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Introduction
Although hyperopia is one of the most seen refrac-
tive errors, a total cycloplegic refraction greater 
than 5.00 diopters (D) of spherical equivalent is 
less frequent.1–4 Children with high hyperopia 
carry a higher risk of having strabismus and 
amblyopia.5

Knowledge of normative values of thickness of 
macula, peripapillary retinal nerve fiber layer 
(RNFL), macular ganglion cell layer (GCL), and 
inner plexiform layer (IPL) in high hyperopic 

children is of significance for understanding the 
impact of refractive error upon retinal morphol-
ogy and also for interpretation of retinal and optic 
nerve disorders. It has been reported that detec-
tion of the changes in peripapillary RNFL and the 
ganglion cell complex thicknesses are important 
methods for observing early anatomical destruc-
tion in patients with glaucoma.6–8

Optical coherence tomography (OCT) allows 
evaluation of retinal morphology noninvasively. 
Spectral domain optical coherence tomography 
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(SD-OCT) with its higher resolution can be used 
to assess retinal layers including the macular 
GCL and IPL besides the peripapillary RNFL 
and macular thicknesses.9

In several studies RNFL, macular thickness, and 
macular retinal layer thickness have been investi-
gated in the pediatric population with different 
refractive error, but number of studies with high 
hyperopic children is limited.6,10–24 Although 
thicker RNFL in high hyperopic eyes has been 
shown, there is no study investigating total macu-
lar, GCL and IPL thicknesses in high hyperopic 
eyes in the literature.15

The purpose of this study was to identify the peri-
papillary RNFL, total macular, GCL and IPL 
thicknesses in school-aged children with high 
hyperopia using OCT. The correlations between 
the peripapillary RNFL, total macular, GCL and 
IPL thicknesses with refractive errors and axial 
length were also assessed.

Materials and methods
A total of 41 school-aged children were included 
into the study. Study group consisted of 21 chil-
dren (12 boys and 9 girls) with high hyperopia, 
and control group consisted of 20 children (10 
boys and 10 girls) with low hyperopia. The exclu-
sion criteria for this study were age above 11 years, 
an earlier history of ocular surgery or trauma, the 
presence of amblyopia or strabismus, an astigma-
tism greater than 3.0 D, a higher intraocular pres-
sure (⩾21 mmHg), glaucomatous optic disc 
changes, optic disc or retinal disorders, corneal 
abnormalities, and cooperation deficit during 
OCT analysis.

A comprehensive ophthalmic examination includ-
ing a visual acuity testing with Snellen charts, 
cover test, measurement of intraocular pressure, 
biomicroscopic and dilated funduscopic exami-
nations were performed to all patients. A non-
contact tonometer (CT-80; Topcon Co, Tokyo, 
Japan) was used for intraocular pressure meas-
urement. The refractive error value was acquired 
as the spherical equivalent with cycloplegic 
refraction. Cycloplegia was done by dropping of 
cyclopentolate 1% three times with 5 min apart. 
Autorefraction was performed with an auto ker-
ato-refractometer (KR-8900; Topcon Co, Tokyo, 
Japan) at least 30 min after the last drop. Three 
sequential measurements were obtained, and the 
average of them was used for evaluation. Spherical 

equivalent value +5.0 D or higher was termed as 
“High hyperopia,” and from +0.25 to +2.0 D 
was defined as “Low hyperopia.”25 The anterior 
chamber depth and axial length were measured 
with IOLMaster (version 3.01; Carl Zeiss 
Meditec, Dublin, CA). One eye of the patients 
was randomly chosen for the analyses.

After cycloplegic autorefraction, RNFL thick-
ness, macular thickness, macular GCL and IPL 
thicknesses were measured using an SD-OCT 
(version 1.10.0.0; Heidelberg Engineering, 
Heidelberg, Germany). Measurements were per-
formed by an experienced technician. We ana-
lyzed only high-quality OCT images without 
evidence of motion artifact or segmentation 
errors.

The RNFL thickness was obtained by averaging 
the results from the measurements of three con-
secutive circular scans with a diameter of 3.4 mm 
centered at the optic nerve head and then the 
thicknesses of the four quadrants (superior, infe-
rior, nasal, and temporal) were established based 
on this.

