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Abstract

We introduce a non-intrusive method exploiting post-division single-cell variability to validate 

protein localization. The results show that Clp proteases, widely reported to form biologically 

relevant foci, are in fact uniformly distributed inside Escherichia coli cells, and that many 

commonly used fluorescent proteins (FPs) cause severe mislocalization when fused to homo-

oligomers. Re-tagging five other reportedly foci-forming proteins with the most monomeric FP 

tested suggests the foci were caused by the FPs.

Protein localization measurements increasingly rely on fluorescent protein (FP) fusions, 

while immunofluorescence – the former gold standard – is being phased out due to labor-

intensive procedures, the requirement for antibodies, and the potential for fixation artifacts. 

In studies of bacterial cells, the convenience of FP fusions quickly led to a sea change, 

revealing that these cells have a high degree of spatial organization and are far from ‘bags of 

enzymes’1, 2. Some of the proteins that were found to be localized are involved in processes 

like cell division where spatial aspects are central, but many studies3-5 have reported that 

numerous other proteins also form foci. However, few localization results have been 

independently validated. We designed a function-based validation assay for protein 

localization patterns in live cells and applied it to a canonical example of a bacterial protein 

reported to form biologically relevant foci across a range of bacterial species: the Clp 

proteases3-12.

Conceptually, our approach exploits the fact that localization patterns determine the 

statistical differences between the two daughter cells right after cell division, and thereby 
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influence the post-division heterogeneity in any affected downstream processes. By 

measuring the downstream heterogeneity in the presence and absence of a fluorescent tag to 

a protein of interest, a side-by-side comparison reveals whether the tag interferes with 

protein localization; for non-intrusive tags, the post-division single-cell heterogeneity in the 

downstream process should be the same with or without the FP (Fig. 1a).

We first fused two commonly used FPs, Venus YFP and superfolder GFP (sfGFP), to the 

ClpX and ClpP proteins in E. coli and confirmed the previously reported localization 

patterns, typically observing a single bright focus in roughly half of the cells during 

balanced exponential growth in rich media. Cells without a focus exhibit a low cytoplasmic 

FP signal, similar to the cytoplasmic signal in foci-harboring cells. Tracking cells through 

division showed how the focus segregated to one of the two daughters, while the other cell 

formed a new focus within a few generations (Supplementary Video 1 and Supplementary 

Note 1). The observed localization of the Clp-FP protease foci should thus cause substantial 

post-division single-cell heterogeneity in the turnover rates of protease substrates.

We then used dual-color time-lapse microscopy to simultaneously measure substrate 

abundances and protease localization patterns in individual E. coli cells over time. As the 

reporter substrate we fused mCherry to the E. coli ssrA tag, which marks mCherry for 

proteolysis by ClpXP (Fig. 1b) and to a lesser extent by ClpAP13. We expressed mCherry-

ssrA from an inducible promoter in both foci-forming FP strains and in the wildtype strain 

and followed the fate of the mCherry-ssrA degradation reporter over time. Specifically, we 

measured the reporter degradation rate in daughter cells after cell division and analyzed the 

heterogeneity between individual daughter cell pairs.

When either ClpX or ClpP was tagged with Venus YFP or sfGFP, cells that contained the 

focus actively degraded mCherry-ssrA, whereas cells without a focus showed mild to 

extreme reduction in mCherry-ssrA degradation, thus producing two daughters with very 

different mCherry-ssrA degradation rates (Fig. 1c, Supplementary Video 2 and 

Supplementary Figure 1). However, both daughter cells in the wildtype strain continued 

proteolysis of mCherry-ssrA at very similar rates (Fig. 1c, Supplementary Video 3 and 

Supplementary Fig. 2). This shows that the FP tag causes clustering artifacts, and that the 

ClpX-FP and ClpP-FP fusions cannot be trusted for determining the localization of the 

native, untagged proteins.

To further validate our results we performed several independent tests. We used 

immunofluorescence microscopy against ClpX (Fig. 2a) with the strain expressing the foci-

forming ClpX-Venus YFP fusion as a positive control and a ClpX knockout strain as a 

negative control, confirming that the anti-ClpX antibodies were specific and that fixation did 

not disassemble the ClpX-Venus YFP foci. In wildtype cells, the immunofluorescence 

images indicate that ClpX forms 20–50 complexes that are uniformly distributed in the cell. 

