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Simple Summary: Sphingolipids are membrane-associated lipids that are involved in signal trans-
duction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate
pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy.
Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy,
and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance.
These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate
damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation.
Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade
many mitochondria until the cancer cell dies in an apoptosis-independent manner.

Abstract: Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions
such as proliferation, migration, senescence, and death. These lipids are characterized by a long-
chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of
the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also
determines the sphingolipid’s specialized functions within the cell. One function in particular, the
regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide,
a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell
proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review
will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal
mitophagy, concerning cancer therapy.
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1. Introduction

Advancements in cancer therapies and early detection have allowed mortality rates
for many cancers to drop or remain consistent over the past 30 years. The most common
cancer type to afflict men is prostate cancer and women is breast cancer, with colorectal and
lung cancer following next in incidence for both demographics [1]. While improvements
have been made on multiple fronts, cancer incidence is still increasing for kidney, pancreas,
liver, melanoma, and head and neck cancer [2,3]. Survival rates also remain low for
pancreas, liver, lung, and esophageal cancers [1]. To further facilitate innovations to treat
rising cancer incidence and reduce mortality, understanding the underlying mechanisms
involved in tumor generation, metastasis, and drug resistance is needed. Recent studies
have demonstrated the involvement of sphingolipids in tumorigenesis and metastasis.
Sphingolipids are membrane lipids that play an important role in disease pathogenesis and
the signal transduction of multiple cellular pathways. Notably, the dichotomy between
sphingosine-1-phosphate and ceramide has become a point of interest concerning the
roles of sphingolipids in cancer. Sphingosine-1-phosphate is generally increased in cancer
cells and aids in cell survival and chemotherapeutic resistance. Endogenous ceramide is
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commonly decreased in cancer cells and acts as an inducer for apoptosis, mitophagy, and
necroptosis [4,5].

Mitophagy is a form of selective macro-autophagy that targets depolarized mito-
chondria for degradation by engulfment in double-membraned autophagosomes and
fusion with the lysosome. Recently, it has become apparent that lethal mitophagy plays
a role in suppressing tumorigenesis and could provide an avenue for the treatment of
various cancers. This process is mediated by ceramide, which accumulates on depolarized
mitochondria and can directly bind autophagy marker light chain 3 (LC3II), a marker
for autophagosomes [6] (p. 18). Ceramide and sphingosine analogue drugs, such as
pyridinium-ceramide and Fingolimod/Gilenya (FTY720), have demonstrated the antipro-
liferative effects of targeting the sphingolipid pathway in cancer. This review will focus on
the mechanism of action of ceramide signaling in the regulation of mitophagy and tumor
suppression with regards to cancer therapy.

2. Sphingolipids in Cancer

Cellular stress induces the generation of sphingolipids that mediate complex pro-
cesses such as apoptosis, necroptosis, lethal mitophagy, and senescence which combat
transformation. Cancer cells can undermine these protective processes by dysregulating
the enzymes involved in sphingolipid metabolism. Cancer cells can further support their
proliferation, metastasis, and resistance to chemotherapeutics by upregulating the produc-
tion of pro-survival sphingolipids, such as sphingosine-1-phosphate and downregulate
pro-cell death sphingolipids like ceramide.

2.1. Sphingolipid Structure and Metabolism

Sphingolipids are bioactive cell membrane molecules that play important roles in
signal transduction pathways such as controlling cell death/survival, proliferation, mi-
gration, and senescence. Treatment of cancer cells via chemotherapy, radiotherapy, or
with anticancer drugs (such as cisplatin) that produce oxidative stress, generates ceramide
and sphingosine. Ceramide is a pro-apoptotic sphingolipid that consists of a long-chain
sphingosine base and an amide-linked fatty acyl chain that varies from 14 to 26 carbons
in length [7–10]. Endogenous ceramides are produced by the de novo synthesis pathway
(Figure 1) in the endoplasmic reticulum, which first consists of serine and palmitoyl CoA
condensation to 3-keto-sphinganine by serine palmitoyltransferase (SPT) [11–14]. SPT is a
multi-subunit enzyme that may be negatively regulated by orosomucoid (ORM)-like pro-
tein 1-3 (ORMLD1-3) (particularly ORMLD3) through stable interaction with small activat-
ing SPT subunits to inhibit downstream ceramide synthesis [15–17]. The 3-ketosphinganine
is then reduced by 3-ketosphinganine reductase to produce sphinganine, which is used by
(dihydro)ceramide synthases (CerS1-6) in a rate-limiting reaction to yield dihydroceramide
via the addition of the variable fatty acyl chain [18,19]. Dihydroceramide desaturase
(DES) then inserts a trans-double bond in dihydroceramide between carbons 4 and 5
of the long-chain sphingosine base to produce endogenous ceramide [7,19]. Ceramides
generated by CerS1–6 have different fatty acyl chain lengths, which affects their cellular
functions. CerS1 and CerS4 generate C18–C20 ceramides, CerS5 and CerS6 generate C14–
C16 ceramides, CerS2 generates longer C22–C24 ceramides, and CerS3 generates ultra-long
chain C28–C32 ceramides specific to the skin and testes [19–22]. Ceramide may be alter-
natively produced by the salvage pathway, which recycles sphingosine and exogenous
short chain ceramides (C2–C6) to generate endogenous long chain ceramides (C14–C26)
using ceramide synthases (CerS1–6) essential to de novo synthesis [21]. Ceramide is also
produced from sphingomyelin hydrolysis by sphingomyelinases (SMases) or from gluco-
sylceramide and/or galactosylceramide breakdown by glucosylceramidase (GlcCDase)
and galactosylceramidase (GCDase), respectively [7,9,10,22].
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Figure 1. Sphingolipid metabolism pathway. Ceramide acts as the central molecule of the sphingolipid metabolism path-
way. Ceramide may be synthesized through either the de novo (blue text and arrows) or the salvage pathway (orange text 
and arrows). Synthesis of ceramide through the de novo pathway occurs through serine palmitoyltransferase (SPT), 3-

