no
enzymes that metabolize the most toxic ROS varieties, i.e., •OH and ONOO−, to innocuous molecules.
While SOD, GPx, and PRs are all known to be regulated by melatonin, the data related to SOD and
GPx [72–74] is more extensive than that for PRs [75,76].

The mechanisms by which melatonin or its metabolites modulate antioxidant enzyme activities
have not been unequivocally identified. Some proposed mechanisms include their ability to inhibit
the ubiquitination of Nrf2, thereby allowing it to translocate to the nucleus and bind to the
antioxidant response element (ARE), which leads to the activation of the associated enzymes [15,77,78].
Melatonin may also modulate SIRT3/SOD2 signaling in the mitochondria to regulate the degree of
oxidative stress in this organelle [58].

Within mitochondria, there are numerous sites at which ROS could potentially be generated [79].
The sites that have the greatest potential of doing so under in vivo conditions involve the electron
transport chain (ETC). Thus, respiratory Complex I (NADPH: ubiquinone oxidoreductase) and
Complex III (ubiquinol: cytochrome c reductase) leak electrons when they are shunted between
donor and receptor molecules [80] (Figure 2). The ROS generated by Complex I appear in the
matrix, while those from Complex III are divided between the matrix and intermembrane space [81].
Again, while the ROS produced in mitochondria sometimes have physiological relevance [82],
their production in excess, as occurs during aging [83,84] and many other pathologies [85–89], has dire
consequences due to the damage they inflict.
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Figure 2. This figure illustrates the structure of a mitochondrion and the location of the complexes
(CI-CV) that constitute the electron transport chain that engages in oxidative phosphorylation,
which results in the generation of energy in the form of ATP. Free radicals are formed when electrons
leak and reduce nearby oxygen (O2) molecules to form the superoxide anion radical (O2•−). CI releases
electrons into the mitochondrial matrix, while CIII releases them into both the matrix and the
intramembrane space. Once formed, the O2•− can be dismutated by superoxide dismutase (SOD) to
hydrogen peroxide (H2O2) with its eventual conversion to the hydroxyl radical (•OH). O2•− can also
couple with nitric oxide (NO•) to produce the peroxynitrite anion (ONOO−). Since melatonin is both
taken up and synthesized in mitochondria, it is in an optimal position to scavenge these toxic species.

While the mitochondrial source of ROS is considered of high significance in terms of disease
processes and aging-related cellular and organismal decline, intracellular enzymes outside the
mitochondria are also a source of ROS. Some of the major enzymes in this group include monoamine
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oxidase (MAO), peroxisomal enzymes, NADPH oxidases (NOX), and xanthine oxidase (XO) [76].
NOX, a family of cytosolic enzymes, are of particular importance in terms of producing O2•− and
H2O2 [90]. These agents can give rise to the •OH via the Fenton reaction and, therefore, NOX enzymes
also have been implicated in disease states [91]. XO and MAO are bound to the outer mitochondrial
membrane and are free in the cytosol [92,93]. Their generation of ROS increases with age and MAO
activity; in particular, it contributes to a major neurodegenerative disease in the aged, i.e., Parkinson
disease, in which the dopaminergic neurons of the pars compacta are destroyed [94,95].

The cytosolic peroxisome plays a major role in not only the production of H2O2 but also its
detoxification [96]. Disturbances in the redox balance in this organelle promote cellular senescence
due to elevated H2O2 [97]. Additionally, lysosomes release free metal ions such as iron which, via the
Fenton reaction, promote •OH formation that advances oxidative stress [98].

While ROS are produced in many portions of every cell, the current review is mainly concerned
with mitochondrial ROS (mtROS) and how melatonin functions to combat their toxicity. As will
be further elaborated in a later section of this report, melatonin is in especially high concentrations
in mitochondria [28], likely due to its rapid uptake [99] and synthesis in this organelle [100–102].
The indole is also present in other subcellar compartments but in lower concentrations than in the
mitochondria [28].

The subcellular distribution of melatonin has been sparingly investigated. Thus, while the
differential concentrations of melatonin in various subcellular compartments have been described in a
number of cells in different organs [28,103], many cell types have yet to be examined in this regard.
Nevertheless, there are numerous reports that support melatonin′s ability to protect molecules in the
inner mitochondrial membrane from the toxicity of ROS [104–106]. Since the very high reactivity and
extremely short half-life of some ROS, e.g., •OH, preclude its transport from where it is produced,
if melatonin is to counteract its action in mitochondria, melatonin must be in the immediate vicinity of
where the •OH is generated [107–112].