We also used the small monomeric SNAP tag fused to ClpP (Fig. 2b) and ClpX (data not 

shown), and again observed a uniform spatial distribution of these proteins.

These findings motivated us to evaluate other FPs (Supplementary Table 1) fused to ClpP or 

ClpX. We found that sfGFP, Venus YFP, mCherry, and mCherry2 all cause substantial foci 
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formation in the majority of cells, despite being monomers or very weak dimers when 

expressed alone. mKate2 and TagRFP-T caused intermediate clustering, while for mVenus 

YFP and mYPet most of the fluorescence signal was spatially uniform, although foci were 

observed in a few cells. The mTagBFP and mEos2 fusions resulted in a weak signal with 

infrequent dim foci. We detected no foci for PS-CFP2, rsFastLime (data not shown) and 

GFP(–30) but the signal was very dim. Finally, mGFPmut3, Dronpa, and Dendra2 displayed 

an essentially uniform signal. FP fusions to ClpP generally caused more foci formation than 

fusions to ClpX, in particular for mYPet (Fig. 2d). Because foci-forming tendencies could 

also be affected by protein expression levels, which in turn could be affected by the FP tags, 

we expressed two separate copies of the gene for ClpP-mGFPmut3 in the same strain. We 

observed no increase in clustering despite the higher level (Supplementary Fig. 3 and 4).

We further analyzed the ClpP-SNAP tag, ClpP-Dronpa, ClpP-Dendra2 and ClpP-

mGFPmut3 fusions using our single-cell segregation assay and observed very little post-

division cell-to-cell variability, confirming that these tags, though not perfectly mimicking 

the wildtype, are less prone to clustering artifacts (Fig. 3). All ClpP-FP fusions also showed 

a somewhat reduced degradation activity when compared to the wildtype, presumably 

because the bulky FP tags interfere with protease activity. Of all the reporters tested, the 

SNAP tag was both the most active and least intrusive in terms of localization.

Gentle fixation of cells harboring the ClpX-mGFPmut3 and ClpP-mGFPmut3 fusions also 

revealed uniformly distributed complexes (Fig. 2e,f). We further used HILO microscopy 

(Online Methods) to perform real-time single-molecule imaging in live cells. ClpA-

mGFPmut3, ClpP-mGFPmut3 and ClpX-mGFPmut3 complexes were all observed to move 

freely and rapidly in the cytoplasm (Fig. 2g, Supplementary Videos 4–7). Individual ClpP-

Dronpa molecules could also be detected in live cells with HILO imaging and were also 

uniformly distributed (Supplementary Fig. 10).

The bright ClpP-FP foci are proteolytically active and highly fluorescent, showing that the 

fusions are functional and not misfolded. Introducing the monomeric A206K mutation14 into 

an FP also substantially reduced foci formation, again demonstrating that the foci are not 

caused by spontaneously misfolded FPs. Even the strongest foci-forming FPs, like Venus 

YFP, are spatially uniform when expressed alone, even at high levels (Supplementary Fig. 

5). Both the Clp complexes and the FPs are thus spatially uniform on their own, and only 

form foci when fused to each other. We hypothesize that this is due to avidity effects. In FP 

fusions, the homo-oligomeric proteins could act as scaffolds, bringing several FPs into close 

proximity. This would prevent the oligomers from diffusing apart after a single FP-FP 

dissociation event and allow them to rebind before the remaining links are broken (Fig. 2c), 

thereby driving the coalescence of tagged oligomers into visible foci.

These results raise the question of how many other reported foci are caused or greatly 

exaggerated by FP fusions. In fact, the FPs we observed to be prone to clustering are used in 

the three main bacterial FP fusion libraries – mCherry in C. crescentus5, Venus YFP in E. 

coli4, and GFPuv4 in the E. coli ASKA library3 – that all report numerous foci. The ClpX 

and ClpP foci have even been used as positive controls in genome-wide localization 

studies5. To investigate whether FPs cause false localization patterns more generally, we 
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used one of our most monomeric FPs, mGFPmut3, to re-tag five E. coli proteins – Hfq, 

PepP, IbpA, FruK, and MviM – that previously were reported to form bright foci in multiple 

FP libraries3, 4. Fusions PepP-mGFPmut3, FruK-mGFPmut3, and MviM-mGFPmut3 

showed no foci, while Hfq-mGFPmut3 and IbpA-mGFPmut3 were uniformly distributed in 

most cells and only showed dim foci in a small fraction of cells (Supplementary Fig. 6, 

Supplementary Video 8 and Supplementary Table 2). Our results strongly suggest that FP-

mediated clustering is a widespread phenomenon although further tests, as presented for the 

Clp proteins, will be necessary to prove this unequivocally.

