
Frontiers in Cellular and Infection Microbiolo

Edited by:
Kevin Mason,

Nationwide Children’s Hospital,
United States

Reviewed by:
Timothy Murphy,

University at Buffalo, United States
Stephen Peter Kidd,

University of Adelaide, Australia

*Correspondence:
Kristian Riesbeck

kristian.riesbeck@med.lu.se

Specialty section:
This article was submitted to

Bacteria and Host,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 30 November 2021
Accepted: 19 January 2022

Published: 11 February 2022

Citation:
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Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by
viruses or bacteria associated with the airways. Streptococcus pneumoniae,
Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in
infection-related OM, especially in younger children. In this review, we will focus upon
the multifaceted gene regulation mechanisms that are well-orchestrated in S.
pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the
middle ear either in experimental OM or in clinical settings. The sophisticated findings
from the past 10 years on how the othopathogens govern their virulence phenotypes for
survival and host adaptation via phase variation- and quorum sensing-dependent gene
regulation, will be systematically discussed. Comprehensive understanding of gene
expression regulation mechanisms employed by pathogens during the onset of OM
may provide new insights for the design of a new generation of antimicrobial agents in the
fight against bacterial pathogens while combating the serious emergence of
antimicrobial resistance.

Keywords: gene expression regulation, Haemophilus influenzae, Moraxella catarrhalis, otitis media,
Streptococcus pneumoniae
INTRODUCTION

Otitis media (OM) covers a spectrum of middle ear (ME) inflammatory disorders that are caused by
various irritating agents and pathogens. In low to middle-income countries, OM is the main medical
condition for antibiotics prescription and surgeries, and deafness in children, respectively. Despite
OM is a relatively mild condition that in many cases heals spontaneously, it can cause severe illness
and thousands of OM-related deaths have been reported annually (Monasta et al., 2012; Schilder
et al., 2016).

Streptococcus pneumoniae (Spn), non-typeable Haemophilus influenzae (NTHi), and Moraxella
catarrhalis (Mcat) are the three main othopathogens isolated from OM patients (Biesbroek et al.,
2014; Mills et al., 2015; Lee et al., 2020). The course of othopathogen-dependent OM involves
bacterial colonization on the ME epithelium (Hendrixson and St Geme, 1998; Thornton et al.,
2011). Bacterial infection in the ME usually occurs as a secondary infection to viral infection in the
nasopharynx that subsequently progresses to ME via the Eustachian tube (Jossart et al., 1994; Jiang
et al., 1999) (Figure 1). According to general guidelines in various countries, antimicrobial agents,
depending on the age group of children are the treatment of choice of OM. An effective vaccine for
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bacterial-related OM is still unavailable (Jalalvand and Riesbeck,
2018). Child immunization programs including conjugated
pneumococcal vaccines have, however, decreased the incidence
of Spn-related OM in most countries (Littorin et al., 2016;
Littorin et al., 2021).

To overcome the hostile environment in the human airway
during OM, bacteria are forced to have sophisticated gene
regulation expression machineries for optimum survival and
adaptation especially in the nasopharynx and ME. In this
review, we will mainly focus on the most studied gene
regulation mechanisms of Spn, NTHi and Mcat that are
associated with OM in the past decade.

Streptococcus pneumoniae
Streptococcus pneumoniae is a Gram-positive diplococcus with
capsulated cell wall (Brooks and Mias, 2018). The bacteria
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asymptomatically colonize (carriage phase) the human upper
airway as a part of commensal microbiota in a healthy individual.
The carriage phase is essential for pneumococcal pathogenic
transition to other sterile sites causing symptomatic infections,
such as OM in the ME, in individuals with an immature or
weakened immune system (Chao et al., 2014; Coleman et al.,
2018; Weiser et al., 2018).