Figure 1. Sphingolipid metabolism pathway. Ceramide acts as the central molecule of the sphingolipid metabolism
pathway. Ceramide may be synthesized through either the de novo (blue text and arrows) or the salvage pathway (orange
text and arrows). Synthesis of ceramide through the de novo pathway occurs through serine palmitoyltransferase (SPT),
3-ketosphinganine reductase, (dihydro)CerS1-6 (which determine fatty acyl chain length), and finally dihydroceramide
desaturase (DES). Ceramide synthesis through the salvage pathway occurs through conversion of sphingosine-1-phosphate
by S1P-phosphatase (S1PP) and (dihydro)CerS1-6. Ceramide may be metabolized to produce sphingosine 1-phosphate by
ceramidases (CDases) and sphingosine kinase 1/2 (SphK1/2). Sphingosine-1-phosphate can be hydrolyzed by sphingosine
1-phosphate lyase (S1P lyase) to ethanolamine 1-phosphate and C16 fatty aldehyde. Ceramide may also be used as a
substrate for the generation of complex sphingolipids via conversion to glucosylceramide (GlcCer) by glucosylceramide
synthase (GCS) (green arrows and text). Glucosylceramidase (GlcCDase) and galactosylceramidase (GCDase) (cerebrosides)
catalyze conversion of complex sphingolipids back to ceramide. Ceramide may also be used as a substrate for sphingomyelin
through sphingomyelin synthase (SMS) or ceramide 1-phosphate through ceramide kinase (CERK). Sphingomyelin can
similarly be broken down by sphingomyelinase (SMase) to produce ceramide once again. Created with BioRender.com
(accessed on 11 May 2021).

Ceramide may also be used as a substrate to produce other sphingolipids. Ceramide
can be hydrolyzed by ceramidases (CDases), such as acid ceramidase to produce sphin-
gosine [10,23]. Sphingosine kinase 1 (SphK1) or 2 (SphK2) phosphorylates sphingosine to
yield sphingosine-1-phosphate (S1P). S1P has been shown to induce opposing pro-survival
effects compared to ceramide, promoting cell proliferation, migration, and growth. S1P
induces these effects by interacting with transmembrane G-protein coupled receptors, S1P
receptors 1-5 (S1PR1-5), in an autocrine or paracrine manner [10,23]. S1P is then rapidly
metabolized in 10–20 min by S1P phosphatase or S1P lyase to produce ethanolamine
1-phosphate and C16-fatty aldehyde [24,25]. Alternatively, ceramide may be used as a
substrate by glucosylceramide synthase (GCS) to produce glucosylceramide (GlcCer),
which is moved from the early to distal Golgi compartment by phosphatidylinositol-
4-phosphate adaptor protein 2 (FAPP2) [14,26]. GlcCer then assists in the synthesis of
lactosylceramide and finally complex glycosphingolipids which contributes to the lipid
composition of the plasma membrane [26]. Ceramide may also be used by sphingomyelin

BioRender.com


Cancers 2021, 13, 2475 4 of 20

synthase (SMS) to produce sphingomyelin via the insertion of phosphorylcholine from
phosphatidylcholine. SMS-related protein (SMSr) has similarly been shown to catalyze
the conversion of ceramide to trace ceramide phosphoethanolamine. Knockdown of SMSr
dramatically increased ER-associated ceramide levels, which resulted in fragmentation and
Golgi collapse [27]. Additionally, ceramide kinase (CERK) converts ceramide to ceramide-
1-phosphate (C1P), and diacylglycerol acyltransferase (DGAT1/2) converts ceramide to
1-O-acylceramide [28–30]. The sphingolipid metabolic pathway is shown in Figure 1 below.