The macular thickness scan was achieved using 
the macular cube protocol through the dilated 
pupil. Specifically, the macula was divided into 
three rings with diameter of 1 mm (fovea), 3 mm 
(inner ring), and 6 mm (outer ring). At the same 
time, the inner and outer rings were separated 
into superior, nasal, inferior, and temporal quad-
rants. The average macular thickness was reported 
for each of these nine regions (Figure 1).

SD-OCT has a software, which allows the seg-
mentation of individual layers of the retina includ-
ing the mRNFL, GCL, inner nuclear layer (INL), 
IPL, outer plexiform layer (OPL), and outer 
nuclear layer (ONL) (Figure 2). In addition, 
GCL and IPL results were evaluated for both 
study and control groups.

All statistical analyses were done using SPSS sta-
tistical package for Windows 19 (SPSS for 
Windows, Chicago, IL, USA). Kolmogorov–
Smirnov test was used to control the normality 
between samples, followed by a Levene test to 
estimate equal variances. Data between the high 
and low hyperopic groups were compared using 
the Mann–Whitney U-test. Spearman rank-order 
correlation coefficients (R) and 95% confidence 
intervals were calculated for evaluating the rela-
tionship between mean RNFL thickness, macular 
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thickness, GCL and IPL with the spherical equiv-
alence and axial length. Correlation strengths 
were interpreted using Dancey’s categorization: 
R ⩽ 0.10, no association; 0.10 < R ⩽ 0.30, a weak 
association; 0.30 < R ⩽ 0.60, a moderate associa-
tion; and R > 0.60, a strong association. All p val-
ues less than 0.05 were considered statistically 
significant.

Results
Forty one eyes of 41 children were included in our 
study. There were 21 (51.2 %) high hyperopic 
eyes in the study group and 20 (48.7 %) low 
hyperopic eyes in the control group. The mean 
age of the patients in the study group was 8 ± 2.0 
(range 6–11) years and was 7.0 ± 1.0 (range 
6–10) years in the control group. Both groups had 
similar sex and age distribution (p = 0.865 and 
p = 0.754, respectively).

Table 1 presents spherical equivalent, axial length, 
anterior chamber depth, intraocular pressure, and 
visual acuity for both groups. The mean global 
peripapillary RNFL thickness and peripapillary 
RNFL thickness for superior, inferior, nasal, and 
temporal quadrants, and the mean thickness of 
the fovea and the four quadrants of both the inner 
and the outer macula for both groups are pre-
sented in Table 2. The nasal and inferior quad-
rant and the global peripapillary RNFL thicknesses 
were significantly higher in the study group when 
compared to the control group (p < 0.05). The 
mean thickness of the inferior quadrant of the 
inner macula was also significantly higher in the 
study group (p < 0.05). There were no significant 
difference in the mean value of the thickness of 
the fovea and other macular quadrants. Table 3 
shows GCL and IPL thicknesses in the four quad-
rants of both the inner and the outer macula. The 
mean thickness of the GCL in the nasal, tempo-
ral, and inferior quadrant of the outer macula 
were significantly lower in study group compared 
to control group (p < 0.05). The mean thickness 
of the IPL in the inferior quadrant of the inner 
macula was significantly thicker in the study 
group than the control group, and the mean 
thickness of the IPL in the nasal and inferior 
quadrant of the outer macula were significantly 
thinner in the study group when compared to the 
control group (p < 0.05). Correlation analyses 
between RNFL, macular thickness, GCL, and 
IPL thicknesses and spherical equivalent or axial 
length are shown in Table 4. Inferior quadrant 
and global RNFL thickness was strongly associ-
ated with spherical equivalent and axial length. 
Superior and nasal quadrant RNFL thickness were 
moderately associated with spherical equivalent 
and axial length. Temporal quadrant RNFL 
thickness was weakly associated with spherical 
equivalent, and there was no association between 
temporal quadrant RNFL and axial length. The 
relationship between the global RNFL and spher-
ical equivalent and axial length is demonstrated 
by a scatter plot (Figure 3). Macular thicknesses 
in nasal and inferior inner quadrants were 

Figure 1.  Heidelberg SD-OCT image of the macula 
showing division of the central macula into nine 
sectors.
1: fovea, 2: superior inner macula, 3: nasal inner macula, 4: 
inferior inner macula, 5: temporal inner macula, 6: superior 
outer macula, 7: nasal outer macula, 8: inferior outer 
macula, and 9: temporal outer macula.