The transition of Spn from nasopharyngeal colonization to
ME infection is a multifactorial process. The pathogen needs to
adapt to the diverse environmental conditions in the human
airway during transition between niches. This includes the
varying levels of nutritional status, acidities, oxygen, carbon
dioxide, temperature, and a myriad of host antimicrobial
factors (Kloosterman and Kuipers, 2011; Manzoor et al., 2015;
Paixao et al., 2015a; Paixao et al., 2015b; Man et al., 2017;
Aprianto et al., 2018). The establishment of Spn colonization
A

B

FIGURE 1 | Bacterial colonisation in human nasopharynx and middle ear. (A) Nasopharynx is the primary entrance for airway pathogens. Small insert (left panel)
indicates the enlarged view of the entrance to Eustachian tube in nasopharynx. Airway pathogens such as nontypeable H. influenzae (NTHi) (indicated as green rod),
S. pneumoniae (Spn) (purple sphere) and M. catarrhalis (Mcat) (blue sphere) that initially colonize the nasopharynx as part of the commensal microbiota can,
however, migrate into the middle ear (ME) via the Eustachian tube. (B) Co-infection of airway pathogens and viruses in the ME. Airway pathogens (NTHi, Spn and
Mcat) that have successfully entered the Eustachian tube can travel into the ME and colonize as a biofilm. This results in a middle ear inflammation triggered by the
host immune response, and subsequently leads to the onset of OM. Virus (yellow hexagon) infection is often preceding the bacterial infection in OM.
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in the nasopharynx and ME requires fine-tuned gene expression
of a plethora of virulence and metabolism factors in response to
the environmental conditions at target niches. Pneumococcal
virulence factors, as recently reviewed in detail by Brooks et al.
and Weiser et al., promote biofilm formation and contribute to
pneumococcal adherence to airway epithelial cells, evasion of
mucosal clearance by the host immune system, and to
outcompete co-colonizing bacteria or resident flora (Brooks
and Mias, 2018; Weiser et al., 2018).

Gene Expression During Colonization
Besides the host immune factors, virus infection, the co-
colonizing microbiome, and exposure to inhalable particle
matters at the nasopharynx and ME can also promote Spn
infection in the ME. Host norepinephrine, extracytoplasmic
ATP, and nutrients (i.e., N-acetylneuraminic acid and N-
acetylglucosamine) released from the damaged nasopharyngeal
tissue following a simultaneous viral infection promote
pneumococcal dispersal from nasopharyngeal biofilm
colonization and migration to the ME (Marks et al., 2013;
Chao et al., 2014; Paixao et al., 2015a; Paixao et al., 2015b;
Aprianto et al., 2018). Biofilm-dispersing Spn exhibit aggressive
growth and virulence phenotypes through their increased
production of bacteriocins, virulence factors (capsule, cbpA,
pspA, ply, pcpA, nanA, and nanB), proteins of unknown
function (SPV_2027 and SPV_2171), and factors related to
carbohydrate metabolism, while reducing the expression of
genes for competence and adhesion (Gualdi et al., 2012; Allan
et al., 2014; Pettigrew et al., 2014; Paixao et al., 2015a; Paixao
et al., 2015b; Aprianto et al., 2018). Particle matters (i.e., Asian
sand dust, cigarette smoke and black carbon source) induce
biofilm formation hence Spn colonization of the human ME
epithelium in cell lines and in the ME of mouse OM model
(Hussey et al., 2017; Yadav et al., 2020). Genes for biofilm
formation (luxS), competence (comA, comB, ciaR), toxin
production (lytA and ply), detoxification, efflux pumps and
osmo-regulator transporters were up-regulated during
pneumococcal infection (Cockeran et al., 2014; Manna et al.,
2018; Yadav et al., 2020).