2.2. Sphingosine Kinase 1 and 2

S1P has a pro-survival effect on cancer cells, increasing cellular fitness, invasion, and
metastasis. In many cancers, S1P production and/or secretion is increased, indicating
that antagonism of S1P may provide a potential treatment option for patients. While
both SphK1 and SphK2 produce S1P, these kinases have different downstream signaling
targets that are affected by SphK1′s localization in the cytosol and SphK2′s localization
in the nuclear membrane and cytoplasm [10]. Patients afflicted with cancers that had
increased SphK1 mRNA expression were found to have worse prognosis and survival
outlooks [31]. Notably, SphK1 was found upregulated in many different cancers, such as
kidney cancer, prostate cancer, liver cancer, colorectal cancer, gastric cancer, uterine cancer,
ovarian cancer, lung cancer, breast cancer, lymphoma, glioblastoma, small bowel cancer,
and myeloid leukemia [32–35]. For example, many colon cancers exhibit overexpression of
SphK1, and a SphK1 knockout mouse model that was exposed to azoxymethane developed
less colon tumors than wild-type mice [36]. A similar effect was found in triple-negative
breast cancer (TNBC), which has overexpressed S1P [37–39]. Exogenous SphK1 and SphK1
overexpression was also found to induce migration, proliferation, and invasion of ovarian
cancer cells in vitro. SphK1 overexpression increased tumor burden in a mouse xenograft
model [40]. As solid tumors develop, vascularization is often induced to provide nutrients
to internal cancer cells. Inhibition of SphK1 or S1PR1/3 reduced angiogenic factor secre-
tion in epithelial ovarian cancer and clear cell renal cell carcinoma [41–43]. Inhibition of
SphK1 using FTY720 or SKI-II in cervical cancer lines reduced the expression of matrix
metalloproteinase-2 and vascular endothelial growth factor-A, attenuating invasion and
angiogenesis [44].

FTY720 (Fingolimod/Gilenya, Novartis, Basel, Switzerland) is a sphingosine analogue
drug that is phosphorylated by SphK2 to produce a structural analogue of S1P and func-
tional antagonist for S1PR1 that acts a tumor suppressor in colon and lung cancer cell lines
and mouse models [45–48]. FTY720 has been shown to inhibit chronic myeloid leukemia
stem cell proliferation, and successfully suppressed human lung cancer in a xenograft
mouse model at physiologically relevant concentrations [47,49]. Similarly, SK1-I is a sphin-
gosine analogue and competitive inhibitor of SphK1, while SK1-II is a competitive inhibitor
of both SphK1 and SphK2. SK1-I has been shown to inhibit glioblastoma proliferation
in cell lines and xenograft mouse models [35,50]. Similarly, PF-543 is a potent selective
SphK1 inhibitor which induces the proteasomal degradation of SphK1. It was found that
PF-543 induces colorectal cancer cell death both in vitro and in vivo [51]. ABC294640
(Opaganib, Red Hill, Tel-Aviv, Israel) is a SphK2 inhibitor that has been shown to suppress
lung and pancreatic cancer cell growth, along with attenuation of cell senescence via in-
hibition of telomerase stability through telomere damage response [52,53]. ABC294640
has been utilized in a number of clinical trials for the treatment of various cancers such as
sorafenib resistant hepatocellular carcinoma, refractory multiple myeloma, diffuse large
B-cell lymphoma, Kaposi sarcoma [54–56], and prostate cancer.

Like SphK1, SphK2 has been found to be overexpressed in various cancer types such
as non-small-cell lung cancer and colorectal cancer [57,58]. SphK2 overexpression was
associated with lower patient survival and gefitinib resistance [57]. It was reported that
the ERK1 phosphorylation of SphK2 in an epidermal growth factor-mediated manner
stimulated breast cancer cells to migrate in vitro [59]. Cancers also commonly upregulate
human telomerase reverse transcriptase (hTERT) to prevent cell senescence induced by
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their high proliferation rate and degradation of chromosomal telomeres. SphK2 generated
S1P has been found to stabilize hTERT by mimicking phosphorylation via binding hTERT
involving its Asp648. Knocking down or inhibiting SphK2 inhibited growth of lung cancer
cells in vitro and in mouse xenograft models [52]. These studies have further shown that
antagonizing S1P signaling could provide therapeutic benefit to patients suffering from
many different cancer types.

2.3. Ceramide Synthases 1–6

CerS1-6 function in the production of variable length ceramides that have distinct
effects on cancer cell growth and survival. CerS1 is notable for its synthesis of C18-
ceramide, a pro-apoptotic and anti-tumorigenic ceramide that has been shown to be
downregulated in head and neck squamous cell carcinoma (HNSCC) compared to healthy
control tissue [60–64]. C18-ceramide production by CerS1 is inhibited in HNSCC through
transcriptional repression via histone deacetylase 1 (HDAC1)-dependent inhibition of Sp1
at the promoter, and post-transcriptionally by miR574-5p that induces translation of a CerS1
isoform 2 splice variant common in HNSCC tumor tissues [65]. Reduced C18-ceramide
levels in HNSCC has been associated with tumor metastasis, advanced stage cancer, and
increased lymphovascular invasion [61,62,66]. C18-ceramide has also been shown to
interact with inhibitor 2 of protein phosphatase 2A (I2PP2A), which indirectly activates
PP2A and induces degradation of c-Myc in lung adenocarcinoma cell lines [47,67–71].
CerS1 depletion has been associated with poorer prognosis and patient outcomes in breast
cancer and neuroblastoma [64,72]. Reduced levels of C18-ceramide were also found in
colorectal cancer and glioma tissue, where exogenous C18-ceramide was found to induce
ER-stress and lethal autophagy in the latter [73,74]. Like CerS1, CerS4 also contributes to
C18-C20 ceramide synthesis. CerS4 mRNA was found to be higher in early stage, non-
metastatic HNSCC, melanoma, and renal cell carcinoma tumors compared to later stage,
aggressive, metastatic tumors. Knocking down CerS4 in lung adenocarcinoma and HNSCC
cell lines reduced cell migration in vitro and liver metastasis from murine mammary cancer
cells in vivo [75].