Figure 2.  (a) Single horizontal scan of the macula showing a segmented ganglion cell layer and (b) single 
horizontal scan of the macula showing inner plexiform layer.
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Table 1.  Descriptive and ocular parameters of the groups.

Group 1
(high hyperopia)
(n = 21)

Group 2
(low hyperopia)
(n = 20)

P valuea

Spherical equivalent (D) 7.2 ± 1.8 0.5 ± 0.4 <0.001

Axial length (mm) 21.0 ± 0.6 22.9 ± 0.4 <0.001

Anterior chamber depth 3.3 ± 0.2 3.5 ± 0.2 0.006

IOP (mmHg) 13.7 ± 1.0 13.6 ± 1.0 0.85

BCVA (logMAR) 0.0 0.0 1

D, diopter; IOP, intraocular pressure; BCVA, best corrected visual acuity.
aMann–Whitney U-test.

Table 2.  Comparison of the mean thickness of the peripapillary RNFL, fovea, and the four quadrants of both 
the inner and the outer macula between the two groups.

Group 1
(high hyperopia)
(n = 21)

Group 2
(low hyperopia)
(n = 20)

P valuea

Peripapillary RNFL

  Global RNFL (μm) 113.2 ± 13.1 101.4 ± 7.0 0.00

  Superior RNFL (μm) 143.6 ± 26.1 130.9 ± 10.9 0.05

  Inferior RNFL (μm) 151.3 ± 23.5 128.2 ± 14.0 0.00

  Nasal RNFL (μm) 90.4 ± 19.2 75.9 ± 11.3 0.00

  Temporal RNFL (μm) 67.7 ± 7.8 64.4 ± 20.8 0.50

Fovea (μm) 269.4 ± 29.9 267.6 ± 28.3 0.84

Total inner macula

  Superior (μm) 342.0 ± 23.8 343.0 ± 12.1 0.87

  Nasal (μm) 343.8 ± 15.6 336.7 ± 13.8 0.13

  Inferior (μm) 341.9 ± 11.5 328.0 ± 15.3 0.00

  Temporal (μm) 327.8 ± 12.8 325.9 ± 11.4 0.61

Total outer macula

  Superior (μm) 306.6 ± 13.4 300.4 ± 11.2 0.11

  Nasal (μm) 326.3 ± 15.6 323.5 ± 14.2 0.54

  Inferior (μm) 298.5 ± 17.1 302.2 ± 18.2 0.51

  Temporal (μm) 287.0 ± 11.4 287.6 ± 11.3 0.86

Bold values signify statistical difference. 
RNFL, retinal nerve fiber layer.
aMann–Whitney U-test.
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moderately correlated with spherical equivalent, 
and macular thickness in inferior inner quadrant 
was moderately correlated with axial length.

Discussion
In this study, the differences of peripapillary 
RNFL, macular thickness, GCL, and IPL 

thicknesses in the macula were analyzed between 
children with high or low hyperopia. The results 
had shown that, the mean RNFL, the RNFL of 
inferior and nasal quadrants, and the retinal thick-
ness in the inferior quadrant of the inner macula 
were significantly thicker in children with high 
hyperopia when compared to children with low 
hyperopia. Furthermore in the high hyperopic 

Table 3.  Comparison of the thickness of the ganglion cell layer and inner plexiform layer in the four quadrants 
of both the inner and the outer macula between the two groups.

Group 1
(high hyperopia)
(n = 21)

Group 2
(low hyperopia)
(n = 20)