Mechanism in Gene Regulation:
Pheromone Peptide Signaling
Gene expression in Spn, in response to environmental stimuli, is
regulated and synchronized at a population-level through
quorum sensing or cell-cell communication systems that are
orchestrated by short peptide pheromone-mediated signaling
pathways. Three main types of pneumococcal cell-cell
communication systems have been discovered so far. They are
either mediated by (i) glycine-glycine (GG) peptides, (ii) peptides
that signal via RRNPP superfamily regulators, or (iii)
lanthionine-containing peptides, as depicted in Figure 2A. The
most well-studied pneumococcal GG peptide signaling is the
competence-stimulating peptide (CSP) that is autoinduced hence
actively secreted when the surrounding pH, hemoglobin, oxygen
levels, antimicrobial stress, and, finally, the bacterial cell density
is high (Gagne et al., 2013; Slager et al., 2014; Domenech et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
2018; Weyder et al., 2018; Paton and Trappetti, 2019; Akhter
et al., 2021). A sufficient level of the GG peptide eventually
signals the neighboring recipient pneumococci via a two-
component system (TCS) and alter their gene expression. The
CSP signaling is responsible for the induction of (i) competence
and transformation in Spn contributing to genetic diversity or as
nutrient source; (ii) bacteriocin peptides (CibAB, peptides of the
bacteriocin immunity region (BIR), and bacteriocin-inducing
peptide (BIP)) for microbial competition; and (iii) biofilm-
regulating peptide induced by competence (BriC) that induces
the biofilm formation and nasopharyngeal colonization in
animal models while altering the fatty acid biosynthesis in the
pneumococcal membrane homeostasis for increased adaptation
in the host (Valente et al., 2016; Wholey et al., 2016; Aggarwal
et al., 2018; Wang et al., 2018; Aggarwal et al., 2021).