CerS2 generates longer C22–C24 ceramides and was similarly found to be downregu-
lated in many cancers. Mice that expressed a catalytically inactive mutant CerS2 developed
hepatocellular carcinoma (HCC) at a young age (8 weeks), while mice that were deficient
for CerS2 developed liver adenoma and HCC later in adulthood (7–10 months) [76–78].
Similarly, CerS2 knockout mice were susceptible to azoxymethane induction of colon
carcinoma and dextran sodium sulfate induction of colitis [36]. CerS2 overexpression
in MDA-MB-231 breast cancer cells was shown to decrease cell migration and invasion,
and CerS2 expression was associated with improved patient survival in breast, ovarian,
lung, and liver cancer [65,79]. CerS5 has been noted to be upregulated in colorectal cancer
and was associated with poor patient survival and 5-year cancer recurrence [73,80,81].
CerS5 has also been noted to be a biomarker for colorectal cancer [81]. Interestingly, CerS5
and CerS6 knockdown was shown to sensitize mice to azoxymethane/dextran sodium
sulfate-induced colitis and increased cases of colitis-associated colon cancer [82,83]. CerS6
is notable for its generation of C16-ceramide, which is involved in apoptosis induction and
the protection of ER and Golgi membrane integrity in cancer. CerS6 derived C16-ceramide
was found to induce apoptosis in lung adenocarcinoma cells following non-genotoxic
folate stress through p53 transcriptional targeting [84]. C16-ceramide induced apoptosis
through BAX in HeLa cells following irradiation, and C16-ceramide also activated cas-
pase 3 translocation to the nucleus resulting in increased tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) sensitivity in colon cancer cells [85,86]. Paradoxically,
C16-ceramide was found elevated in oral and gastric cancer [64,87,88]. CerS6 overexpres-
sion has been described as a biomarker in gastric cancer, and CerS6 overexpression was
associated with poor patient survival, invasion, and metastasis in gastric cancer [88]. It was
found that HNSCC exhibited upregulated CerS6 derived C16-ceramide, which resulted
in a protective effect seen towards the ER and Golgi membrane integrity. When CerS6
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was inhibited, activating transcription factor 6 (ATF6) induced ER-stress resulting in cell
death [10,87,89,90]. Overall, these studies suggest that distinct/paradoxic biological roles
of ceramides in cancer are context dependent regulated by their subcellular localization
and down-stream targets.

3. Autophagy and Mitophagy in Cancer

One of the downstream biological responses that ceramide signaling exerts is induction
of autophagy and mitophagy. These processes are essential cellular processes to maintain
tissue and cellular homeostasis by preventing the accumulation of damaged organelles and
reactive oxygen species that can cause systemic inflammation and create a pro-tumorigenic
environment. While autophagy and mitophagy may have tumor suppressing effects,
cancers are able to modulate the activity of these pathways to suit tumor growth and
metastasis.

3.1. Mechanism of Autophagy and Mitophagy

Autophagy is the process by which organelles and cellular components are degraded
by the lysosome and macromolecules and nutrients are recycled by the cell (Figure 2).
This process may occur through micro-autophagy, chaperone-mediated autophagy, or
macro-autophagy. Micro-autophagy involves the degradation of bulk cytosolic contents by
the lysosome [91,92]. Chaperone-mediated autophagy proceeds via binding of Hsc70 chap-
erone to substrates containing a KFERQ motif, which then binds LAMP2A on lysosomes
for internalization and degradation [93]. Macro-autophagy (referred to here as autophagy)
involves the degradation of cellular components through autophagosome engulfment and
fusion with the lysosome. This process may be non-selective (bulk degradation induced by
starvation) or selective (specific organelles) [91].