4. Melatonin and Its Metabolites: Determinants of Oxidative Stress

That melatonin is highly effective in reducing oxidative damage is illustrated in an extensive list
of reports published in the last 25 years [113–117]. Mechanistically, the means by which melatonin
neutralizes ROS is also well described and includes direct scavenging actions [30,47,118–121] and
indirect processes by which ROS is enzymatically converted to less harmful species [14,107,122–124].
In mitochondria, the enzymatic dismutation of O2•− involves the stimulation of SIRT3 by melatonin;
this leads to the deacetylation and activation of SOD2, thereby limiting oxidative damage to this
vital organelle [125–127]. The action of melatonin at the mitochondrial level is consistent with its
designation as a mitochondria-targeted antioxidant [14,71].

While melatonin very effectively reduces oxidative stress in all experimental and clinical settings
in which it has been tested [87,128–131], it has an advantage over other antioxidants, since not
only is melatonin a scavenger of toxic species, but several of its products are as well [132,133]
(Figure 3). In what is referred to as melatonin's antioxidant cascade, after melatonin interacts
with a toxic species it is metabolized enzymatically or non-enzymatically to other antioxidants
that are equal to or better than melatonin in detoxifying free radicals [134]. These metabolites
include cyclic 3-hydroxymelatonin [135], N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) [132],
N1-acetyl-5-methoxykynuramine (AMK) [133], and perhaps others. Thus, whereas classical antioxidants
scavenge a single radical, via its cascade of reactions, melatonin detoxifies multiple radical species.
This, coupled with its indirect antioxidant actions described above and its ability to bind transition
metals [136], causes melatonin to be a potent repressor of oxidative stress. Moreover, a variety of
melatonin analogues, which are produced in vivo, also function as antioxidants [137]. Finally, after being
damaged by free radicals, melatonin aids in promoting DNA repair [138].

Considering the wide array of complex actions that melatonin seemingly manifests relative to
reducing oxidative stress, it is likely that our understanding of how melatonin actually functions in
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a highly oxidizing environment is wholly incomplete. The mechanisms that have been put forth to
explain melatonin′s comprehensive capacity to provide antioxidant protection leads one to surmise
that what is being observed are merely epiphenomena of a more basic molecular action of this
phylogenetically-ancient molecule. Future research will likely reveal additional actions(s) of this
functionally-diverse agent.
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Figure 3. The structure of melatonin and some of its metabolites that have been shown to detoxify
reactive oxygen and reactive nitrogen species. Additionally, some of these have other actions that
enhance their ability to reduce oxidative stress, e.g., chelation of transition metal ions, promotion
of antioxidant enzymes, inhibition of pro-oxidant enzymes, reducing electron leaking from the
respiratory chain complexes, etc. Also shown is the sequence by which these metabolites are formed.
This sequential formation of metabolites from melatonin, along with their ability to scavenge radicals,
is referred to as melatonin′s antioxidant cascade.

5. Melatonin in Mitochondria: A Fortuitous Association

A recently published issue of Cellular and Molecular Life Sciences (Volume 74, Issue 21, 2017) is
solely devoted to describing the multiple actions of melatonin at the mitochondrial level. These actions
likely necessitate that melatonin is present in this organelle. In early immunocytochemical studies,
we documented that when astrocytes are challenged in vitro with H2O2, their mitochondria exhibit an
enhanced free radical fluorescence [139]; this enhancement is markedly blunted if, in addition to H2O2,
the cells are simultaneously incubated with melatonin; this protection was superior to that provided by
vitamin E. Likewise, using multiple fluorescence imaging microscopy, we observed that melatonin also
protects mitochondria from elevated mitochondrial Ca2+ (mCa2+) stress [140,141]. Thus, melatonin
completely attenuated mROS induced by mCa2+ due to exposure to ionomycin. Also, melatonin
prevented mCa2+-mediated mitochondrial permeability transition (MPT), indicating that melatonin
may directly target the MPT. When astrocytes were treated with cyclosporine A, a MPT inhibitor,
melatonin reduced Ca2+-induced cellular apoptosis, showing that melatonin also had actions beyond
the MPT.
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Many studies during the last two decades have further defined the critical role that melatonin has
in maintaining the optimal physiology of the mitochondria [14,30,87,106,115,142–144]. The beneficial
actions of melatonin at the level of the mitochondria are apparent in reference to quenching
free radicals, reducing oxidative stress, limiting mitochondria-related apoptosis, maintaining the
efficiency of the respiratory chain complexes, and ensuring ample ATP production [145–147].
Moreover, these regulatory actions are not unique to a single cell type but rather are applicable
to every cell, plant, and animal that has mitochondria.