Due to a low availability of glucose in the airways, Spn in the
nasopharynx and ME relies on the galactose and mannose
derived from the airway mucosal glycan lining, as a main
carbon source for energy metabolism and virulence (Paixao
et al., 2015a; Paixao et al., 2015b). Several recent studies have
unveiled the impact of carbohydrate utilization and metabolic
processes in Spn virulence, persistence, and infection at
nasopharynx, which involves a series of regulators (galK, galR,
hyl, ugl, lacD, nanA, eng, rafK, estA, and auto-inducer AI-2)
(Afzal et al., 2015; Mclean et al., 2020; Minhas et al., 2021).
Sensing of the host carbohydrates for environmental adaptation
is mainly carried out by pneumococcal short hydrophobic
peptide (SHP) and phosphatase regulator (Phr) that interact
with RRNPP superfamily of transcription regulator, regulator
gene of glycosyltrasferase (Rgg) and transcription factor
regulated by Phr peptide (Tpr), respectively. High abundance
of galactose and mannose stimulates SHP144 and SHP939 to
autoinduce, whereas induction of PhrA is more related to
galactose dependence (Junges et al., 2017; Zhi et al., 2018;
Motib et al., 2019). SHP144 and SHP939 imported into the
recipient neighboring pneumococci positively regulate their
cognate regulator, Rgg144 and Rgg939, respectively. This
results in the upregulation of regulons involved in
environmental adaptation (i.e., genes for replication and
translation, nucleotide metabolism, cell division, ion transport,
and capsule production) (Junges et al., 2017; Zhi et al., 2018;
Cuevas et al., 2019). The SHP144/Rgg144 signaling also
positively regulates the transcription of VP1, a novel virulent
GG-peptide of Spn that was highly expressed in chinchilla ME
effusions (Cuevas et al., 2017; Cuevas et al., 2019). VP1 activates
biofilm development, colonization, hyaluronic acid-dependent
attachment of Spn. On the other hand, PhrA imported into the
recipient pneumococci inhibits the repressor role of its cognate
regulator TprA, activating the transcription of genes for sugar
metabolism, neuraminidase activity, and locus of lanthionine-
containing peptide for microbial competition during
colonization (Hoover et al., 2015; Motib et al., 2017; Motib
et al., 2019). Lantibiotic-containing peptides (pneumolancidins,
Pld) are another class of pneumococcal bacteriocins that can
be autoinduced by histidine kinase receptor signaling in
response to the carbon source and cell density (Hoover et al.,
February 2022 | Volume 12 | Article 826018
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FIGURE 2 | Continued
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FIGURE 2 | Gene expression regulatory system in S. pneumoniae (Spn), and nontypeable H. influenzae (NTHi), and M. catarrhalis (Mcat). (A) Pneumococcal cell-cell
communication systems. Spn colonizing the upper airway mucosa (i.e., at nasopharynx and middle ear) form biofilm and interact with either neighbouring
pneumococcal or incoming clone of Spn via quorum sensing or cell-cell communication in response to surrounding stimuli (upper panel). Pheromone peptide
signalling pathways and their regulatory effect in gene expression during Spn cell-cell communication are shown in the lower panel. Pheromone peptides such as
double glycine peptides [GG peptide (i.e., CSP, BriC, VP1)] [as shown in pathway (a)], RRNPP-dependent peptides (i.e., SHR and Phr) [shown in (b)], and lanthionine
peptides (i.e., pneumolancidin PldA1-A4) (shown in (c)) are secreted by pneumococci and autoinduced in response to stimuli. Depending on the signal sequence
(SP) of the peptides, they are exported via ABC transporter or general secretory (SEC) pathway. The precursor peptide is proteolytically processed into active
peptide either during transportation by peptidase domain of ABC transporter or membrane-associated proteases, or after secretion via unknown extracellular
protease. At a sufficient level of the signalling peptide pheromone, they interact with their cognate cell receptors in recipient cells (peptide responder bacteria) such
as sensor kinase (SK) of two-component system (TCS) [shown in pathway (a) and (c)]. In canonical TCS, the sensor protein is a histidine kinase (i.e., ComAB, BlpAB
and PptAB) that detects exogenous signals, and subsequently, sends a phosphoryl group (yellow sphere) to the cognate response regulator protein (RR). The
phosphorylation of the regulator protein results in transcriptional regulation. Alternatively, some peptides such as bacteriocin CibAB and lanthibiotics (pneumolandin)
can activate recipient cell directly and induce bactericidal effect. As shown in pathway (b), for RRNPP-dependent peptides such as SHP (i.e., SHP144, SHP939 and
RgtS) and Phr (i.e., PhrA), they are transported into responder cell via oligopeptide permease system (i.e., AmiACDEF). Once inside the recipient cell, SHPs interacts
with their cognate binding partner, Rgg regulators (i.e., Rgg144, Rgg939, abd RgtR), resulting in DNA binding of Rgg and activation of transcription. On the other
hand, Phr peptides interact with Tpr regulators that are initially bound to DNA and inhibit the expression of the target gene. Binding of Phr to Tpr results in the
releasing of Tpr-mediated inhibition hence activates gene expression. Lastly, lanthionine-containing peptide such as pneumolandin (i.e., PldA1-A4) is processed and
translationally modified by intracellular modification enzyme such as LanM before transportation via ABC transporter (i.e., LanT) and detected by SK of responder
cells (i.e., LanA) [shown in pathway (c)]. This results in either phosphorylation of the response regulator for downstream activation of gene expression, or directly
causing bactericidal effect. ABC transporter, ATP-binding cassette transporter; Phr, phosphatase regulator; Rgg, regulator gene of glycosyltransferase; RRNPP, Rap,
Rgg, NprC, PlcR and PrgX; SHP, short hydrophobic peptide. (B) Schematic representation of gene regulatory mechanism in NTHi and Mcat. Phase variation [shown
in (a)] is caused by random mutations in a variable number of simple sequence repeats (SSR) within the open reading frame of DNA-methyl transferases (i.e., ModA
and ModM] that alters the gene expression of Mod. Thus, any changes in the variable number of the SSRs as a result of DNA mutation could cause frame shifts in
the ORF of modA and potentially lead to premature translation termination and generation of non-functional truncated ModA which is in the “OFF” mode (shown in
(b)]. On the other hand, the functional Mod (switched “ON”) [shown in (c)] methylates genomic DNA at specific sites that governs transcription in both ways, either by
inhibition or activation. The inhibition or activation of transcription depends on the methylated DNA sequence area that potentially bears the recognition sites for
regulatory molecules and enzymes. Moreover, the phase-variable number of SSRs [as shown in (d)] can also be found in the transcriptional promoter which, as a
result, switches between the “ON” or “OFF” expression status of the target gene (i.e., hia). In addition, transcriptional regulators [shown in (e)] can be activators (Act)
(i.e., OxyR, Fur) and/or repressors (Rep) (i.e., Fur) of transcription. The regulators are triggered by various stimuli. (f) Another type of transcriptional regulation is a TCS
(i.e., FirRS, mesSR, narX/narL) which consists of sensor kinase (SK) and response regulator proteins (RR). The activated regulatory proteins can cause transcription
activation and/or repression as described in (e). Finally [indicated in (g)], the genes are transcribed into RNA, followed by translation as protein. Alterations in gene
expression are manifested in a bacterial phenotype. Symbols used in panel (A, B) are defined at the bottom of this figure.
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2015; Maricic et al., 2016). This ultimately benefit pneumococci
to outcompete co-colonizing bacteria for space and nutrients
during colonization.

