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SAHA (suberoylanilide hydroxamic acid or vorinostat) is the first nonselective histone deacetylase (HDAC) inhibitor approved by
theUSFood andDrugAdministration (FDA). SAHAaffects histone acetylation in chromatin and a variety of nonhistone substrates,
thus influencingmany cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although themechanism
is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic
transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed
analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively
disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective
tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the existing research.

1. Introduction

Histone acetylation is controlled by histone acetyltransferases
(HATs), while histone deacetylases (HDACs) counterbalance
activity of HATs [1]. HDAC activity is deregulated in tumor
cells [2–6]. HDAC inhibitors are potent antiproliferative
agents that cause tumor cell-selective apoptosis in both cell-
based and clinical studies [7]. SAHA (suberoylanilide hydrox-
amic acid or vorinostat) was approved inOctober 2006 by the
US Food and Drug Administration as the first nonselective
HDAC inhibitor for treating cutaneous T-cell lymphoma [8].
SAHA affects histone acetylation in chromatin and a variety
of nonhistone substrates, thus influencing many cellular pro-
cesses [9]. In particular, SAHA mediates tumor cell-selective
apoptosis in a time-dependent and concentration-dependent
manner while leaving normal cells relatively unharmed [10–
12]. However, the mechanism of SAHA is currently not well

understood. Recently, Bolden et al. investigated tumor cell-
selective, proapoptotic transcriptional responses induced by
SAHA using time-series gene expression profiles [13]. More
than 4200 genes responded to SAHA differently in normal
and transformed cells by gene ontology (GO) [14] analyses
with theDAVID tool [15]. Genes involved in induction of pro-
grammed cell death and apoptotic program were enriched
in SAHA-treated transformed cells. Bcl-2 family genes were
identified as the proapoptotic gene expression signature using
the IPA tool (Ingenuity Systems, http://www.ingenuity.com/).
These findings provide new insights into the transcriptional
effects of HDAC inhibitors in normal and transformed cells
and implicate specific molecules and pathways in the tumor-
selective cytotoxic activity of SAHA. However, Bolden et al.
identified only Bcl-2 family genes as the tumor cell-selective
proapoptotic signature of SAHA. On the one hand, too few
genes might meet the threshold for statistical significance
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because of modest differences in signals relative to the back-
ground noise. On the other hand, pathway analysis based on
differently expressed genesmight fail to detect biological pro-
cesses across an entire network of genes including metabolic
pathways, transcriptional programs, and stress responses,
because changes in individual gene expression are sometimes
subtle [16]. In this study, we propose a novel framework
for detailed investigation of the mechanism of tumor cell
apoptosis selectively induced by SAHA. Pathway gene expres-
sion coherence levels in tumor and normal cells treated with
SAHA were systematically assessed using an improved 𝐻-
score method in the context of predefined pathways and
functional categories in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [17], BioCarta [18], and GO [14].
The variation patterns of pathway gene expression coherence
(TVPC) in the time series were examined. Significant gene
expression profiles and profile pairs were enriched using
STEM (short time-series expression miner) software [19].
Our analyses indicated that SAHA selectively disrupted the
DNAdamage response (DDR), cell cycle, p53 expression, and
mitochondrial integrity of tumor samples to induce selective
tumor cell apoptosis. Our results suggest a possible regulation
network. Our research extends the original research of
Bolden et al.

2. Materials and Methods

2.1. Time-Series Gene Expression Dataset. In the work of
Bolden et al., time-series microarray experiments on normal
(BJ) and transformed cells (BJ LTSTERas) determined gene
expression with SAHA treatment [13]. Genomewide expres-
sion profiles were measured with Affymetrix GeneChip HG-
U133 plus 2.0 arrays at the 4 h, 12 h, and 24 h time points. The
gene expression data can be downloaded from NCBI Gene
Expression Omnibus (GSE43010) (http://www.ncbi.nlm.nih
.gov/geo/). Our experimental dataset for further analysis was
from Bolden et al.

2.2. Pathway Definition. Well-annotated gene sets repre-
senting all biological processes are critical for meaningful
and insightful interpretation of large-scale genomic data.
Molecular Signatures Database (MSigDB) is one of the most
widely used repositories of annotated genes sets involved in
biochemical pathways (http://www.broadinstitute.org/gsea/
msigdb/index.jsp) [20]. The three datasets MSigDB v4.0: c
2.cp.kegg.v4.0 (KEGG), c2.cp.biocarta (BioCarta), and
c5.all.v4.0 (GO) were used for our pathway gene analysis. We
excluded gene sets with fewer than 15 genes or more than 500
genes because small or large gene setsmight affect the veracity
of calculations, according to GSEA (gene set enrichment
analysis) [16]. We investigated a dataset of 1307 gene sets (176
KEGG gene sets, 139 BioCarta gene sets, and 992 GO gene
sets).