Autophagy begins with the initiation phase, where a cup-shaped double-membrane
called a phagophore (also called an isolation membrane) begins to form. The phagophore
is induced by the Unc-51-like kinase 1/2 ULK1/2 complex, which activates PI3K complex
1 to mediate the nucleation of the phagophore membrane [91,94]. Classic induction of
autophagy entails starvation or rapamycin treatment to inhibit target of rapamycin complex
1 (mTORC1) kinase, which allows ULK1/2 to phosphorylate autophagy related protein 13
(Atg13) and family interacting protein of 200 kD (FIP200) to form the initiation complex
and begin autophagic process [95–99]. Next, the elongation phase begins to extend the
phagophore membrane around the target cell component. This elongation occurs when
microtubule-associated protein 1A/1B-light chain 3 (LC3, the mammalian homolog of yeast
Atg8) and Atg5-Atg12-Atg16 (Atg16 complex) are recruited to the phagophore [91,94,100].
The C-terminal of cytosolic pro-LC3 is cleaved by Atg4 cysteine protease, yielding LC3I.
LC3I is then conjugated to phosphatidylethanolamine (PE) in a ubiquitin-like reaction
by Atg7, Atg3, and finally Atg12-Atg5, forming LC3II [96,101,102]. Elongation continues
until the target organelle has been completely enclosed by the double membrane (closure),
forming a mature autophagosome [103–106]. LC3II is an essential component of the
autophagosome membrane, controlling membrane length and curvature, and acts a marker
for autophagosomes. The autophagosome containing the cell material is trafficked to the
lysosome, where the outer membrane fuses with the lysosome forming an autolysosome.
To conserve LC3, Atg4 cleaves PE from LC3II on the outer autophagosomal membrane
and releases it back into the cytoplasm [96]. The inner autophagosomal membrane and its
contents are degraded by lysosomal hydrolases (cathepsin B, D, L), and the macromolecular
precursors (amino acids, lipids, etc.) are released back into the cytoplasm for use in other
cellular processes [107,108]. The rate at which autophagosomes are formed and degraded
in this manner is called autophagic flux.
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Ca2+, and cytochrome c into the cytosol, inducing apoptosis [109–112]. Since mitochon-
dria exist in an interconnected network, damaged mitochondria must first be sequestered 
for engulfment by autophagosomes [113,114]. This can occur via fission through the action 
of dynamin-related protein 1 (Drp1), which forms a multimeric complex around the mi-
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[115–117]. Depolarization of the mitochondrial membrane from damage also induces frag-
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Figure 2. Canonical mitophagy pathway. Damaged mitochondria signal the need for removal by retaining PINK1 on the
outer mitochondrial membrane, which recruits cytosolic Parkin and p62. Parkin ubiquitinates outer mitochondrial mem-
brane proteins, allowing p62 recruitment and direct binding to LC3II. LC3II is an essential component of the autophagosome
double-membrane and regulates its elongation and curvature. LC3II is formed following cleavage of the C-terminal by
Atg4, and LC3I is subsequently conjugated to phosphatidylethanolamine (PE) by Atg7, Atg3, and the Atg5-Atg12-Atg16
complex. Elongation of the autophagosomal membrane occurs around the mitochondria until it is fully engulfed. The
autophagosome is then trafficked to the lysosome, where the outer autophagosomal membrane fuses with the lysosome.
Internal components, including the mitochondria, are degraded and recycled by lysosomal hydrolases (cathepsin B, D, L).
Mitophagy may assist the cell in reducing stress (protective mitophagy resulting in cell survival) or in inducing cell death
(lethal mitophagy). Created with BioRender.com (accessed on 11 May 2021).

The selective macro-autophagy of mitochondria is called mitophagy, which is an
essential cellular process that allows recycling of damaged mitochondria. Damaged mito-
chondria that are not removed by mitophagy risk the leakage of reactive oxygen species,
Ca2+, and cytochrome c into the cytosol, inducing apoptosis [109–112]. Since mitochondria
exist in an interconnected network, damaged mitochondria must first be sequestered for
engulfment by autophagosomes [113,114]. This can occur via fission through the action of
dynamin-related protein 1 (Drp1), which forms a multimeric complex around the mitochon-
drion and exerts mechanical force to separate it from the mitochondrial network [115–117].
Depolarization of the mitochondrial membrane from damage also induces fragmentation of
the mitochondria due to the loss of surface fusion proteins, such as optic atrophy 1 (Opa1)
and mitofusin 1 and 2 (Mtf1, Mtf2) [112,118–121]. Depolarized mitochondria signal the
need for mitophagy by preventing the import of PTEN-induced kinase 1 (PINK1), which ac-
cumulates on the outer mitochondrial membrane [122–126]. PINK1 accumulation induces
translocation of cytosolic Parkin (E3-ubiquitin ligase) to the mitochondria, where Parkin
deposits lysine 48 (K48) and K63 ubiquitin chains to initiate proteasomal degradation of
outer membrane proteins such as mitofusin, preventing fusion [121,126,127]. P62, a ubiqui-
tin binding protein, translocates and accumulates on depolarized mitochondria, allowing
direct binding to autophagosomal LC3II and engulfment in autophagosomes [128–130]
(Figure 2).
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3.2. Autophagy Paradox and Cancer

Autophagy and mitophagy play an important role in promoting cancer cell survival
or mediating cancer cell death, which are context/cell type dependent. Interestingly, au-
tophagy repression or activation can have pro- or anti-survival effects at different stages of
cancer development, referred to as the autophagy paradox. At the onset of carcinogenesis,
autophagy may be activated in a tumor-suppressive manner to combat viral oncogenes,
nutrient deprivation, increased oxidative stress, and DNA damage stemming from the
higher proliferation rate in cancer cells [131,132]. As a result, some cancers downregulate
autophagy in early stages [133]. However, once a tumor has become established, the
faster rate of proliferation and subsequent nutrient deprivation may motivate the cancer
to activate autophagy and increase its autophagic flux [128]. As the interior of the tumor
environment becomes more hypoxic, autophagy may also assist cancer cells in resisting
environmental stress [115]. Many aggressive cancers have been documented to have ele-
vated autophagic flux, such as pancreatic cancer, head and neck squamous cell carcinoma,
non-small cell lung cancer, and colorectal cancer [134–136]. As a result, treating these
more advanced stage cancers with autophagy inhibitors has proven beneficial in inducing
apoptosis and senescence in vitro and in vivo.