LuxS/AI-2-dependent quorum sensing system is also another
crucial gene regulatory system in Spn especially for biofilm
formation, genetic competence, and fratricide (Trappetti et al.,
2011; Yadav et al., 2018). The transcriptomic and mutagenesis
studies revealed that LuxS is the central regulator of genes
important for Spn virulence and persistence in carriage phase
and middle ear infections.

Non-Typeable Haemophilus influenzae
Non-typeable Haemophilus influenzae (NTHi) is a Gram-
negative coccobacillus without capsule that is genetically non-
clonal (Erwin et al., 2005; Whittaker et al., 2017). NTHi is part of
the nasopharyngeal commensal microbiota. The bacterial species
can also, however, cause airway infections such as OM. The
currently used vaccine specific to H. influenzae type b (Hib) is
not effective against NTHi. The pathogen is heme and
nicotinamide adenine dinucleotide (NAD) auxotroph, hence
requires exogenous supplementation of these elements for
growth (Jalalvand and Riesbeck, 2018; Su et al., 2018).

Gene Expression During Colonization
Similarly to Spn, NTHi colonizing the human airway needs to
overcome the harsh environmental conditions in the host in
order to establish a fulminant infection. Proteomic analysis on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
NTHi infecting the chinchilla ME revealed the altered expression
of 28 bacterial proteins involved in carbohydrate and amino acid
metabolism, redox homeostasis, and cell wall-associated
metabolic proteins (Harrison et al., 2016). This implies the
utilization of glucose by NTHi for aerobic respiration during
animal AOM.

Inflammation triggered in the ME upon infection leads to
activation of nutritional immunity (Szelestey et al., 2013). This
results in the sequestration and restriction of free metal ions
available for NTHi iron/heme-dependent metabolic enzymes,
regulatory proteins, and aerobic respiration that are essential for
bacterial ME colonization (Szelestey et al., 2013; Harrison et al.,
2016). Since NTHi is heme-iron auxotroph, the pathogen
develops a plethora of iron/heme acquisition mechanisms in
response to the host nutritional immunity. This includes the
upregulation and expression of a series of core iron- and heme-
responsive genes which some are regulated by the NTHi ferric
uptake regulator (Fur) (Figure 2B) and RNA chaperon Hfq
(Harrison et al., 2013; Hempel et al., 2013; Whitby et al., 2013).
This in turn promotes the colonization persistence and virulence
factor expression in NTHi when infecting the chinchilla ME.
Besides the iron uptake genes, Fur also regulates the
transcription of small RNA HrrF that is important for
molybdate uptake, deoxyribonucleotide synthesis and amino
acid biosynthesis (Santana et al., 2014). The high abundance of
iron/heme also activates the promoter activity of pilA, hence the
expression of subunit PilA for the type IV pilus that is essential
February 2022 | Volume 12 | Article 826018
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for NTHi adherence and biofilm formation (Mokrzan et al.,
2019). Moreover, the co-culture with Spn enhances pilA
expression in NTHi and biofilm formation as well (Cope et al.,
2011). Biofilm formation is crucial for NTHi colonization in OM,
and the biofilm is also regulated by a TCS transduction system
named QseBC/FirRS (ferrous iron responsive regulator/sensor)
(Figure 2B), which is responsive to low temperature and
availability of nutrients (ferrous iron and zinc) (Steele et al.,
2012; Unal et al., 2012; Van Hoecke et al., 2016). In addition,
high pH in the ME during OM promotes biofilm formation and
expression of virulence factors for iron acquisition (Ishak
et al., 2014).

Beside the nutritional immunity, NTHi also needs to combat
oxidative stress such as reactive oxygen species (ROS) and
reactive nitrogen species (RNS) generated by the airway
immune defense. Hence, NTHi upregulated the expression of
OxyR regulon (antioxidant enzymes (peroxiredoxin (PgdX) and
catalase (HktE)) as shown in the chinchilla ME (Whitby et al.,
2012; Parrish et al., 2019).