2.3. Computational Method of Pathway Coherence and Signif-
icance. Huang et al. proposed the𝐻-score method (Kruskal-
Wallis 𝐻 statistic) for analysis of the mechanism of action
(MOA) of SAHA based on the ranking of correlation coef-
ficients of the gene expression profiles inside and outside

of pathways [21]. They applied the 𝐻-score method to the
NCI60 microarray dataset (http://genome-www.stanford
.edu/nci60/), found that gene expression coherence levels in
pathways were significantly higher than in random gene sets,
and confirmed that gene expression within a pathway tends
to be coregulated and shared similar expression patterns [22].
Moreover, they found a significant difference in pathway
gene expression coherence between tumor and normal cells
under antitumor drug treatment [23].We applied the𝐻-score
method to evaluate the pathway gene expression coherence of
SAHA-treated tumor and normal samples. The 𝐻-score was
calculated according to the following steps. For any pathway
in the defined pathway set (here using 𝑃

𝑥
as example), the

Pearson correlation coefficients between any gene pair within
𝑃
𝑥
were calculated. These values were called intrapathway 𝑟

values. Then, Pearson correlation coefficients between any
gene in 𝑃

𝑥
and any gene outside the pathway 𝑃

𝑥
in a

defined pathway set were calculated.These values were called
interpathway 𝑟 values. The Pearson correlation coefficient (𝑟)
was defined as follows:
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over all samples (𝑛). All

Pearson correlation coefficients (interpathway and intrapath-
way)were ranked by their real values. Intrapathway and inter-
pathway 𝑟 value sets were used as two sample populations to
calculate the𝐻-score for any pathway as follows:
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where 𝑅
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is the rank sum of sample population 𝑡; 𝑛
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is the size

of sample population 𝑡; 𝑘 is the number of sample populations
being compared (𝑘 = 2 in this study); and 𝑁 = ∑𝑘

𝑡=1
𝑛
𝑡
.

Huang et al. found thatwhen each of the 𝑘 sample populations
includes at least five observations, the sampling distribution
of the𝐻-score is a close approximation of the 𝜒2 distribution
for 𝑘 − 1 degrees of freedom [21]. To ascertain whether their
conclusion was appropriate for our research, we conducted
the following experiments. If a pathway had n genes, then n
genes were randomly selected from the pool of total m genes
(20,606 genes in our study) and the 𝐻-score was calculated.
This procedure was repeated 1000 times for each pathway and
the fraction of random 𝐻-scores larger than the 𝐻-score of
the actual pathway was assigned as the 𝑃 value of pathway
coherence. Our results demonstrated that when a pathway
included at least 15 genes and not more than 500 genes, the
number of significantly cohesive (𝑃 < 0.05) pathways differed
only slightly for the number obtained directly from the 𝜒2
distribution. Therefore, for accuracy and convenience, the 𝑃
value of a pathway coherence was directly obtained using
the 𝜒2 distribution with 1 degree of freedom (two-sample
populations: 𝑘 = 2 and 𝑘 − 1 = 1; 𝑃 < 0.05 equating 𝐻-
score >3.84). A negative sign was assigned to the 𝐻-score if
themiddling rank of the intrapathway 𝑟 valueswas lower than
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the rank of the interpathway 𝑟 values. Therefore, a large
positive 𝐻-score (>3.84) indicated a high level of gene
expression coherence within the pathway compared to a
random gene set.

2.4. ComputationalMethod for Significant Changes in Pathway
Coherence. To describe the change in pathway coherence
state between tumor and normal samples, we defined two
change states: up (specific high coherence in tumor sam-
ples but not in normal samples) and down (specific high
coherence in normal samples but not in tumor samples). The
statistical significance of up or down changes in pathway
coherence were calculated as follows. If a pathway in the
defined pathway set had n genes, a gene set (randompathway)
was constructed by randomly selecting n genes from the pool
of total m genes (20,606 genes in this study).The𝐻-scores of
the random pathway with tumor and normal gene expression
profiles were calculated and compared. The proportions of
up and down random pathways for a total of 1307 random
pathways were counted. This procedure was repeated 1000
times and the background distribution of up and down
pathways was determined. The fraction of the proportion
of up or down random pathways that was greater than the
proportion of the actual up or down pathways was assigned
as the 𝑃 value for up or down changes in pathway coherence.
In evaluating the changes in pathway coherence at each time
point, a total set of 24 samples was randomly permutated
to generate 3 random tumor samples and 3 random normal
samples. As described above, random pathways were built,
the 𝐻-score of each random pathway with gene expression
profiles in random tumor and normal samples was evaluated,
and the𝑃 value for up or down changes in pathway coherence
was calculated.

2.5. Cluster and Comparison of Time-Series Expression Data.
Ernst et al. presented an algorithm specifically designed for
clustering time-series expression data [24] and developed
the STEM web-based program for analysis of time-series
gene expression data [19]. STEM finds statistically significant
patterns from time-series expression data and presents visual
and interactive results with GO interpretation. We used
STEM to cluster and compare time-series gene expression
data from SAHA-treated tumor and normal samples. First,
we defined a set of model profiles independent of the data
representing distinct time-series gene expression patterns.
The identification of significant model profiles was based on
the hypergeometric test:
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where 𝑁 represents the number of total genes, 𝑚 is the
number of genes in the category of interest, V indicates the
number of genes that are in the category of interest and
are assigned to the model profile of interest, and 𝑠

𝑎
is the

number of genes assigned to the model profile of interest.
Significant model profiles were used to evaluate differential
transcriptional responses in tumor and normal samples at

different time points. Next, we identified model profile pairs
by comparing gene expression data between tumor and
normal samples and searching the intersection of the genes
assigned to the two different profiles, one from the normal
gene expression profiles and the other from the tumor gene
expression profiles. This identified gene sets with consistent
or distinct time-series expression patterns between tumor
and normal samples. The significance of profile pairs was
calculated as follows:
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where 𝑁 represents the number of total genes, 𝑛
𝑖
is the

number of genes with the profile 𝑖 in the normal samples, 𝑛
𝑗
is

the number of genes with the profile 𝑗 in the tumor samples,
and 𝑡 is the number of the genes with the profile 𝑖 in the
normal samples and with the profile 𝑗 in the tumor samples.
Finally, we applied GO enrichment analysis to determine the
biological significance of each gene set. GO terms with a
corrected 𝑃 value < 0.05 were considered significant GO
terms.