The segregation-based assay described here cannot be used for all cellular components since 

we cannot always measure the heterogeneity in an affected downstream process with 

existing reporters. However, the assay could be used for any factor that directly or indirectly 

affects transcription, translation, RNA degradation or proteolysis: protein localization 

patterns can be analyzed with FP reporters and mRNA localization patterns with the MS2 

tagging system or FISH (although it should be noted that these patterns themselves may be 

prone to artifacts). It may also be possible to probe segregation of factors involved in other 

types of processes, using light microscopy to determine cell morphology, for instance, or 

using FRET biosensors to measure pH, metabolites, ATP levels or Ca2+ ions. Because the 

assay is based on a relative comparison with and without a tag, it is insensitive to systematic 

measurement errors and can resolve small statistical differences. For example, if two 

different FPs produce different localization patterns (as expected from Fig. 2d), testing 

which FP interferes less with the heterogeneity of a downstream process could suggest 

which reporter is more trustworthy.

We hope the results described here will lead to a reinvestigation of protein localization in 

bacteria, that the FP survey will guide the choice of fluorescent reporters both for 

conventional and super-resolution localization measurements, and that the segregation-based 

assay will prove useful in other biological systems.

Online Methods

Construction of plasmids and E. coli strains

All E. coli strains, plasmids and primers are listed in Supplementary Table 3–5, respectively. 

The strain and plasmid constructions are described in Supplementary Note 2. Various E. coli 

strains with Clp-FP fusions were verified by Western blotting (Supplementary Fig. 7 and 8 

and Supplementary Methods 1). The SNAP tag and the FPs used in this study, including 

their amino acid sequences, are listed in Supplementary Table 1.

Epi-fluorescence and time-lapse microscopy

All epi-fluorescence microscopy experiments were performed on an inverted microscope 

(Nikon Ti-E) equipped with a Perfect Focus System (PFS, Nikon), an Orca R2 (Hamamatsu) 

camera, a Scion CFW-1612M (Scion corporation) camera, a 100× Plan Apo objective (NA 

= 1.4, Nikon), or a 100× TIRF (total internal reflection fluorescence) objective (NA = 1.49, 

Nikon) and an automated xy-stage (BioPrecision2 Inverted Stage, Ludl). The microscope 

was controlled by Micro-manager (http://www.micro-manager.org/) and custom-written 

Matlab scripts. For phase imaging, cells were illuminated with a white LED light source 
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(pE-100, CoolLED) and high-resolution phase images were captured with the Scion camera 

(44 nm effective pixel size). Fluorescence imaging was performed with an LED system 

(Spectra 7 light engine, Lumencor) and appropriate filter cubes: DAPI (LF405-A, Semrock), 

CFP (CFP-2432A, Semrock), GFP (GFP-3035B, Semrock), YFP (YFP-2427A, Semrock), 

Cy3 (TRITC-A, Semrock) and RFP (mCherry-A, Semrock). The fluorescence images were 

captured non-binned with the Orca R2 camera (64.5 nm effective pixel size) and saved as 

16-bit TIFF images.

Overnight liquid cultures, started from a single colony, were grown at 30 °C or 37 °C in a 

shaking incubator. 14–16 h post-inoculation, cells were diluted 1:1,000 into imaging 

medium (M9 medium with 0.2% (w/v) glucose and 10% (v/v) Luria Bertani (LB) medium). 

Cells were usually grown until early exponential phase (OD600 = 0.1–0.2), diluted with 

imaging medium and ∼5 μl cell suspension was spotted onto an agar pad. Cells were 

allowed to sit on the pad for 5–20 min before imaging. The agar pads were made of 2% 

(w/v) low-gelling agarose (Sigma-Aldrich, A9414 or QA-Agarose, MP Biomedicals, cat# 

AGAL0050) dissolved in imaging medium. The microscope is equipped with a large 

incubator and time-lapse imaging was performed at 30 °C or 37 °C. Coverslips were 

sequentially sonicated for 30 min in 1 M KOH, acetone, 100% ethanol, and ddH2O, and then 

extensively rinsed with ddH2O before use.