Mechanism in Gene Regulation:
Phase Variation
Phase variation is one of the most studied gene regulation
mechanisms in NTHi. It is widely used by NTHi to regulate
the expression of virulence factors that are crucial for bacterial
colonization at specific niches. Phase variation is a random
molecular event that enable a specific gene expression to be
reversibly switched “ON” and “OFF”. This mechanism is based
upon the DNA mutation that results in the formation of variable
number of simple sequence repeats (SSR) in the genome
(Srikhanta et al., 2005) (Figure 2B).

In NTHi, N6-adenine DNA-methyltransferase (ModA) is one
of the proteins that have a phase variable expression. The enzyme
which is part of the type III restriction-modification (R-M)
system methylates bacterial chromosomal DNA at a specific
site on the genome, mediating epigenetic regulation
(Gawthorne et al., 2012). ModA is encoded by a modA allele.
Up to 21 allelic variants of modA (modA1-21) exist in NTHi
clinical isolates taken from COPD patients and children with ME
infection or OM (Atack et al., 2015a; Atack et al., 2019).
However, among the identified modA allelic variants, 65% of
the isolates carry one of just 5 phase-variable modAs, namely
allelic variant of modA2, 4, 5, 9, or 10 (Fox et al., 2007; Atack
et al., 2015a). These alleles contain different numbers of SSRs and
hence can alter the expression of ModA. The phase variation of
these alleles impacts (i) the gene expression of (a) known NTHi
virulence major outer membrane proteins (P2, P5, P6, and
HMW) (modA2, 4, 5, 9, and 10-dependence) and (b) NTHi
proteins involved in antibiotic resistance (modA2, 5 and 10), and
(ii) evasion of opsonophagocytic killing (modA4).

In response to the alkaline pH environment occurred in the
ME during OM, ModA2 of NTHi mediates the formation of a
bacterial biofilm that has greater biomass and stable structure
which are critical for NTHi pathogenesis in vivo (Atack et al.,
2015a; Brockman et al., 2018). NTHi with phase variable modA2
expression (reversibly switch between “ON” and “OFF”) has
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
survival and adaptational advantages for colonization at
chinchilla ME over an isogenic strain that is unable to phase
vary their ModA2 expression. This is explained by the fact that
NTHi carrying modA2 that is permanently “OFF” or “ON” is
more susceptible to macrophage and neutrophil killing,
respectively; whereas strains carrying phase variable modA2
(switchable from “OFF” to “ON”) may alter their virulence
factor expression for increased antigenic variation hence
evasion of the host defense (Brockman et al., 2016; Robledo-
Avila et al., 2020). Collectively, the methylation-dependent gene
regulation mediated by modA influences the virulence of NTHi
especially during infection at ME. In addition, to avoid the host
immune system during invasive infection, NTHi also alters the
expression of Hia, an immunogenic adhesin, by changing the
length of polythymidine tract on the hia promoter (Atack et al.,
2015b). SSR-dependent phase variation is also used by NTHi for
persistence and adaptation in the pathogenesis of other airway
infections such as COPD (Poole et al., 2013; Pettigrew et al.,
2018; Fernandez-Caldet et al., 2021).

Moraxella catarrhalis
Moraxella catarrhalis is aGram-negative respiratory opportunistic
pathogen. It is categorized into two distinct lineages based on 16S
rRNA sequence: (i) ribotype (RB) 1 which comprise of∼80-90%of
isolates associated with adherence and serum resistance; (ii) RB2
and RB3 strains that are detected in ∼10-20% isolates (Bootsma
et al., 2000; Verhaegh et al., 2011).