The remarkable ability of melatonin to preserve mitochondrial function implies that it gets into
this organelle in sufficiently high concentrations to protect them from dysfunction under the most
extreme oxidizing conditions. There is, however, limited information on the levels of melatonin in
subcellular compartments. The one study that made such measurements indicates that, at least in brain
cells, melatonin concentrations in mitochondria far exceed those in the blood [28]. While higher than
blood levels were also estimated in hepatocyte mitochondria, they were significantly lower than in
brain cells. This great difference between these tissues could relate to the much higher concentrations
of melatonin in the cerebrospinal fluid (CSF) [148,149], to which brain cells are exposed [150], relative
to the much lower levels of melatonin in the blood, to which hepatocytes are exposed. Alternatively,
it could relate to the high metabolic demands of neurons versus liver cells. Studies related to the
immunocytochemical localization of melatonin at the subcellular level certainly suggest that melatonin
quickly enters cells and has ready access to mitochondria [139,140]. The evidence related to the
mechanisms by which melatonin may pass through cell membranes was recently reviewed by Mayo
and coworkers [151].

Since melatonin is highly lipid soluble, it has often been assumed that it enters cells by simple
diffusion. Under detailed examination, however, its passage through the plasma membrane seemed to
be dependent on the presence of a protein that was identified as a glucose transporter, GLUT 1 [152].
Docking studies also prompted the conclusion that melatonin′s entrance into the cell was related to the
GLUT 1 transporter. This process was slower than expected, however, and did not provide information
on how it may contribute to levels of melatonin in mitochondria.

The most complete description of the means by which melatonin enters mitochondria against a
gradient is provided by the recent study of Huo et al. [99]. Using two human cancer cell lines (PC3
and U118), this group tested whether either the organic ion transporter, OAT3, or the oligopeptide
transporters, PEPT1/2, facilitated melatonin′s transfer through the mitochondrial membranes.
The study revealed that the OAT3 transporter was not related to melatonin’s movement into the
mitochondria. On the contrary, however, melatonin transport into this organelle was facilitated
by PEPT1/2. Docking analysis studies showed that the ability of melatonin to bind to PEPT1/2
related to their low binding energy and optimal binding configuration given that melatonin readily
embedded in the active site of the transporters and nestled in the cavity in three dimensional
space [99]. Melatonin uptake through PEPT1/2 was linear and its uptake was saturable during
prolonged incubation. When Bes, a competitor for the receptors, was added to the incubation medium,
melatonin uptake was significantly reduced. The optimal pH for the movement of melatonin through
the transporter was 5.5; this is the pH at which PEPT1/2 function maximally. Finally, knockdown
of PEPT1/2 expression with siRNAs showed that the amount of melatonin in mitochondria was
related to the presence of PEPT1/2 in the membranes of this organelle (Figure 4). Despite the
completeness of these studies, the authors left open the possibility that simple diffusion or other
yet-to-be-identified transporters may also be involved in the movement of melatonin from the cytosol
into the mitochondria. While the findings of Huo et al. [99] are highly significant, whether they will
be applicable to other cell types and, in particular, to normal cells (they used cancer cells exclusively)
certainly warrants investigation.