2.6. Identification and Pathway Mapping of Differentially
Expressed Genes. Differential expression analysis of tumor
and normal samples with SAHA treatment at different time
points (0 h, 4 h, 12 h, and 24 h) was performed using Gen-
MAPP software version 2 [25]. For all comparisons, genes
were deemed significantly differentially expressed if the fold-
change exceeded 1.5 and 𝑃 < 0.05 (𝑡-test). Genes significantly
upregulated in tumor samples were defined as up; genes
significantly upregulated in normal samples were defined
as down. These genes were used to interpret time-specific
transcriptional responses to the tumor-selective cytotoxic
activity of SAHA. For each timepoint, differentially expressed
genes were mapped to pathways using the MAPPFinder tool
[26] to visually depict how SAHA differently regulated genes
in pathways between tumor and normal samples at different
time points.

3. Results and Discussion

3.1. Statistical Analysis of Pathway Coherence for Tumor and
Normal Samples. Pathway coherence is the coherence of
its gene expression as measured by correlation strength.
Genes in a pathway are believed to be regulated in a more
coordinated fashion than a randompathway; thus, expression
patterns of these genes are expected to be coherent. To
test whether this hypothesis was appropriate for SAHA-
treated tumor and normal samples, we computed 𝐻-score
values for all defined pathways in KEGG, BioCarta, and
GO. The detailed results of pathway 𝐻-score distributions
are in Table S1 in Supplementary Materials available online
at http://dx.doi.org/10.1155/2014/867289). 𝐻-score values of
randomgene sets (randompathways)with tumor andnormal
gene expression profiles were also evaluated. Figures 1(a)
and 1(b) show distributions of the 𝐻-score values in the
true pathways defined in KEGG, BioCarta, and GO and
the responding random gene sets. Student’s 𝑡-tests were
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Figure 1:𝐻-score distributions inKEGG, BioCarta, andGOpathways. (a)Mean𝐻-score of pathways defined inKEGG (57.98,𝑃 = 4.41×10−4,
𝑡-test), BioCarta (3.05, 𝑃 = 2.16 × 10−4, 𝑡-test), and GO (20.95, 𝑃 = 1.51 × 10−12, 𝑡-test) for tumor samples. (b) Mean 𝐻-score of pathways
defined in KEGG (38.07, 𝑃 = 3.40× 10−12, 𝑡-test), BioCarta, (2.39, 𝑃 = 1.47× 10−12, 𝑡-test), and GO (18.48, 𝑃 = 1.91× 10−12, 𝑡-test) for normal
samples.

performed to determine if 𝐻-score distributions between
true pathways and the random pathways were significantly
different. Computational results were mean 𝐻-scores of
57.98 for pathways defined in KEGG, 3.05 for BioCarta, and
20.95 GO for tumor gene expression profiles and 38.07 for
KEGG, 2.39 for BioCarta, and 18.48 for GO for normal gene
expression profiles. Corresponding random pathways were
all close to 0 for both tumor and normal gene expression
profiles. These differences were significant (see Figure 1).

If pathway coherence can be viewed as reflective of coor-
dinated gene regulation, then changes in level can be viewed
as a change in pathway regulation.We examined the extent to
which individual pathways changed coherence, the types of
pathways, and whether they achieved more or less coherence
in tumor samples compared to normal samples.Using relative
coherence states between tumor and normal samples, the
1307 pathways in the defined pathway set were divided into
four categories: (1) consistently high (cohesive for both nor-
mal and tumor samples [227, 17.4%]); (2) up (cohesive only
for tumor samples [296, 22.6%]); (3) down (cohesive only
for normal samples [114, 8.7%]); and (4) consistent low (not
cohesive for tumor or normal samples [670, 51.3%]). This
finding implied that most pathways (17.4%+51.3% = 68.7%)
had unchanged coherence, while a few pathways (22.6% +
8.7% = 31.3%) showed a significant change in coherence
when tumor andnormal sampleswere compared (𝑃 < 0.001).
Moreover, the proportion of up pathways was significantly
higher than down pathways (22.6% versus 8.7%; 𝑃 = 2.38 ×
10
−14, Fisher’s exact test), suggesting that the pathway with

tumor samples tended to be more coherent than the pathway
with normal samples. We further analyzed the coherence

changes in different functional categories defined in KEGG
and BioCarta. For each category, the number of up and down
pathways was compared and a Fisher’s exact test determined
if detected differences were statistically significant. Up path-
ways were found in metabolism (29.2% versus 6.6%) and
organismal systems (28.6% versus 5.7%) categories in KEGG
with significance levels <0.05. Down pathways were found
in cell cycle regulation (0% versus 55.6%) in BioCarta with
significance levels <0.05 (Table 1). Grayson et al. reported
that HDAC inhibitors altered expression patterns of mRNAs
and proteins associated with cell cycle arrest [27]. Our results
confirmed that pathways related to the cell cycle might be
important in SAHA induction of tumor-selective apoptotic
responses.