For the FP survey, cells were grown at 37 °C to early exponential phase, spotted on an agar 

pad and then imaged at room temperature (22–26 °C). The strain with the ClpP-mGFPmut3 

fusion was grown at 30 °C before imaging. Typical exposure times were 500–2,000 ms for 

the non-foci forming fusions and 20–2,000 ms for the foci-forming FPs.

Measurement of single-cell degradation rates in daughter cells after cell division

E. coli cultures were grown overnight in LB medium, supplemented with 100 μg/ml 

ampicillin, at 37 °C in a shaking incubator. 14–16 h post-inoculation, cells were diluted 

1:1,000 into imaging medium (without antibiotics), grown for ∼100 min (wake-up from 

stationary phase), diluted 1:10 and induced for 2 h with 2 mM Isopropylβ-D-1-

thiogalactopyranoside (IPTG) to produce the mCherry-ssrA(LAA) tag degradation reporter. 

After the IPTG induction, cells were pelleted (4,000 g, 2 min, 37 °C), washed 3 times with 

pre-warmed imaging medium, diluted 1:10 into pre-warmed imaging medium, grown for 15 

min (250 rpm, 37 °C), diluted 1:20–1:50 into pre-warmed imaging medium and 2–5 μl cell 

suspension was spotted on a pre-warmed agar pad. Care was taken to keep the cells at 37 °C 

during handling and to avoid any temperature changes. The time-lapse experiments were 

usually started ∼40 min after washing away the IPTG. The microscope was enclosed by an 

in-house built incubator and imaging was performed at 37 °C (or 30 °C with previous cell 

growth also at 30 °C and cell handling at room temperature). 5–15 stage positions, each 

having usually one individual E. coli cell, were manually selected (only based on the phase 

image) and imaged every 5 min in a time-lapse fashion to monitor growth into a micro-

colony. A custom-written Matlab script was used to track the micro-colonies during imaging 

and to correct for xy-drift caused by movement of the agar pad. In short, a 2 × 2 binned 

phase image was acquired at every time point, segmented to find the micro-colony and the 

center of the micro-colony was automatically moved to the center of the field of view of the 
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camera before the acquisition of a phase z-stack (5–6 planes with 0.2 μm spacing) and the 

fluorescence images. The exposure times for GFP or YFP images were 50–1,000 ms and for 

RFP images 200 ms. RFP images were taken every time-point with GFP and YFP images 

(to monitor the protease) being less frequent (e.g. every fifth time point). Dark field images 

were acquired for all exposure times and subtracted from the respective fluorescence 

images.

Quantitative image and data analysis was done using the Schnitzcell program15 (courtesy of 

Prof. M. Elowitz, Caltech) and Matlab. The E. coli cells were segmented based on a 0.2–0.3 

μm out-of-focus high-resolution phase image (Supplementary Fig. 9). Cells were tracked for 

30 frames at 30 °C or 20 frames at 37 °C (5 min between frames in both cases). Tracking of 

cells that grow out of the in-focus monolayer of the micro-colony was aborted and those 

cells were excluded from the analysis. Cell segmentation and cell tracking were manually 

checked and errors were corrected. Single-cell degradation rates (i.e. the decrease of the 

total RFP fluorescence intensity per cell over time) were measured in daughter cells after 

cell division. The reported degradation rates correspond to the average rates during the cell 

cycle of the daughter cells (i.e. measured from birth to the next division). If one cell divides 

earlier, the last frame of the earlier dividing daughter cell defines the end point for 

calculating the average degradation rate of both siblings. Daughter cells with very low 

mCherry levels (corresponding to cells at the end of the pulse-induction experiment when 

most of the mCherry-ssrA proteins were degraded) and daughter cells with degradation rates 

below 10,000 or negative values (due to delayed mCherry maturation at the beginning of the 

experiment) were excluded from the analysis.