In agreement with the observations showing the importance of oligopeptide transporters in
hastening the movement of melatonin into mitochondria are studies that compared melatonin with
Mito E and Mito Q in terms of their ability to protect cells under extremely high oxidative stress
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conditions [153]. Mito E and Mito Q are synthetic antioxidants that accumulate in mitochondria
at levels up to 500-fold greater than the unaltered antioxidants, i.e., vitamin E and co-enzyme Q10.
When rats were treated with two bacterial toxins, lipopolysaccharide (LPS) and peptidoglycan (PepG),
which cause severe acute sepsis, there was evidence of substantial malfunction of two organs in
which it was assessed, i.e., liver and kidney [153]. In an attempt to protect the organs from damage,
the toxin-treated rats were intravenously infused with equimolar concentrations of either Mito E,
Mito Q, or melatonin. These molecules had broadly similar protective actions in terms of lowering
oxidative stress, preserving mitochondrial respiration, depressing circulating interleukin-6 levels,
and protecting against organ dysfunction, as indicated by blood levels of alanine aminotransferase
(liver) and creatinine (kidney). In some cases, although it was not proven statistically, melatonin
appeared superior to the synthetic molecules, Mito E and Mito Q. The ability of melatonin to protect
against experimental [87,154,155] and clinical [156] sepsis is well documented. On the basis of their
findings, Lowes and colleagues [153] proposed the use of melatonin over Mito E or Mito Q in clinical
trials designed to attenuate mitochondrial oxidative stress and cellular dysfunction. Considering that
Mito E and Mito Q concentrate in the mitochondria up to 500 times greater than the levels in the blood,
along with the fact that melatonin provides equal or better protection, it can be assumed that the indole
was also in high concentrations in mitochondria.
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Figure 4. The oligopeptide transporters, PEPT1/2, have recently been reported to be present in
mitochondrial membranes. These transporters are believed to move melatonin into mitochondria
against a gradient. This may explain the much higher concentration of melatonin in mitochondria
than in other subcellular compartments. Moreover, high melatonin levels in mitochondria would be
consistent with the marked ability of this antioxidant to protect these organelles from free radical
damage as it occurs during aging and as a result of diseases of aging that have a free radical component.

Given what is known about the seemingly high levels of melatonin in mitochondria and the
ability of this compartment to avidly take up the indole, the speculation that melatonin is targeted
to the mitochondria is certainly justified [30,57,71,157]. Elevated mitochondrial melatonin levels
would certainly be advantageous, since these organelles produce the bulk of the damaging free
radicals that most cells generate. Moreover, since they are the site of origin of the majority of the ATP,
they are absolutely vital to the survival of a cell. This being the case, it should not be unexpected that
mitochondria would have access to a highly potent antioxidant, such as melatonin.
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The detection of melatonin in the earliest-evolved organisms, i.e., bacteria [11,12,158], along with
theory that mitochondria/chloroplasts evolved from bacteria that were initially ingested by
prokaryotes as food [159] (Figure 5), prompted the speculation that mitochondria/chloroplasts retained
the melatonin-forming ability of their bacterial precursors [100]. This would be a very fortuitous
arrangement given the fact that, as already mentioned herein, mitochondria have a propensity to
produce an abundance of free radicals as a byproduct of oxidative phosphorylation [57,71,142,157].
Recently published data supports the high likelihood that both mitochondria [71,100–102,160] and
chloroplasts [161,162] are in fact sites of melatonin synthesis.
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Figure 5. This is an illustration of what is referred to as the endosymbiotic theory for the origin
of mitochondria (and chloroplasts) and why these organelles in present-day eukaryotes likely
have the ability to produce melatonin. A couple of billion years ago, prokaryotes phagocytized
proteobacteria, which are known to synthesize melatonin; these bacteria were initially digested and
used as nutrition. During evolution, the ingested bacteria eventually developed a mutually-beneficial
symbiotic relationship with the cells that ingested them and they evolved into mitochondria. When they
did so, the evolved mitochondria retained the ability to produce melatonin (brown image). As a result,
present-day eukaryotic cells synthesize melatonin as shown in several reports cited in the current
review. Likewise, some of the same prokaryotes also engulfed photosynthetic, melatonin-producing
bacteria which evolved into chloroplasts of plant cells (green image); chloroplasts also have been shown
to be involved in melatonin synthesis. Since plant cells have both chloroplasts and mitochondria may
explain why plants generally have higher cellular concentrations of melatonin than do animal cells,
which only have mitochondria.
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In reference to melatonin synthesis by mitochondria, He and colleagues [160] isolated these
organelles from mouse oocytes and showed, immunocytochemically, that they express the rate
limiting enzyme in melatonin synthesis, serotonin N-acetyltransferase. When purified mitochondria
were incubated with serotonin for 1 hour, the melatonin concentration in the culture medium rose
dramatically. Since mitochondria were the only organelles in the incubation medium, it was assumed
the rise in melatonin in this fluid was a consequence of its sustained production by mitochondria.
As physiological evidence that melatonin was present in mitochondria, the amount of melatonin
correlated with several parameters that were improved in these organelles (increased mtDNA copies,
elevated ATP, enhanced mitochondrial membrane potential, etc.).