Statistical analysis of pathway coherence at each time
point was performed for tumor and normal samples. Similar
to results described above, true pathways were found to be
significantly more coherent than random gene sets at all
time points (0 h, 4 h, 12 h, and 24 h) for both tumor and
normal samples (Table 2). Several pathways showed con-
sistent coherence across time series for both tumor and
normal samples, such as the GO category structural con-
stituent of ribosome andKEGG category ribosome.However,
some pathways changed coherence states across time series.
We conjectured that these pathways might be involved in
SAHA-induced tumor-specific responses. We found that 667
pathways exhibited variation in coherence across time series
for tumor samples following SAHA treatment. Only 480
pathways showed variation in coherence for normal samples.
This result suggested that pathways changed coherence states
in tumor samples (51.0% versus 36.7%; 𝑃 = 5.57 × 10−11,
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Table 1: Pathway coherence changes by functional category.

Pathway category Pathway
count

Consistent
high Up Down Consistent low 𝑃 (up versus

down)
KEGG

Cellular processes 12 50 8.3 16.7 25 1
Environmental information processing 16 18.8 37.5 12.5 31.3 0.22
Genetic information processing 15 53.3 33.3 6.7 6.7 0.17
Human diseases 37 24.3 13.5 13.5 48.6 1
Metabolism 61 23 29.5 6.6 41 0.017
Organismal systems 35 11.4 28.6 5.7 54.3 0.02

BioCarta
Adhesion 11 27.3 9.1 0 63.6 1
Apoptosis 22 4.5 13.6 4.5 77.3 0.61
Cell activation 14 0 14.3 0 85.7 0.48
Cell cycle regulation 9 0 0 55.6 44.4 0.03
Cell signalling 106 3.8 16 6.6 73.6 0.11
Cytokinesis/chemokines 34 2.9 8.8 2.9 85.3 0.61
Developmental biology 11 9.1 18.2 0 81.8 0.48
Expression 15 0 33.3 20 46.7 0.68
Hematopoiesis 10 0 30 0 70 0.21
Immunology 39 0 10.3 0 89.7 0.12
Metabolism 2 50 0 0 50 1
Neuroscience 6 0 50 0 50 0.18

Table 2: Coherence levels as average 𝐻-score between true and
random pathways at different time points.

True Random 𝑃 value
(Student’s 𝑡-test)

Tumor (0 h) 6.97 0.42 1.03 × 10
−14

Tumor (4 h) 4.09 0.39 1.89 × 10
−12

Tumor (12 h) 4.76 0.51 1.26 × 10
−09

Tumor (24 h) 11.87 0.58 3.81 × 10
−09

Normal (0 h) 11.61 0.48 5.89 × 10
−08

Normal (4 h) 10.44 0.44 3.88 × 10
−15

Normal (12 h) 17.60 0.40 2.72 × 10
−07

Normal (24 h) 6.83 0.44 1.80 × 10
−04

Fisher’s exact test). By investigating time-specific up and
down pathways, we found that about 30% of pathways
showed significant coherence changes between tumors and
normal samples at each time point. For example, the DNA
repair, cell cycle, p53, and mitochondrial respiratory chain
pathways all showed a coherence change between tumor and
normal samples at some time points. Moreover, proportions
of up and down pathways varied across the time series.
Compared to down pathways the proportion of up pathways
was significantly higher at 0 h and 24 h (0 h, 16.4% versus
13.2%; 𝑃 = 1.18 × 10−2; 24 h; 20.0% versus 7.0%; 𝑃 = 2.84 ×
10
−14, Fisher’s exact test) and lower at 4 h (9.2% versus 14.5%;
𝑃 = 3.75 × 10

−5, Fisher’s exact test), with no significant
difference at 12 h (14.2% versus 16.2%; 𝑃 = 0.16, Fisher’s exact
test).

3.2. Identification of Pathway Coherence Variation Patterns
in Time Series. If 1 represents the coherence state and 0
represents the noncoherence state at a certain time point, the
TVPC pattern 0001 represents a pathway with noncoherence
at 0 h, 4 h, and 12 h and with coherence at 24 h. Our results
found that patterns 1000, 0001, 1001, 0101, and 1011 were
significantly enriched for tumor samples and patterns 0000,
1100, 1110, and 1111 were significantly enriched for normal
samples (𝑃 < 0.05, Fisher’s exact test). We constructed 256
combination TVPC patterns for investigating the correlation
of coherence variation between tumor and normal pathways.
For instance, the pattern 1111 versus 0000 represented high
coherence of a pathway in tumor samples and low coherence
of the pathway in normal samples. Of the combination
patterns, 43.6% (109/256) did not contain any pathways,
19.6% (50/256) contained only a single pathway, and 12.5%
(32/256) contained more than 6 pathways. These results
showed that about 80% of pathways belonged to a few
combination patterns. Therefore, the influence of SAHA on
tumor and normal cells was not chaotic but organized and
subject to control. Based on extensive analysis of the correla-
tion between combination patterns and pathway functions,
we devised a grouping tactic that divided all combination
patterns into five categories: (1) no response to SAHA (426
pathways within 4 patterns); (2) consistent response to SAHA
with the same variation pattern for both tumor and nor-
mal samples (26 pathways within 8 patterns); (3) divergent
response to SAHA for tumor and normal samples (240
pathways within 88 patterns); (4) tumor-specific response
to SAHA for only tumor samples (401 pathways within 22
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patterns); and (5) normal specific response to SAHA for
only normal samples (214 pathways within 25 patterns).
Detailed descriptions of pathways belonging to each TVPC
pattern and combination TVPC pattern are in Tables S2–
S6. The no response and consistent response both related
to fundamental biological functions. For example, the GO
term structural constituent of ribosome and the KEGG term
ribosome belonged to the no response category (1111 versus
1111), and the GO terms ribosome, organellar ribosome, and
mitochondrial ribosome belonged to the consistent response
category (0111 versus 0111). SAHA treatment had no effect
on these pathways. In contrast, the combination patterns
divergent response, tumor-specific response, and normal
specific response involving DNA damage response, cell cycle,
and mitochondrion integrity pathways might be involved in
differential regulation between tumor and normal samples.