Mitophagy regulation is important in cancers as a failure to remove depolarized
mitochondria results in the release of reactive oxygen species and cytochrome c to induce
apoptosis. Similar to general autophagy, mitophagy may be modulated to assist in cancer
cell survival. It is notable that many cancer cells alter their generation of adenosine 5′-
triphosphate (ATP) from mitochondrial oxidative phosphorylation to aerobic glycolysis
to produce lactate and nutrients needed for rapid proliferation, a phenomenon called the
Warburg effect [109,137–140]. This effect is supplemented by the prevalence of KRAS-
proto-oncogene, GTPase (KRAS) mutations in cancers, which upregulates glycolysis but
strains mitochondria [108,141,142]. As a result, rapid mitochondrial turnover (mitophagy)
is needed to accommodate growth and glycolysis. This need for rapid mitophagy is
demonstrated in adenomas and oncocytomas, where more aggressive adenomas that
become defective in autophagy may form less aggressive oncocytomas, which are abundant
in damaged mitochondria [143]. Mitophagy upregulation at the onset of carcinogenesis
can be anti-tumorigenic. Dysfunctional mitochondria and ablated mitophagy puts cells
at risk of transformation. PINK1 and Parkin deletion in mice led to the development of
spontaneous hepatocellular carcinoma and KRAS-induced pancreatic cancer development,
while a mouse model of breast cancer that was knocked down for BCL2/adenovirus E1B
19 kDa protein-interacting protein 3 (BNIP3) to reduce mitophagy supported breast tumor
progression [144–146].

Nevertheless, reactive oxygen species (ROS) production due to a hypoxic tumor
microenvironment, high proliferation rate, dysfunctional mitochondria accumulation,
and downregulation of pro-apoptotic factors may result in elevated levels of ROS in
cancer cells. To combat increased ROS levels, cancer cells upregulate antioxidants such as
manganese-superoxide dismutase. Autophagy, specifically mitophagy, is also increased to
prevent leakage of superoxide from the electron transport chain, which produces hydrogen
peroxide. This results in an increased sensitivity to exogenously induced ROS in many
cancer cells [83,147]. ROS production was found to induce autophagy in human glioma
cells treated with electron transport chain inhibitors rotenone and thenoyltrifluoroacetone
(TTFA). Knockdown of superoxide dismutase 2 in glioma cells increased autophagy in
rotenone and TTFA treated cells [148]. Colorectal cancer cells treated with ciclopirox
olamine (CPX) was similarly found to downregulate Parkinsonism associated deglycase
(PARK7, DJ-1), which increased ROS production and mitochondrial dysfunction to induce
mitophagy in a pro-survival manner [149]. SMAD4 knockdown desensitized pancreatic
cancer cells to radiotherapy through induction of ROS and protective autophagy [150].
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3.3. Ceramide Mediated Mitophagy

Mitophagy can play a larger role in tumor suppression through lethal mitophagy, the
process by which mitochondria are degraded via mitophagy to the extent that the cell
dies in an apoptosis-independent manner. Simple upregulation of mitophagy or sustained
mitophagy over long periods of time leads to caspase-dependent apoptosis through leakage
of cathepsin proteases from the lysosome [151–153]. Lethal mitophagy is mediated, in
part, by CerS1 and its product, C18-ceramide and is independent of caspase 3, Bax, and
Bak. It was shown that CerS1-generated C18-ceramide and an exogenous C18-pyridinium-
ceramide analogue accumulated on the outer mitochondrial membrane due to the positive
charge associated with the pyridinium head group. This accumulation of ceramide on
mitochondria allowed C18-ceramide to directly bind the hydrophobic domain (specifically
Ile35 and Phe52) of LC3II on the phagophore to facilitate enclosure of the mitochondria
by the autophagosome [6]. Lethal mitophagy was shown to inhibit HNSCC and acute
myeloid leukemia both in vitro and in vivo [154]. It was found that C18-ceramide mediated
lethal mitophagy was distinct from survival autophagy, induced by cell starvation, in
HNSCC. Lethal mitophagy progressed following dynamin-related protein 1 (DRP1) fission
of mitochondria involving protein kinase A (PKA) inhibition and reduced phosphorylation
of Fms-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia cells from patients and
immunocompromised mice [154] (p. 3). Interestingly, CerS6 derived C16-ceramide was
not effective in inducing lethal mitophagy or binding LC3II, but artificial accumulation on
the mitochondria using a C16-ceramide analog with a positively charged head group was
effective in inducing lethal mitophagy, indicating that the length of the fatty acyl chain may
not have as much of an effect as subcellular location of ceramide on the outer mitochondrial
membrane [6,155]. More specifically, it was discovered that endogenous C18-ceramide
accumulation on the outer mitochondrial membrane was mediated by the translocation of
newly translated CerS1 from the ER by protein that mediates ER-mitochondria trafficking
(p17/PERMIT) (Figure 3). Under conditions of cell stress, p17/PERMIT dissociates from
Drp1 following Drp1 S-nitrosylation and activation in the cytoplasm, which induces
mitochondrial fission (see above). P17/PERMIT is then able to retrieve newly translated
CerS1 from ER-mitochondrial contact sites called mitochondrial-associated membranes
(MAMs), allowing the generation of C18-ceramide on the outer mitochondrial membrane
which induces mitophagy [156]. Therefore, C18-ceramide mediated lethal mitophagy may
be considered a potent anti-tumorigenic mechanism (Figure 3).