The most complete documentation of mitochondria being the site of melatonin synthesis comes
from a recent study of Suofa et al. [102]. They reasoned that since melatonin levels are highly elevated in
brain mitochondria [28], that it may also be produced in these organelles. With this rationale and using
rat forebrain non-synaptosomal mitochondria, they tested whether the melatonin-forming enzymes,
i.e., arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT),
are also present. When these constituents were measured, the authors found this to be the case.
Additionally, 14-3-3 was also located in the mitochondria (and in the cytosol); 14-3-3 is a chaperone
that is present in the pineal gland [62] and protects AANAT from degradation and improves its affinity
for serotonin, the substrate for the enzyme [163]. Digestion of the outer mitochondrial membrane
with a combination of proteinase K and digitonin (which left the inner mitochondrial membrane
intact) revealed that the remaining mitochondrial fraction retained the AANAT and ASMT activities,
suggesting their location in the mitochondria matrix. Unlike in the pineal gland, mitochondrial
AANAT activity did not vary over a light:dark cycle. When AANAT was knocked out in mouse
neuroblastoma cells (N2a), mitochondria exhibited a much higher degree of oxidative stress in
response to oxygen/glucose deprivation; this is consistent with the absence of melatonin, since it is
a potent inhibitor of oxidative damage [71]. Finally, when purified mouse forebrain mitochondria
were incubated with deuterated (D4) serotonin along with ATP and respiratory substrate, they quickly
formed D4-N-acetylserotonin and D4-melatonin.

The importance of the findings suggesting that mitochondria produce their own melatonin cannot
be over emphasized. Mitochondria are a major site of free radical generation and, therefore, oxidative
damage. Malfunctions of mitochondria have numerous debilitating consequences in terms of cellular
loss, organ dysfunction, and organismal decline (see below).

In view of the data reported, we predict that melatonin will be inducible in mitochondria as
has been shown in plants [21,26,164–166]. We suspect the stimulus for the compensatory rise in
mitochondrial melatonin production will be the quantity of free radicals being formed in these organelles
or the amount of oxidative damage being sustained. When the dinoflagellate Lingulodinium polyedrum
(nee, Gonyaulax polyhedron) is exposed to a reduced ambient temperature, a situation that augments
free radical generation in these unicells, melatonin levels in these organisms rise dramatically [167].
The increase is likely related to the de novo synthesis of the indole. As noted above, a compensatory
elevation in melatonin levels is also a common feature of land plants when they experience any of a
number of stresses [21,26,164–166].

6. Melatonin, Oxidative Stress, and Aging

That morphological, functional, and molecular deterioration occurs with increasing age is
indisputable for all living organisms; however, the rate at which different taxa degenerate varies
widely. A reliable explanation for these differences is yet to be fully defined and, in fact, aging
mechanisms of a given species likewise constitute a major point of scientific debate.

The subcellular organelle most frequently implicated in terms of determining the rate of aging
is the mitochondrion [168,169]. Moreover, it is the elevated free radicals that they produce that
theoretically help to explain their age-related dysfunction. The free radical theory of aging has persisted
for more than 50 years [170,171], but the evidence supporting it is still not beyond dispute [165,168].
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Since free radicals obviously cause molecular disfigurement and functional decay, and given that
they are abundantly created in mitochondria, molecules that either efficiently quench a variety of ROS
species or reduce their production, especially in mitochondria, may be useful as a means to slow the rate
of aging and reduce age-related diseases [172,173]. To enhance their entry into mitochondria, industry
has synthesized synthetic antioxidants [174,175] that do accumulate up to 500-fold (greater than the
natural antioxidant) in the mitochondrial matrix. Despite this, these modified radical scavengers are
no better than melatonin in fending off ROS-mediated damage [138]. Because of this and for other
reasons, interest is the role of melatonin in aging processes has been a topic of interest for more than
two decades [176–178].