Table S4 (tumor-specific response) shows that the GO
terms DNA metabolic process, response to DNA damage
stimulus, and DNA repair and the KEGG pathways DNA
replication and mismatch repair all belonged to the pattern
1000 versus 1111 and are involved in the DDR. These results
indicated that from0 h to 4 h, SAHA treatment of tumor sam-
ples irreversibly reduced the coherence of gene expression
in pathways related to DDR. Bakkenist and Kastan reported
that HDAC inhibitors activate the DDR [28]. Groselj et al.
reported that HADC inhibitors are radiosensitisers with large
effects on DNA damage and repair [29]. Robert and Ras-
sool reported HDAC inhibitors trigger widespread histone
acetylation and increases in DNA damage and induction of
apoptosis in tumor cells [30]. Our results demonstrated that
SAHA immediately inhibited the DNA repair process at an
early stage of drug treatment, while showing no effect on
normal samples.

Table S5 (normal specific response) shows that the GO
term mitotic cell cycle checkpoint belongs to the pattern
0000 versus 1100, the GO terms DNA integrity checkpoint
and DNA damage checkpoint belong to the pattern 0000
versus 0100, and the GO term cell cycle checkpoint belongs
to the pattern 0000 versus 1110. These results indicated that
pathways related to cell cycle checkpoint lost expression
coherence for tumor samples with SAHA treatment. Further-
more, Table S6 (divergent response) shows that the GO terms
cell cycle process, cell cycle phase, mitotic cell cycle, M phase,
Mphase ofmitotic cell cycle,mitotic, and spindle all belonged
to the pattern 0010 vesus 1110. With SAHA treatment, cell
cycle-related pathways showed a time-specific expression
coherence for tumor samples at 12 h, while maintaining high
coherence from 0 h to 12 h for normal samples. Therefore we
hypothesized that, for tumor samples, SAHA treatment led
to DNA damage accumulation and inhibition of cell cycle
checkpoints. Cells could not enter cell cycle correctly and thus
DNA damage could not be correctly repaired.

Table S6 (divergent response) shows that the KEGG p53
signalling pathway belonged to pattern 0101 versus 0111 and
the BioCarta p53 hypoxia pathway belonged to 1001 versus
0010. Activation of p53 is closely related to DNA damage and
cell cycle arrest. Loewer et al. reported that p53 activation
is linearly correlated with degree of DNA damage [31]. In
addition to its well-studied role in cell cycle checkpoints, the

p53 pathway induces apoptosis in cancer cells [32]. Cao et al.
reported that the antiparasitic clioquinol is a HDAC inhibitor
that induces expression of p53, leading to apoptosis in
leukemia and myeloma cells [33]. Wu et al. reported that p53
mediates reduced expression of Bcl-2 in human hepatoma
HepG2 cells [34]. Aoyama et al. reported that activation of
p53 increases Bax expression but maintains lower expression
of Bcl-2 [35]. Also from Table S6 (divergent response), GO
terms apoptosis and programmed cell death both belonged
to 1001 versus 0010. With SAHA treatment, apoptosis-related
pathways showed time-specific expression coherence at 0 h
and 24 h for tumor samples. Moreover, Table S4 (tumor-
specific response) shows that pathways related to mitochon-
drial integrity such asmitochondrial envelope,mitochondrial
membrane, mitochondrial inner membrane, and mitochon-
drial respiratory chain belong to the pattern 0001 versus 1111.
These findings demonstrated that SAHA treatment causes
morphological and physiological alterations of mitochon-
drial integrity at 24 h in tumor samples. Mitochondrial
integrity is maintained by prosurvival Bcl-2 family proteins,
while proapoptotic BH3-only proteins function as sensors of
cellular stress and activate the intrinsic apoptosis pathway
[36]. Rikiishi reported that HDAC inhibitors downregulate
prosurvival proteins such as Bcl-2 and upregulate proapop-
totic proteins such as Bim, Bak, and Bax [37]. Therefore,
we hypothesized that SAHA treatment of tumor samples,
through direct or indirect actions, activated the p53 pathway,
influencing the expression of Bcl-2 family genes and mito-
chondrial integrity and contributing to tumor cell apoptosis.