P valuea

Ganglion cell layer

  Inner macula

    Superior (μm) 53.1 ± 3.4 54.6 ± 5.2 0.28

    Nasal (μm) 52.6 ± 4.4 51.9 ± 4.4 0.60

    Inferior (μm) 52.8 ± 3.0 50.7 ± 7.9 0.26

    Temporal (μm) 48.0 ± 4.8 49.5 ± 4.8 0.33

  Outer macula

    Superior (μm) 35.0 ± 3.6 35.4 ± 5.3 0.80

    Nasal (μm) 38.1 ± 4.3 41.5 ± 4.7 0.02

    Inferior (μm) 35.1 ± 5.0 39.1 ± 5.5 0.02

    Temporal (μm) 35.1 ± 4.5 39.0 ± 2.8 0.00

Inner plexiform layer

  Inner macula

    Superior (μm) 41.4 ± 2.6 42.1 ± 2.9 0.27

    Nasal (μm) 42.3 ± 2.2 41.1 ± 2.4 0.08

    Inferior (μm) 41.5 ± 2.5 38.7 ± 3.2 0.00

    Temporal (μm) 40.5 ± 3.1 40.1 ± 2.7 0.65

  Outer macula

    Superior (μm) 28.4 ± 2.9 28.4 ± 2.1 0.97

    Nasal (μm) 29.5 ± 3.3 31.8 ± 3.0 0.03

    Inferior (μm) 28.1 ± 3.5 31.0 ± 4.4 0.03

    Temporal (μm) 31.6 ± 2.4 33.2 ± 2.5 0.05

Bold values signify statistical difference.
aMann–Whitney U-test.
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Table 4.  Correlations between RNFL, macular parameters, ganglion cell layer, and inner plexiform layer 
thickness and spherical equivalent or axial length.

Spherical equivalent Axial length

  Correlation Correlation

  R (95% CI)a R (95% CI)a

RNFL

  Global 0.61 (0.3 to 0.8) –0.68 (–0.9 to –0.4)

  Superior 0.42 (0.1 to 0.7) –0.52 (–0.8 to –0.2)

  Nasal 0.43 (0.1 to 0.7) –0.45 (–0.7 to –0.1)

  Inferior 0.62 (0.3 to 0.8) –0.64 (–0.8 to –0.3)

  Temporal 0.15 (–0.1 to 0.4) –0.09 (–0.4 to 0.2)

Macula

  Fovea 0.15 (–0.1 to 0.4) –0.42 (–0.3 to 0.2)

  Superior inner 0.03 (–0.2 to 0.3) 0.01 (–0.3 to 0.3)

  Nasal inner 0.32 (0.0 to 0.6) –0.19 (–0.5 to 0.1)

  Inferior inner 0.51 (0.2 to 0.7) –0.40 (–0.7 to –0.1)

  Temporal inner 0.14 (–0.1 to 0.4) –0.09 (–0.4 to 0.2)

  Superior outer 0.27 (0.0 to 0.5) –0.28 (–0.5 to 0.0)

  Nasal outer 0.19 (–0.1 to 0.5) –0.21 (–0.5 to 0.1)

  Inferior outer 0.06 (–0.2 to 0.3) –0.08 (–0.4 to 0.2)

  Temporal outer 0.05 (–0.2 to 0.3) –0.21 (–0.3 to 0.3)

Ganglion cell layer

  Superior inner –0.11 (–0.4 to 0.2) 0.06 (–0.2 to 0.3)

  Nasal inner 0.17 (–0.1 to 0.4) –0.11 (–0.4 to 0.2)

  Inferior inner 0.20 (–0.1 to 0.5) –0.19 (–0.5 to 0.1)

  Temporal inner –0.10 (–0.4 to 0.2) 0.07 (–0.2 to 0.3)

  Superior outer –0.01 (–0.3 to 0.3) –0.03 (–0.3 to 0.2)

  Nasal outer –0.34 (–0.6 to 0.0) 0.21 (–0.1 to 0.5)

  Inferior outer –0.18 (–0.5 to 0.1) 0.06 (–0.2 to 0.3)

  Temporal outer –0.37 (–0.6 to –0.1) 0.29 (0.0 to 0.6)

Inner plexiform layer

  Superior inner –0.18 (–0.5 to 0.1) 0.09 (–0.2 to 0.4)

  Nasal inner 0.24 (–0.1 to 0.5) –0.14 (–0.4 to 0.1)

  Inferior inner 0.44 (0.1 to 0.7) –0.34 (–0.6 to 0.0)

  Temporal inner 0.06 (–0.2 to 0.3) –0.13 (–0.4 to 0.1)

  Superior outer 0.00 (–0.3 to 0.3) –0.10 (–0.4 to 0.2)

  Nasal outer –0.31 (–0.6 to 0.0) 0.15 (–0.1 to 0.4)

  Inferior outer –0.18 (–0.5 to 0.1) 0.06 (–0.2 to 0.3)

  Temporal outer –0.26 (–0.5 to 0.1) 0.16 (–0.1 to 0.4)

RNFL, retinal nerve fiber layer; R, spearman correlation coefficient; CI, confidence interval.
aCorrelation strengths interpreted using Dancey’s categorization: R ⩽ 0.10, no association; 0.10 < R ⩽ 0.30, a weak 
association; 0.30 < R ⩽ 0.60, a moderate association; and R > 0.60, a strong association.
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group, GCL, and IPL in the nasal, temporal, and 
inferior quadrant of the outer macula were found 
to be thinner and IPL in the inferior quadrant of 
the inner macula was found to be thicker.