Immunofluorescence microscopy

E. coli cells were grown to early exponential phase (OD600 = 0.1–0.15) in LB medium at 30 

°C with shaking at 250 rpm. 1 ml of cells was pelleted (4,000 g, 2 min, room temperature), 

resuspended in 500 μl freshly prepared fixation solution (30 mM sodium phosphate buffer 

pH 7.4, 2.5% formaldehyde (Ted Pella, cat# 18505)) and incubated for 10 min at room 

temperature on an inverter followed by 30 min on ice. The cells were pelleted (4,000 g, 2 

min, 4 °C) and washed 3 times with 500 μl ice-cold 1× PBS. Cells were pelleted again and 

incubated for 5 min at room temperature in 25 μl GTE buffer (20 mM Tris-HCl pH 7.5, 50 

mM glucose, 10 mM EDTA) supplemented with 2.5 μg/ml lysozyme (Sigma-Aldrich, cat# 

L6876). After the incubation, the cells were diluted 1:10 with GTE buffer and 10 μl of the 

cell suspension was spread on a KOH-cleaned coverslip, which was coated with 0.01% 

poly-lysine solution (Sigma-Aldrich, cat# P8920). The cells were allowed to air-dry (> 30 

min). Next, 200 μl blocking buffer (1× PBS, 2% (w/v) BSA, 0.05% (v/v) Tween-20) was 

added to the coverslip and incubated for 15 min at room temperature. Anti-ClpX antibody 

(see below) was diluted 1:100 in blocking buffer and each coverslip was incubated with 200 

μl antibody solution for 1 h in a homemade humidity chamber. The coverslips were 

incubated 3 times for 5 min with 200 μl blocking buffer. Secondary antibody (Alexa 350 

donkey anti-rabbit IgG (Invitrogen, cat# A10039)) was diluted 1:500 in blocking buffer and 

∼300 μl was added to each coverslip. The coverslips were incubated in the dark for 1 h. 

Next, cells were washed 3 times with 200 μl blocking buffer with 5 min incubations between 

washes. Coverslips were mounted on agar pads made of 2% low-gelling temperature agarose 

Landgraf et al. Page 6

Nat Methods. Author manuscript; available in PMC 2013 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Sigma-Aldrich, A9414) in 1× PBS. The IF samples were imaged on an inverted microscope 

(Nikon Ti-E) equipped with a 100× TIRF objective (NA = 1.49, Nikon), an Orca-R2 camera 

(Hamamatsu) and a shuttered mercury light source (Intensilight, Nikon). The Alexa 350 

fluorophores were imaged with a DAPI (LF405-A, Semrock) filter cube.

Anti-ClpX antibody

Antibodies to ClpX were purified using Affigel-10 (Bio-Rad) resin. The E. coli ClpX 

protein was purified according to previous protocols16, conjugated to resin, and ClpX 

polyclonal rabbit antibodies (Covance) were purified according to the manufacture's 

protocol. Affinity-purified antibodies were aliquoted in 1× PBS containing 50% glycerol 

and stored at −80°C.

SNAP tag labeling in fixed E. coli cells

The SNAP tag17 (NEB) has not previously been used to detect endogenous intracellular 

proteins in bacteria and hence the existing protocols needed to be carefully optimized. The 

ClpP-SNAP tag strain and the wildtype strain, which served as a negative control to 

demonstrate the specificity of the labeling reaction, were processed in parallel and subjected 

to identical treatments. First, E. coli cells were grown to mid-exponential phase in LB 

medium at 37 °C with shaking (250 rpm). Cells were fixed with 2.5% (v/v) formaldehyde by 

adding 1.56 ml of a 16% formaldehyde solution (Ted Pella, cat# 18505) directly to 8.44 ml 

cell culture and incubated at room temperature for 30 min in a shaking incubator (250 rpm). 

After fixation, the cell suspension was pelleted by centrifugation (4,000 g, 10 min, 4 °C), 

washed with 2 M glycine to quench the fixation reaction and incubated in 1 ml 2 M glycine 

for 1 h in a thermomixer (Eppendorf) at room temperature with 1,400 rpm shaking. The 1 h 

incubation with 2 M glycine reduced the non-specific binding of the TMR SNAP-Cell 

dye18. The SNAP-Cell TMR dye (NEB, S9105S) was diluted in DMSO (Sigma-Aldrich, 

cat# D2650) to a final concentration of 30 μM and used as a 100× stock. After the 1 h 

glycine incubation, cells were pelleted (4,000 g, 2 min, room temperature), washed with 1 

ml washing buffer (1× PBS, 200 mM glycine, 1 mM DTT, 2% (w/v) BSA, 0.05% (v/v) 

Tween-20) and incubated in the thermomixer for 10 min (1,400 rpm, room temperature). 