In 1999, we [179] reported that surgical removal of the pineal gland from young rats caused a
more rapid accumulation of oxidatively-damaged molecules in multiple tissues when the animals
reached 25 months of age. Pinealectomy deprives animals of melatonin that are normally secreted
by the pineal, but not from other organs. Thus, the animals were not devoid of melatonin but they
presumably were relatively melatonin deficient compared to pineal-intact animals. The findings
could mean that the partial loss of the antioxidant, melatonin, was responsible for the accelerated
oxidative damage measured later in life, i.e., the animals aged more rapidly. The data, however,
must be considered in light of another action of melatonin not related to its free radical scavenging
actions. Since the circadian rhythm of melatonin feeds back onto the master biological clock, SCN,
to aid in the synchronization of rhythms throughout the organism [180], the circadian disruption
due to pineal removal may have led to the excessive accumulation of oxidative damage [181,182].
The loss of the endogenous melatonin rhythm is always accompanied by some total body circadian
dysregulation [183]. Twenty-four hour rhythms are also fundamental properties of mitochondria
with both their morphology and physiology being periodic [184]. Systematic, as well as intrinsic,
cues probably drive these mitochondrial cycles [87]. Thus, when examining the actions of melatonin
on molecular aspects of aging, and diseases associated with advancing age, it is important to note that
melatonin may have positive actions beyond its ability to squelch oxidative stress, i.e., function as an
antioxidant. The multiple actions of melatonin may explain why melatonin is better than conventional
antioxidants in preserving optimal cell physiology and seemingly improving health.

Considering the multiple critical functions of mitochondria, it is not unexpected that they
would be the focus of research related to aging. The diverse functions of this organelle include
optimizing oxidative phosphorylation (OXPHOS), which culminates in ATP production; during this
process oxygen-based radical and non-radical products are formed that, in the long term, damage
the mitochondria. This organelle also participates in metabolic and signaling pathways including the
regulation of apoptosis. The mitochondria also possess their own genetic material [mitochondrial
(mt)DNA]. mtDNA encodes some of the proteins that are components of the respiratory complexes.
Given the inadvertent production of ROS during OXPHOS, mtDNA is readily damaged, leaving it
to form proteins of the respiratory chain that are flawed; when this occurs, the complexes become
inefficient and produce higher numbers of damaging free radicals. These processes then become
a progressively increasing cycle of destructive reactions leading to accelerated deterioration of
mitochondrial physiology, which contributes to the aging phenotype [185,186].

Presumably, both because of their ability to uptake [99], as well as to synthesize [102], melatonin,
the mitochondria contain sufficiently high concentrations of the indole to resist the mitochondrial
melee initiated by ROS. There are numerous experimental data documenting melatonin’s ability to
defer mitochondrial mutilation and dysfunction resulting from the excessive production of ROS due to
the inefficient transfer of electrons between the respiratory complexes [84,125,128,130,144,153,187–192].
Melatonin likely achieves its protective effects because of its scavenging activities, as well as
those of its metabolites [14,15,30,46,47,68,71], in addition to its indirect actions in the activation of
mitochondria-located SOD2; in this case, melatonin stimulates SIRT3 activity, which prompts the
deacetylation and activation of SOD2, thereby reducing the oxidative burden of the mitochondria [126].
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Pineal-derived blood (and likely CSF) melatonin concentrations often wane as individuals age,
thereby reducing the ability of melatonin to stabilize circadian rhythms and lowering its radical
quenching ability [179,193]. Blood concentrations of melatonin diminish since its source, the pineal,
loses its ability to synthesize it [194,195]. Hence, the drop-in melatonin is one of perhaps a number of
factors that contributed to elevated oxidative injury in the elderly, including an increased incidence of
diseases that have a significant free radicals component (Figure 6).
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Figure 6. This figure is a flow diagram that links free radicals and the associated oxidative damage
with the progression of the aging phenotype and the onset and development of age-related diseases.
The cloud at the top lists many of the iterations of the free radical theory of aging that have been
introduced over the last 60 years. In the current review, we discuss the evidence that melatonin could
be relevant to the processes summarized. ROS = Reactive oxygen species; AD = Alzheimer disease;
PD = Parkinson disease; HD = Huntington disease; MS = Multiple sclerosis; ALS = amyotrophic
lateral sclerosis.
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While it has been assumed that peripheral organ melatonin levels also drop with age due to a
reduced local production, the evidence for this is scanty [196]. Nevertheless, we surmise that the
total melatonin load is significantly greater in young animals (including humans) compared to old
members of the species, and that the levels drop at a rather consistent rate in all organs as individuals
age. The persistent shrinking levels of melatonin throughout life presumably contribute to the slow
decline of organ function characteristic of aging. Certainly, the published literature is saturated with
studies showing that restoring the diminished melatonin levels by supplementing them delays or
restores physiological degeneration in old animals [84,85,87,95,104,197–201] and humans [88,202–206].