Glaucoma is defined as the progressive retinal 
ganglion cell loss causing optic disc damage and 
visual field defects.6 Peripapillary RNFL thick-
ness evaluation is an essential procedure for iden-
tifying anatomical damage in glaucoma patients. 
On the contrary, previous studies showed that the 
diagnostic performance of the ganglion cell com-
plex measurement, which is the total of RNFL, 
GCL, and IPL, is complementary to RNFL 
measurement, and ganglion cell complex may be 
able to better detect the type of glaucoma where 
macular loss occurs early. Thus, using ganglion 
cell complex in combination with RNFL increases 
detection rate of glaucoma.7 While RNFL is 
formed by retinal ganglion cell axons, GCL 
includes retinal ganglion cell body and IPL 
includes retinal ganglion cell dendrites, axons of 
bipolar cells, and processes of amacrine cells. 
SD-OCT gives the chance of measuring the reti-
nal layers at the macular level including RNFL, 
GCL, and the IPL.26 Measurements of these 
parameters also play an important role in diagno-
sis of other optic disc disorders like pseudo-
papiledema, optic disc hypoplasia, small or large 
disk, and other optic neuropathies.27

The diagnosis and monitoring of glaucoma in 
children is a challenging task due to cooperation 
problems, which is the reason why rapid, objec-
tive, and noninvasive imaging techniques like 
SD-OCT are important. However, our knowledge 

regarding the use of RNFL, GCL, and IPL thick-
nesses in children is limited due to the lack of nor-
mative database.

In the literature, there are several studies that had 
evaluated RNFL thickness in children with differ-
ent degrees of refractive error. The relationships 
between thinner RNFL and myopia, and an 
inverse correlation between RNFL and axial 
length have been reported by different 
authors.6,10–13 However Goh and colleagues14 
found that superior, inferior, and nasal RNFL 
thickness were significantly thinner with decreas-
ing spherical equivalent and increasing axial 
length; after adjusting for age and sex, none of the 
RNFL parameters were correlated with spherical 
equivalent and axial length contrary to the afore-
mentioned findings.

There is limited number of studies with hyper-
opic children. Tas and colleagues15 reported that 
RNFL is thicker in inferior and nasal quadrants 
in children with high hyperopia when compared 
to low hyperopic ones. Kang and colleagues16 also 
showed that hyperopic children had a thicker 
RNFL than emmetropic children and RNFL 
thickness decreased with increasing axial length. 
In another study, Lee and colleagues10 reported 
that RNFL is thicker in hyperopic children, but 
when adjusted for age, there was no difference 
between the emmetropic and hyperopic groups. 
But Lee and colleagues10 and Kang and col-
leagues16 did not include children with high hyper-
opia in their studies. The findings of this study 
were similar to the findings from Tas and col-
leagues15 study. The nasal and inferior quadrant 

Figure 3.  The relationship between the global RNFL thickness and spherical equivalent (a) and axial length (b).
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and the global peripapillary RNFL thicknesses 
were significantly higher in the study group. 
Temporal quadrant RNFL thicknesses were the 
most similar among groups. It seems that temporal 
quadrant is the most useful marker in the evalua-
tion of the optic nerve disorders based on available 
normal values in OCT device. Thicker RNFL 
measurements may cause underestimation of glau-
coma diagnosis in high hyperopic children and this 
normative data may be helpful for diagnosis of 
optic disc disorders in hyperopic children.