3.3. Clustering Analysis of Time-Series Gene Expression Data.
We used STEM [19] to cluster time-series gene expression
data. We chose 15 preestablished expression profiles repre-
senting various gene expression patterns across time-series
and significant expression profiles for tumor and normal
samples that were identified. We found that 5 profiles (num-
bers 0, 2, 9, 12, and 14) were significantly enriched for normal
samples and 5 (numbers 0, 2, 5, 12, and 14) were significantly
enriched for tumor samples (Figure 2). Profiles numbers 0,
2, 12, and 14 were shared among tumor and normal samples.
Among the commonprofiles, numbers 2 and 12were themost
significant and they represent two antipodal gene expression
patterns. Profile number 2 showed a gradual decline in
expression from 0 h to 24 h, whereas profile number 12
showed a gradual increase in expression from 0 h to 24 h
(Figures 2(a) and 2(b)). Similarly, profiles numbers 0 and 14
show two antipodal gene expression patterns. Profile number
0 has declined expression from 0 h to 12 h and increased
expression from 12 h to 24 h; profile number 14 has the
opposite expression pattern. Profile number 5 is enriched in
tumor samples and number 9 is enriched in normal samples.
Profile number 5 declined from 0 h to 4 h, increased from
4 h to 12 h and was unchanged from 12 h to 24 h. Profile
number 9 increased from 0 h to 4 h and declined from 4 h
to 24 h. A complete description of genes for each profile is
in Tables S7–S16. For example, genes GATA and KLF belong
to profile number 2 and the gene GLRX is in profile number
12. Akada et al. reported that expression of GATA and KLF
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Figure 2:Gene expression profiles for normal and tumor samples. (a)Gene expressionmodel profiles for normal samples. (b)Gene expression
model profiles for tumor samples. Each box corresponds to a preestablished expression profile (number 1 to number 15), sorted according to
the number of genes in each profile. Colored profiles have statistically significant enrichment.

is significantly downregulated by SAHA treatment in human
erythroleukemia cells [38]. Glaser et al. reported that SAHA
produced a dose-dependent increase in gene expression of
GLRX [39].

3.4. Biological Function Discovery from STEM Profile Pairs.
Using the comparison function of STEM, we extracted 10
significant profile pairs between tumor and normal samples
[19]. The 10 profile pairs can be divided into three categories:
(1) invariant (genes within the profile pairs show the same
expression patterns for tumor and normal samples); (2)mini-
trim (genes within the profile pairs show a small difference
in expression profiles at a certain time point between tumor
and normal samples, for example, the profile pair numbers
0 and 2); (3) reversion (genes within the profile pairs show
an antipodal gene expression pattern at some time points
between tumor and normal samples, for example, the profile
pair numbers 9 and 2) (Figure 3). Simply excavating gene lists
of each profile pair did not allow interpretation of the SAHA
MOA. A popular approach to gaining biological insights
from a set of identified genes is to identify the GO terms
annotations that are overrepresented among genes in the set.
Therefore, GO enrichment analyses were conducted for gene
sets corresponding to each profile pair. A brief description
of GO terms enriched in each profile pair is in Table 3. A
complete description of GO terms within each profile pair is
in Tables S17–S19.

GO terms related to protein acetylation modification
belong to the invariant profile pair numbers 0 and 0 such
as protein acetylation, histone acetylation, histone acetyl-
transferase activity, and acetyltransferase complex (Table 3).
SAHA is a pan-inhibitor of many kinds of HDACs and pro-
vokes a broad spectrum of cellular acetylation modification
levels [40]. Our results demonstrated that SAHA treatment
downregulated expression of genes related to acetylation
modification from 0 h to 12 h and then upregulate these genes
from 12 h to 24 h. Moreover, GO terms related to ribonu-
cleoside triphosphates such as ribonucleoside triphosphate
metabolic process, ribonucleoside triphosphate catabolic
process, and ribonucleoside metabolic process were sig-
nificantly enriched in the invariant profile pair numbers

2

1390

2 1.00

689; 0.0

0 0.72

103; 6e − 20

12

1593

12 1.00

731; 0.0

5 0.67

135; 1e − 33

14 0.72

88; 4e − 6

0 0 1.00 2 0.72

635 232; 5e − 207 141; 1e − 33

14 14 1.00 12 0.72

587 275; 5e − 259 109; 8e − 20

9 2 0.72

325 59; 8e − 11

Figure 3: Significant expression profile pairs between normal and
tumor samples. On left side, yellow bar, profiles are significantly
enriched for normal samples. On right side, yellow bar, profiles are
significantly enriched for tumor samples with a significant intersec-
tion with the leftmost profile in the row. Profile pairs are sorted by
statistical significance of intersection.