Cells were then pelleted again and concentrated in 100 μl washing buffer, followed by the 

addition of 1 μl 30 μM SNAP-Cell TMR dye and incubated for 30 min in the thermomixer 

(1,400 rpm, room temperature). The labeling reaction and all the following steps were done 

under low-light conditions. After incubation with the TMR dye, cells were subjected to 

excessive washing steps to remove non-specifically bound dye molecules. The cells were 

pelleted (4,000 g, 2 min, room temperature) and were washed ∼10 times with 1 ml wash 

buffer and incubated for ∼1 h between washes in the thermomixer (1,400 rpm, room 

temperature). The progression of the washing was monitored by observing the sample and 

the negative control side-by-side. Before microscopy, cells were washed twice with 1× PBS, 

diluted with 1× PBS (if necessary) and imaged on an agarose pad (2% (w/v) low-gelling 

agarose dissolved in 1× PBS) or squashed between a coverslip, coated with 0.01% poly-L-

lysine (Sigma-Aldrich, cat# P8920), and a microscope slide.

Imaging was performed with an inverted microscope (Nikon Ti-E) equipped with an Orca 

R2 (Hamamatsu) camera, a Spectra 7 light engine (Lumencor) and a 100× Plan Apo 
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objective (NA = 1.4, Nikon). The TMR-stained bacteria were imaged with the green LED 

(excitation filter 549/15 nm, 40 mW power measured out of the objective) and a Cy3 filter 

cube (TRITC-A, Semrock) with typical exposure times of 2–5 s.

Highly inclined and laminated optical sheet (HILO) microscopy

Cells were grown at 30 °C or 37 °C to exponential phase and the microscopy was performed 

at room temperature. Bacteria were imaged via an in-house built objective-type TIRF-based 

configuration on a modified inverted microscope (Nikon Ti-E) equipped with a 100× Plan 

Apo objective (NA = 1.4, Nikon) and a 2.5× C-mount adapter (Nikon). Illumination was 

achieved by a 488 nm (Sapphire, Coherent) laser line, which was focused on the back focal 

plane of the objective. Since TIRF modality does not allow the whole bacterial cell volume 

to be illuminated, the laser light was diverted from TIRF and sent to the sample at an 

inclined fashion19, i.e. with an angle that is slightly steeper than the critical angle. The 

incidence angle was adjusted manually by varying the position of the focusing lens sitting 

on an xyz stage (Newport) and was empirically optimized for the best signal-to-noise ratio. 

Images were acquired using an electron-multiplying CCD camera (ixon3 897, Andor) with 

EM gain set to 300 and a 5× pre-amplifier gain. The camera was controlled with the 

software Solis (Andor). The effective pixel size of the acquired images corresponds to 64 

nm (250× magnification). To acquire fast dynamics only a sub-region of the EMCCD chip 

was used. ClpA-mGFPmut3, ClpX-mGFPmut3, ClpP-mGFPmut3 and mGFPmut3 alone 

live-cell movies were acquired under constant illumination with 10 mW laser intensity and 

30 Hz image acquisition rate. For GFP imaging, a dichroic filter (Di01-R488, Semrock) and 

a bandpass emission filter (FF01-525/45, Semrock) were mounted on a custom-made brass 

filter cube.

The image sequences were exported from Solis as 16-bit TIFF files and cropped to 128 × 

128 pixel in ImageJ (NIH, http://rsbweb.nih.gov/ij/). The images were then loaded into 

Matlab for batch processing and intensity scaled. For quantitative intensity scaling, all 

images in a movie sequence have the same grayscale scaling, where the pixel with the 

highest numerical value in the image sequence corresponds to the white pixel (1) and the 

pixel with the lowest numerical value to the black pixel (0). For “per frame auto-scaling”, 

every image in the sequence is subjected to an individual min/max scaling, where the 

brightest pixel in the individual image corresponds to the white pixel (1) and the pixel with 

the lowest numerical value to the black pixel (0). The resulting images were loaded into 

QuickTime 7 Pro (version 7.6.6, Apple) and compressed with the H.264 codec.