Paradies and colleagues [104] recently reviewed the expansive literature related to the degeneration
of mitochondrial physiology during aging along with the capacity of melatonin to revitalize the
function of these critically-important organelles. A reduction in the functional efficiency of the
mitochondrial electron transport chain, including a diminished ability to generate ATP, has been
repeatedly documented [142,145,207–209]. As discussed in their review, melatonin′s confirmed
beneficial actions during aging very likely stem, in a major way, from its ROS scavenging activity in the
mitochondrial matrix and intermembrane space [71]. In doing so, melatonin reduces oxidative damage,
cardiolipin oxidation, MPTP opening, cytochrome c release, and cellular apoptosis. Melatonin may
also have a direct action on the MPTP to reduce pore opening [210]. There is essentially universal
agreement that shielding mitochondria from age-associated dysfunction would slow the processes of
aging generally and especially the development of certain age-related diseases, e.g., neurodegenerative
conditions [178,183,187,192,201,202]. Considering these data, melatonin′s multiple beneficial actions
at the mitochondrial level seem to justify the conclusion that this endogenously-produced and
exogenously-acquired indoleamine has a role in determining the rate at which both plants [211,212]
and animals [178] age.

7. Concluding Remarks

Based on the literature surveyed in this review, it might be assumed that the routine long term use
of supplemental antioxidants would aid in deferring aging and in delaying the onset or progression
of age-associated diseases. However, taking conventional antioxidants, e.g., vitamins C or E, even in
large quantities to improve performance or delay fragility has certainly not been unequivocally
successful [213,214]. In contrast, the most frequent recommendation to support the anti-aging goals is
dietary intake rich in multiple antioxidants and other nutrients [215].

Considering these observations and recommendations, it is reasonable to question whether
treatment with melatonin, a molecule with obvious antioxidant activities, would yield results different
than those provided (or not provided) by the vitamin antioxidants. When it functions to reduce
oxidative damage, it is a more general antioxidant and displays multiple means to limit free radical
damage [15,30,47,71,120,121]; this is a feature generally not shared by the vitamin antioxidants that
have specific actions. Moreover, melatonin targeting to and synthesis in mitochondria likely affords
it protective means not shared by the vitamin antioxidants. Thus, melatonin is an unconventional
antioxidant with uncommon actions, some of which are probably yet to be identified.

It may also be futile to expect that the use of a single molecule would defer aging considering
the complexity of the aging process [216]. Yet, interest in sole treatments such as metformin [217,218]
is in vogue, and this molecule has generated a clinical trial [219]. Only two reports known to the
current authors that compared the benefits of metformin relative to those of melatonin have been
published [220]. In the first of these reports, the ability of melatonin and metformin, alone or in
combination, to reduce testicular damage due to torsion-mediated ischemic injury was compared [221].
Histologically, these agents were equally effective in preserving spermatogenic activity and providing
antioxidant protection to the gonads. Combining the two treatments, however, did not further improve
the parameters measured in the ischemic testes. In the second report, melatonin and metformin
were compared relative to their ability to limit oxidative stress to the heart of rats with mammary
tumors [220]. Each molecule individually reduced free radical-mediated lipid and protein damage
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while promoting antioxidant enzyme activities, although melatonin was generally more effective in
protecting against oxidative stress. The outcome of the latter comparison prompted the authors to
conclude that melatonin has significantly greater antioxidant activity than metformin at the level of
the heart. Experimental treatments that include both melatonin and metformin may be timely and
could yield useful data for the design of clinical studies with an interest in modifying aging processes.

An important take-home message from this review is that melatonin should not be thought of as
a regular antioxidant; the published data, which is extensive, indicates otherwise. The mere fact that it
is both consumed in the diet and exogenously produced, perhaps in every mitochondria/chloroplast-
containing cell of every living organism, makes melatonin unique. Additionally, the fact that melatonin is
so closely associated with mitochondria should make it of significant interest in any study in which the
endpoints include deferring the onset of diseases, improving the quality of life, or prolonging longevity.
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