14 and 14. These GO terms represent chemical reactions
and pathways involving ribonucleoside triphosphates. Genes
related to these fundamental biological functions maintained
the same expression profile in tumor and normal samples
and might not be involved with SAHA-induced, tumor cell-
selective apoptotic responses.ManyGO terms related toDDR
belonged to theminitrim profile pair numbers 2 and 0 such as
DNA-dependent DNA replication, DNA metabolic process,
DNA repair, and cellular response to DNA damage stimulus.
Our results indicated that SAHA treatment gradually down-
regulated DDR-related genes from 0 h to 24 h for normal
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samples and downregulated them from 0 h to 12 h and then
upregulated them from 12 h to 24 h in tumor samples. SAHA
might differently regulate DDR-related genes, which con-
firms previous observations.Our results reflected the cardinal
distinction between DNA stability-maintaining mechanisms
in tumor and normal samples treated with SAHA that led
to responses of downstream pathways. GO terms related to
the cell cycle belonged to the reversion profile pair numbers
9 and 2, such as spindle organization, cell cycle, mitosis,
and cell cycle process. This indicated that SAHA treatment
gradually downregulated cell cycle-related genes from 0 h to
24 h for tumor samples and upregulated these genes from
0 h to 4 h and then downregulated them from 4 h to 24 h for
normal samples. STEM analysis indicated different effects of
SAHA treatment on cell cycle-related pathways.TheGO term
mitochondrion belonged to the reversion profile pair num-
bers 12 and 5. SAHA treatment gradually upregulated genes
related to mitochondria from 0 h to 24 h in normal samples
and downregulated these genes from 0 h to 4 h and then
upregulated them from 4 h to 24 h in tumor samples. Mito-
chondrial integrity ismaintained by pro-survival Bcl-2 family
proteins, while pro-apoptotic BH3-only proteins function as
cellular stress sensors and activate the intrinsic apoptosis
pathway [36].Therefore, SAHAmight disrupt mitochondrial
integrity, inducing intrinsic apoptosis. In summary, minitrim
and reversion profile pairs were closely related to DDR, cell
cycle, and mitochondrial integrity processes. We propose
that SAHA differently regulated DDR-related genes between
tumor and normal samples and inhibited cell cycle check-
point functions in tumor samples, disrupting mitochondrial
integrity and leading to cell apoptosis.

3.5. Determining the Tumor Cell-Selective, Proapoptotic Mech-
anism of SAHA. Results from TVPC and STEM analy-
ses indicated that SAHA treatment induced differential
responses in DNA damage-related pathways. We examined
the expression profiles of DNA damage-related genes and
found that RAD9, PARP1, BRCA1, CHK1, CHK2 (RAD53),
and CHEK2 had high expression in SAHA-treated tumor
samples. Broustas and Lieberman reported that several genes
including RAD9, PARP1, and BRCA1 participate in DDR and
are vital for the maintenance of genome stability [41]. RAD9
encodes an adaptor protein with a well-characterized func-
tion in the DNA damage checkpoint response [42]. PARP1
encodes a chromatin-associated enzyme, poly (ADP-ribosyl)
transferase, which is dependent on DNA and involved in
recovery from DNA damage [43]. BRCA1 encodes a nuclear
phosphoprotein that is important in transcription, DNA
repair of double-stranded breaks, and recombination [44].
Heideker et al. reported that DDR activation relies on the
activity of Ser/Thr kinases such as CHK1 and CHK2 (RAD53)
[45]. CHEK2 contains a forkhead-associated protein inter-
action domain essential for activation in response to DNA
damage.The domain is rapidly phosphorylated in response to
replication blocks andDNAdamage [46]. Based on the above
pathway-scale and gene-scale analysis, we infer that SAHA
treatment might cause multiform DNA damage in tumor
samples and could activate downstream signal pathways

responding to accumulation of DNA damage. In pathway-
scale analysis, by integrating two aspects of results from
TVPC and STEM analyses, we deduced that SAHA treatment
differentially regulated gene expression profiles of pathways
related to p53, cell cycle, mitochondrial integrity, and cell
apoptosis (pathway-scale analysis). The p53 pathway is the
core signalling pathway that mediates interactions among
these biological process following intrinsic apoptosis. There-
fore, in gene-scale analysis, we further investigated expres-
sion of genes related to p53, cell cycle, and cell apoptosis
pathways in tumor and normal samples. Using GenMAPP
[26], we identified differentially expressed genes for each time
point and mapped them to the cell cycle and cell apoptosis
pathways. Figure 4 shows multiple time point comparisons
of genes differently expressed between tumor and normal
samples in the cell cycle pathway. ATR was not differently
expressed and ATM was downregulated at 12 h; p53 was
upregulated at 12 h in tumor samples. P53 is a tumor suppres-
sor protein containing transcriptional activation, DNA bind-
ing, and oligomerization domains that respond to diverse
cellular stresses to regulate expression of target genes and
can induce cell cycle arrest, DNA repair, and apoptosis [47].
ATM belongs to the PI3/PI4-kinase family and regulates a
wide variety of downstream proteins including p53. ATM
and the closely related kinase ATR are master controllers of
cell cycle checkpoint pathways required for cell response to
DNA damage and for genome stability [48, 49]. However,
we found that ATR and ATM are not activated and thus do
not initiate p53 activation in tumor samples. Kotsinas et al.
reported that CDKN2A (ARF) mediates p53 activation with
the DDR axis in addition to the ATM/ATR pathway [50].
ARF stabilizes the tumor suppressor protein p53, which inter-
acts with the E3 ubiquitin-protein ligase MDM2, which is
responsible for p53 degradation [51, 52]. ARF had consistently
high expression, while MDM2 was downregulated after 4 h
(Figure 4). Therefore, ARF and MDM2 might be one of the
prime reasons for p53 activation in tumor samples after 12 h of
SAHA treatment. We further found that CCNE1 (cyclin E1),
CCNE2 (cyclin E2), and CDK2 were all upregulated, while
CDKN1A (P21) and CDKN1B (P27) were downregulated
in tumor samples. Cyclins E1 and E2 belong to the highly
conserved cyclin family, form complexes with CDK2, and
function as regulatory subunits of CDK2.The cyclin E-CDK2
complexes are required for the cell cycle G1/S transition.They
accumulate at the G1-S phase boundary and are degraded
as cells progress through S phase [53–55]. P21 and p27 are
cyclin-dependent kinase inhibitors. They bind to and inhibit
cyclin E-CDK2 complexes and thus function as regulators
of G1 cell cycle progression. P53 induces high expression
of p21 and p27 and mediate p53-dependent cell cycle G1
arrest in response to accumulation of DNA damage [56, 57].
However, activation of p53 did not lead to high expression of
p21 and p27 and thus, formation of cyclin E-CDK2 complexes
were not inhibited effectively (Figure 4). Cyclin E-CDK2
complexes activate E2F family proteins by interaction with
the retinoblastoma protein [58]. Massip et al. reported that
E2F1 activates p53 transcription and participates in apoptosis
induction [59]. In summary, we propose that DNA damage
accumulation in tumor samples activated p53 but did not lead
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Figure 4: Timepoint comparisons of cell cycle genes differently expressed between tumor and normal samples with SAHA treatment. Red,
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White: not in the dataset.