Mitophagy and autophagy may be activated and regulated through alternative path-
ways in cancer as well. Inhibition of ceramide transfer protein (CERT), which transports
ceramide from the endoplasmic reticulum to the Golgi, was found to cause accumulation
of hexosylceramide on mitochondria, increased reactive oxygen species, and increased
mitophagy, resulting in premature cell senescence [157]. Isc1p, a yeast ortholog of mam-
malian neutral sphingomyelinase-2 (N-SMase2), is transported from the endoplasmic
reticulum to the mitochondria during respiratory metabolism. Knockdown of Isc1p upreg-
ulated Dnm1p-mediated mitochondrial fission and subsequent mitophagy while ceramide
signaling through Sit4p and Hog1p kinase was activated (supporting mitophagy) [158].
Mitophagy not only has an impact on cancer cell survival and invasion, but also on the im-
mune cells necessary for tumor clearance. Suppression of C3aR/C5aR activation induced
lethal mitophagy in dendritic cells and suppressed graft-versus-host disease following
hematopoietic cell transplantation [159].

Similar to p17/PERMIT regulation of mitophagy through the transport of CerS1,
general autophagy was found to be modulated via translocation of ceramide-1-phosphate
from the trans-Golgi network by ceramide-1-phosphate transfer protein (CPTP). Downreg-
ulation or mutational inactivation of CPTP induced autophagy, along with trans-Golgi net-
work fragmentation and inflammasome activation in acute monocytic leukemia cells [160].
Caveolin-1, which is upregulated in prostate cancer and acts as a lipid chaperone in
caveolae, is associated with a more aggressive cancer phenotype, tumor metastasis, and
chemotherapeutic resistance. Caveolin-1 was reported to alter ceramide metabolism, scav-
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enging extracellular sphingomyelin to skew production towards glycosphingolipids and
inhibition of mitophagy [161]. Studies examining the role of autophagy and mitophagy in
cancer treatment have led to the development of drugs targeting this pathway for tumor
clearance as well. ABTL0812, a drug undergoing analysis in phase 2 clinical trials for
advanced endometrial cancer and squamous non-small cell lung cancer, induced ER stress
and autophagy through upregulation of long-chain dihydroceramides in many cancer cell
types [162]. The addition of an oxazoline ring to doxorubicin and daunorubicin overcame
drug resistance in ovarian and hepatocellular cancer cell lines through increased neutral
sphingomyelinase and autophagy induction [163]. Ceramides may even be incorporated
into treatments, as with C6-ceramide-tamoxifen treatment of acute myeloid leukemia,
which promotes cancer cell death through lethal mitophagy [164].
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mitochondrial fission. P17/PERMIT associates with newly translated CerS1 at the mitochondrial-associated membrane and
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which coats the outer mitochondrial membrane and directly binds autophagosomal LC3II, facilitating mitophagy. Created
with BioRender.com (accessed on 11 May 2021).

In contrast to ceramide-mediated autophagy/mitophagy and cancer cell death, S1P
metabolism and signaling appear to prevent autophagy-associated cell death in various
cancer types. For example, it has been shown recently that inhibition of SphK1 by SK1-I
results in autophagy-mediated cell death via ATG5 and BECN-1, which is dependent
on p53 in HCT116 human colon cancer cells [165]. Moreover, inhibition of SphK2 using
ABC294640 was reported to induce autophagy-mediated cell death and tumor suppression
in Kaposi sarcoma-associated herpes virus-related tumors [166].

Overall, these studies support a role for ceramide/S1P metabolism and signaling in
the regulation of autophagy and/or mitophagy for controlling cancer growth and therapy.
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4. Sphingolipids and Cancer Therapy
4.1. Cancer Therapy and Drug Resistance

As mentioned previously, many cancers have reduced levels of pro-apoptotic C18-
ceramide generated by CerS1 while pro-survival S1P production is upregulated. Cellular
levels of C18-ceramide may be reduced through the inhibition of CerS1/4 or by an increase
in the level of ceramide metabolizing enzymes (see above). As a result, chemotherapeutic
drugs and radiotherapy serve to sensitize cancer cells and induce apoptosis by restoring
ceramide levels. For example, in a phase II clinical trial, some patients receiving gemc-
itabine and doxorubicin for the treatment of head and neck cancers had elevated serum
C18-ceramide [10,63]. These patients were reported to have better clinical outcomes (partial
response, complete response, or stable disease state) than those with normal serum C18-
ceramide (progressing disease state) [63]. These results were confirmed in HNSCC cell lines
and mouse xenograft tumors that showed a CerS1-dependent increase in C18-ceramide
generation following treatment [60]. Even compounds exhibiting structural similarities
to ceramide were noted to exhibit anti-proliferative effects through mitophagy, as was
seen with native solenopsin treatment in melanoma cell lines [167]. Similarly, G-protein
coupled receptor 1 overexpression induced autophagy and reduced doxorubicin resis-
tance in breast cancer cells through stimulation of the de novo sphingolipid metabolism
pathway [168]. Notably, to combat the generation of C18-ceramide by chemotherapeutic
drugs, cancer cells may convert ceramide to other sphingolipids in an effort to avoid
apoptosis or lethal mitophagy and lessen the potency of the treatment. Ceramide may
be hydrolyzed by ceramidases to eventually produce pro-survival S1P or glycosylated
by glucosylceramide synthase to produce glucosylceramide, which is associated with
chemotherapeutic drug resistance [169–173]. As mentioned in Section 3.2, cancer may
upregulate basal mitophagy in a protective manner to reduce reactive oxygen species
and restore depolarized mitochondria during chemotherapeutic treatment. Disruption of
cancer-induced protective mitophagy through the use of lysosomal inhibitors was found to
sensitize drug-resistant HNSCC cells to C6-ceramide nanoliposome delivery of therapeu-
tic ceramide [174]. Conversely, knocking down neutral ceramidase in mouse embryonic
fibroblasts stimulated protective autophagy and ceramide generation to protect against
drug-induced necroptosis [175].