Relationship between macular retinal thickness 
and refractive error is controversial in the litera-
ture. Huynh and colleagues17 showed retinal 
thickness increases in central, inner and outer 
macular regions relatively to the increasing hyper-
opia. They also reported that an increase in axial 
length showed association with a thinner inner 
and outer macula but not a thinner central mac-
ula. Similarly Lim and colleagues18 and Chen and 
colleagues19 found that thickness in parafoveal 
region decreased with myopia and foveal thick-
ness increased with myopia in the studies with 
myopic children and myopic young adults, 
respectively. In another study, mean thicknesses 
of inner and outer macula were thinner in high 
myopic group compared with low myopic group. 
However, foveal thickness was not different.13 Jin 
and colleagues20 reported lower retinal thickness 
in the superior parafoveal and superior and infe-
rior perifoveal subfields in myopic children when 
compared to emmetropic ones. Thinning in peri-
foveal and parafoveal quadrants in myopic eyes 
was common finding in the studies.13,17–20 Jin and 
colleagues20 found no significant difference in the 
retinal thickness between emmetropes and hyper-
opes, but high hyperopic children were not 
included in their study.

This study is the first study in the literature which 
compares macular thickness between high hyper-
opic and low hyperopic children. Although retinal 
thicknesses in most quadrants of both inner and 
outer macula were thicker in the study group, the 
difference was only significant in the inferior quad-
rant of the inner macula. It has been hypothesized 
that extending of a similar volume of retina over a 
larger area is responsible from thinning in inner 
and outer rings of macula, and myopia-related 
pathological subfoveal chorioretinal changes cause 
thickening in the fovea of myopic patients.21,22 So 
it might be speculated that similar volume of retina 
over a smaller area may explain why macula is 
thicker in more hyperopic patients.

In addition, Borrelli and colleagues28 showed that 
amblyopic eyes which were more hyperopic com-
pared to controls had increased choriocapillaris 
vessel density as well as a greater outer parafoveal 
macular thickness, which may be due to altera-
tions in outer retinal maturation.

The number of studies evaluating the relationship 
between GCL-IPL and refractive error in chil-
dren is limited. Totan and colleagues23 reported a 
significant negative correlation between GCL-
IPL thickness and axial length in children with 
different refractive errors, but they did not find 
any relation with spherical equivalent. They 
thought that exclusion of children with high 
refractive error (exceeding ±4.0 D in spherical 
equivalent) from the study might have been rea-
son for this result. Also Koh and colleagues24 
showed that a thinner GCL-IPL was associated 
with longer axial length in adult population. 
Similarly Goh and colleagues14 found that GCL-
IPL thicknesses were negatively correlated with 
axial length in children with a refractive error 
between +5 and –10 D. In their study which used 
swept-source OCT, Jin and colleagues20 reported 
thinner inferior parafoveal GCL thickness in 
hyperopes compared to emmetropes. In this 
study, there was no significant difference in GCL 
and IPL thicknesses in most of the quadrants 
unlike aforementioned studies which used Cirrus 
high-definition OCT. However, results of this 
study were similar to Jin and colleagues20 findings 
with the thinner nasal, inferior and temporal 
quadrants in outer macula in the high hyperopic 
group. The smaller sample size and different 
OCT devices used for measurements might have 
been cause for this contradictory result.

Theoretically, the OCT optical system is known 
to be affected by a magnification factor which 
may affect any measurement on retinal plane. 
This magnification difference is affected by the 
power change due to a change in the axial length 
as well as the refractive properties of the cornea 
and lens.29 In the literature, there are studies 
investigating the effect of refractive power on 
OCT measurements by wearing soft contact 
lenses.30,31 Lee and colleagues30 showed that 
RNFL thickness was underestimated with 
increasing myopic refraction power and overesti-
mated with increasing hyperopic refraction 
power. On the contrary, Abdi and colleagues31 
reported that contact lens–induced myopia and 
hyperopia had no significant effect on foveal 
thickness, parafoveal thickness, and perifoveal 
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thickness readings in OCT. Limitation of our 
study is the lack of compensation of magnifica-
tion effect in the analysis of the OCT data.

Conclusion
In conclusion, when compared to low hyperopic 
children, high hyperopic children had thicker 
RNFL, and RNFL showed a positive correlation 
with spherical equivalent and negative correlation 
with axial length. Macular, GCL, and IPL thick-
nesses did not show any significant change 
between the study and control groups in most of 
the quadrants. When evaluating children with 
glaucoma or other optic disc disorders, this differ-
ence should be taken into account.
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