The images for the live-cell HILO time-series (Fig. 2g) were acquired similarly except with 

150× magnification and a Hamamatsu EMCCD camera (C9100-02) with an effective pixel 

size of 53.3 nm and 50 EM gain. Images in sequence were acquired every second with 20 

ms exposure time and shuttered 15 mW 488 nm laser illumination in HILO mode.

Short fixation of cells containing the ClpP-mGFPmut3 or ClpX-mGFPmut3 fusion

Exponential phase cells, harboring the ClpP-mGFPmut3 or ClpX-mGFPmut3 fusion, were 

grown in imaging medium, spun down (4,000 g, 2 min, 4 °C) and resuspended in 1 ml 

fixation solution (2.5% formaldehyde, 30 mM sodium phosphate buffer pH 7.4) and 
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incubated for 5 min on ice. Cells were pelleted and washed with 1 M glycine, followed by 

three washes with 1× PBS. Finally, the cells were squashed between a KOH-cleaned 

coverslip and a microscope slide and imaged immediately with the same setup that was used 

for live-cell HILO microscopy. Image sequences were acquired with constant illumination 

using 30 ms integration time and 30 mW (ClpX-mGFPmut3, Fig. 2e) or 10 mW (ClpP-

mGFPmut3, Fig. 2f) 488 nm laser intensity. The EM gain was set to 50 and 5× pre-amplifier 

gain was used. The TIFF image sequences were loaded into ImageJ to generate sum 

projections of the first 100 (ClpX-mGFPmut3) or 300 (ClpP-mGFPmut3) frames.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Schematic depiction of the segregation assay. An upstream process (Clp protease 

localization) affects a downstream process (substrate degradation) that can be measured in 

daughter cells originating from cells with and without an FP tag on the upstream component. 

If the tag is non-intrusive, heterogeneity of the downstream process in the daughter cells 

should be independent of the tag. (b) Schematic of the mCherry-ssrA degradation reporter. 

(c) The plot shows single-cell degradation rates as measured by time-lapse fluorescence 

microscopy in daughter cells after cell division in the indicated bacterial strains. The 

daughter with the faster degradation rate is plotted on the x-axis. The spread along the 

diagonal is due to pulse-induction of the mCherry-ssrA reporter. Diagonal lines represent no 

cell-to-cell variability (gray line), 2× variability (dashed black line) and 5× variability (solid 

black line). Degradation rates are in arbitrary units (a.u.).
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Figure 2. 
(a) Immunofluorescence microscopy of ClpX in wildtype (left), ClpX-Venus YFP (middle) 

and ΔclpX (right) strains. Insets are phase images and a close-up is shown for the wildtype. 

(b) Fluorescence images show bacteria expressing the ClpP-SNAP tag labeled with TMR 

(tetramethylrhodamine), compared to wildtype (right). Insets show phase images. (c) 

Cartoons of a fluorescent protein (yellow) forming a weak anti-parallel dimer and of avidity 

effects potentially clustering tagged ClpX hexamers (blue). (d) Fluorescence images of 

bacteria expressing the indicated constructs. The cell outline (red) is shown for cells with 

weak cytoplasmic signal. (e,f) HILO microscopy of gently fixed cells with ClpX-

mGFPmut3 (e) and ClpP-mGFPmut3 (f). (g) Live-cell HILO microscopy of cells expressing 

ClpP-mGFPmut3. Scale bars,1 μm.
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Figure 3. 
The plots show single-cell segregation assays for bacteria expressing the indicated proteins. 

Post-division single-cell degradation rates were measured by time-lapse fluorescence 

microscopy at 37 °C (upper row) and 30 °C (lower row) for both daughter cells. The ClpP-

mGFPmut3 strain, the wildtype and a foci-forming control (Supplementary Fig. 11) were 

imaged at 30 °C because ClpP-mGFPmut3 levels were reduced at 37 °C but similar to the 

wildtype at 30 °C (Supplementary Fig. 3). Diagonal lines represent no cell-to-cell variability 

(gray line), 2× variability (dashed black line) and 5× variability (solid black line). 

Degradation rates are in arbitrary units (a.u.).
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