4.2. Immunotherapy and Sphingolipids

Sphingolipids not only exert pro-survival or pro-death effects on cancer cells them-
selves, but also on the immune cells responsible for mounting cytotoxic responses towards
transformed cells. For example, it has been known that S1P/S1PR1 signaling plays essential
roles in lymphocyte egress, which is critical for immunity and can be targeted in the treat-
ment of autoimmune disorders [176–179]. Moreover, sphingolipids have been documented
to modulate anti-cancer immunotherapy and immunology in the tumor microenvironment.
In melanoma cells, knockdown of SphK1 inhibited the secretion of immunosuppressive
cytokines (ex. TGF-β), which sensitized the melanoma cells to anti-PD-1 and anti-CTLA-4
immunotherapies in mice [180–182]. S1P secretion from lung cancer cells was also found to
impair CD8 positive T cell responses, facilitating metastasis [180]. Patients with bladder
cancer were found to have higher levels of S1PR1 and immunosuppressive cytokine secre-
tion (TGF-β, IL-10), along with more circulating and tumor-infiltrating regulatory T cells,
which is associated with poor patient outcomes [183]. When S1P secretion was inhibited in
mice through knockdown of Spinster Homologue 2 (Spns2), an S1P transporter, pulmonary
metastasis of melanoma cells was reduced compared to wild-type mice [184]. Additionally,
when SphK1 or S1PR1 was therapeutically targeted or downregulated in mantle cell lym-
phoma, natural killer cell activation was increased [185]. Notably, ceramide was also found
to affect the potency of immunotherapies and T cell responses. C16-ceramide was reported
to increase the T cell response to allogeneic hematopoietic stem cell transplantation for the
treatment of leukemia in mice. When CerS6 was knocked down in these mice, graft-versus
host disease was ablated; an important discovery for patient treatment of leukemia [186].
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Recent study demonstrated a role for SphK1/S1P in the attenuation of anti-tumor func-
tions of T cells by inhibiting their bioenergetics. These studies also revealed that targeting
SphK1/S1P signaling enhances T cell function against tumors by reprogramming their
lipid metabolism, improving immunotherapy for cancer treatment [187–189].

5. Conclusions and Future Directions

Sphingolipid metabolism, and the generation of S1P and ceramide in particular,
have been increasingly investigated concerning their roles in cancer survival, death, and
resistance to chemotherapeutics and immunotherapies. Understanding the underlying
mechanisms as to how these sphingolipids sensitize or desensitize cancers is essential to
the development of new cancer therapies for patients. It has been noted that the subcellular
location of ceramide on mitochondria, exogenous or endogenous and regardless of fatty
acyl chain length, can induce a potent anticancer effect through the induction of lethal mi-
tophagy [6]. In contrast, localization of S1P to the nuclear membrane, where it can interact
with hTERT, increases the survival of aggressive cancers through stabilization of chromo-
somal telomeres [46]. Targeting these dichotomous sphingolipids with analogue drugs
such as FTY720 or pyridinium-C18-ceramide has demonstrated that these sphingolipids
are important modulators of cancer cell survival pathways.

Additional research is needed to elucidate the complex interactions these sphin-
golipids have in regulating tumor growth and interaction with the immune environment.
Advancements in analytical technology is providing more opportunities to discover these
interactions. Without progress in mass spectrometry analysis of sphingolipids, or character-
ization of the enzymes essential to sphingolipid metabolism, the effect of ceramide and S1P
would not have been known. Sphingolipid analog drugs based on these characterizations
are providing new therapies for patients, as seen with FTY720, ABC294640, and nanoli-
posomal ceramides use in clinical trials [42,44,48–50,190]. Further research may be made
in the regulation of mitophagy through the novel protein p17/PERMIT and the associa-
tion with mitochondrial and ER-associated membranes [156]. The interactions of secreted
and circulating S1P with the tumor microenvironment and immune system could assist
in the development of more potent anti-cancer immunotherapies as well. Additionally,
interesting research has been published on CerS4 generated C18–C20-ceramide induction of
TGF-β receptor I/II to primary cilia, which increased cancer cell migration and metasta-
sis [74]. Research into these mechanisms and their effects on cancer therapy will provide
key insights for the development of patient therapies as analytical and pharmaceutical
tools continue to evolve. We believe that targeting sphingolipid metabolism and signaling
safely and effectively will also be beneficial for the treatment of other diseases such as
neurodegenerative, autoimmune, and aging-associated diseases in the future.
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