to cell cycle arrest because of loss of function of the DNA
damage checkpoint. Excessive formation of cyclin E-CDK2
complexes induced high expression of the E2F family such
as E2F1 and E2F2, resulting in further p53 activation. This
resulted in positive feedback regulation of p53.

Figure 5 shows multiple timepoint comparisons of differ-
ently expressed apoptosis genes between tumor and normal
samples. After 24 h of SAHA treatment, executor caspase-2,

caspase-3, and caspase-7 were specifically highly expressed
in tumor samples, indicating initiation of irreversible apop-
tosis. Caspase-8 and death receptors FAS and TNFRwere not
highly expressed, whereas genes related to intrinsic apop-
tosis such as cytochrome C (CYCS), Smac (DIABLO), cas-
pase-9, and Apaf-1 were significantly highly expressed. This
result indicated that apoptosis response in tumor samples
was initiated through the intrinsic but not the extrinsic
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apoptosis pathway. We further observed that Bcl-2 family
proteins were differently expressed between tumor and
normal samples. Antiapoptotic Bcl-2 family proteins such as
Bcl-2 and BCL2L2 were downregulated in tumor samples,
while proapoptotic Bcl-2 family proteins such as Bad and
BCL2L11 were upregulated. Thompson et al. reported that
the expression of Bcl-2 and Bim in cancer cell lines confers
further resistance or sensitivity, respectively, to HDAC
inhibitor treatment [60]. We propose that SAHA treatment
resulted in the activation of p53 we described. P53 is an
inhibitor of antiapoptotic Bcl-2 family proteins and an acti-
vator of proapoptotic Bcl-2 family proteins. P53 activation
altered the balance between antiapoptotic and proapop-
totic proteins, resulting in mitochondrial outer membrane
permeabilization (MOMP) and irreversible intrinsic apopto-
sis in SAHA-treated tumor samples.

Based on the above analyses, we propose a possible reg-
ulation model of tumor cell-selective apoptosis induced by
SAHA (Figure 6). In tumor samples, accumulation of DNA
damage due to SAHA treatment activates p53 by upregulating

ARF and downregulating MDM2. P21 and p27 are downreg-
ulated so they do not mediate cell cycle arrest following p53
activation. Downregulated p21 and p27 do not inhibit cyclin
E1 and cyclin E2 from forming cyclin E-CDK2 complexes
with CDK2. The cyclin E-CDK2 complexes activate E2F1
by interaction with RB. E2F1 contributes to p53 activation
following the G1-to-S transition. Activated p53 downregu-
lates antiapoptotic Bcl-2 family proteins (e.g., Bcl-2) and
upregulates proapoptotic Bcl-2 family proteins (e.g., Bad),
altering the balance between antiapoptotic and proapoptotic
proteins, inducing MOMP. MOMP causes mitochondrial
CYCS (cytochrome C) release into the cytoplasm to form
complexes with caspase-9 and Apaf-1 and further activate
executer caspases (e.g., caspase-3). These processes lead to
irreversible intrinsic apoptosis.

4. Conclusions

We provide a novel analysis framework for time-series gene
expression profiles to elucidate the mechanism of tumor
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cell-selective proapoptotic responses induced by SAHA.
Pathway-scale analyses by TVPC and STEM identified path-
ways with a significant change in coherence level and profile
patterns between tumor and normal samples. In particular,
pathways related to DNA damage response, DNA repair, cell
cycle, p53, mitochondrial respiratory chain, mitochondrial
integrity, and apoptosis were significantly enriched. Gene-
scale analysis by GenMAPP identified pathways related to
DNA damage response, cell cycle, p53, and mitochondrial
integrity with a direct impact on tumor cell-selective apop-
tosis induced by SAHA. Based on our results, a possible reg-
ulation model of SAHA-induced tumor-selective apoptosis
was proposed. Our research extends the original research of
Bolden et al. The proposed analysing framework for time-
series gene expression profiles is operable and extensible for
explaining the MOA of anticancer drugs.
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