Gene Expression During Colonization
Regulation in gene expression of virulence factors is crucial for
Mcat colonization and long-term survival within the host in the
human airways. There are a range of extrinsic stimuli that this
pathogen must contend with, such as low temperature and iron
restricted conditions within the human airway. The
environmental factors affect the expression of Mcat major
outer membrane proteins that are the key to efficient
colonization (Jetter et al., 2010; Spaniol et al., 2011). Notably,
genes of resistance-nodulation-division (RND) multidrug efflux
systems (acrAB and oprM) are upregulated at nasopharyngeal
temperature (26°C) (Spaniol et al., 2013). Deletion of acrAB and
oprM caused Mcat to lose up to 50% invasion capacity on human
pharyngeal epithelial cells (Spaniol et al., 2015).

PilA that mediates Mcat in vivo colonization in the chinchilla
model was the earliest adhesin to be investigated (Luke et al.,
2007). Hoopman et al., further elucidated the Mcat colonization
via DNA microarray analysis which showed the upregulated
genes involved in the oxidative stress response, denitrification
pathway, in addition to an uncharacterized gene (ORF1550) that
is crucial for Mcat persistence (Hoopman et al., 2012). Other
well-known adhesin-encoding virulence genes, such as uspA1,
uspA2, uspA2H,mid/hag andmcaP,mha/mch andmcm also play
important roles in protecting Mcat from the serum bactericidal
effect by interfering with the host complement pathway factors
(Singh et al., 2016; Riesbeck, 2020). A mutation study revealed
the impact of an outer membrane lipoprotein (ORF113) on the
survival of Mcat in chinchilla (Wang et al., 2014).
February 2022 | Volume 12 | Article 826018
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Several Mcat virulence factors are growth phase dependent.
The strain Mcat RH4 displayed increased expression of mid/hag
during the lag and stationary phases but fell to lower levels
during exponential phase (Riesbeck and Nordstrom, 2006; De
Vries et al., 2010). MID/Hag protein is probably essential for
initial colonization but not for proliferation. In a separate study,
the downregulated expression of mid/hag and uspA2 occurred
during infection in chinchilla (Hoopman et al., 2012). MID/Hag
expression was also reduced during persistent colonization of
Mcat in COPD patients (Murphy et al., 2019). It appears that
reducing the profusion of surface proteins could aid Mcat to
avoid host recognition.

One of the main modes of Mcat colonizing the ME during
infection is via biofilms. The synergistic relationship Mcat has
with its co-colonizing pathogens increases OM incidence
(Blakeway et al., 2018). Mcat secretes beta-lactamase-
containing outer membrane vesicles (OMVs) in biofilms which
protects co-colonizing pathogens from beta-lactam antibiotics
(Armbruster et al., 2010; Schaar et al., 2013). There are
interesting facets of biofilm formation which include the
quorum-sensing systems found in Spn, NTHi and Mcat.
Armbruster et al. established the compensation effect of the
NTHi luxS gene (interspecies quorum signaling factor) in aiding
Mcat for persistence in chinchilla since the latter species does not
possess a luxS homolog (Armbruster et al., 2010; Mokrzan
et al., 2018).

Mechanism in Gene Regulation: Phase
Variation and Two-Component System
Once Mcat has colonized the host, bacteria regulate the
expression of its cell surface components by phase variation.
The phase variation mechanism that has been widely studied in
Mcat is performed by several DNA methyltransferases including
ModM. The DNA methyltransferases are part of R-M system
that master mind the gene regulation in Mcat during infection
(Blakeway et al., 2018; Phillips et al., 2019) (Figure 2B).

Similar to NTHi, Mcat also carries multiple allelic variants of
modM (modM1-6). The most common allele ofmodMpresent in
Mcat isolates is modM2 which regulates genes associated with
colonization and host immune evasion (Blakeway et al., 2019).
Although themodM3 allele is commonly found within the minor
lineage RB2 and RB3 of Mcat strains, the ModM3
methyltransferase is prevalent in Mcat clinical isolates taken
from children with OM (Blakeway et al., 2014). Extensive
methodologies were used including single molecular real-time
(SMRT) methylome analysis to ascertain the methylation activity
of ModM3. Also, RNASeq analysis revealed that ModM3 alters
the expression of genes involved in biofilm formation, anaerobic
tolerance, nitrosative and oxidative stress responses. Specifically,
in response to host immune defense-derived nitrosative and
oxidative stress, Mcat with “ON” variant of modM3
upregulated the expression of genes narX/narL, and a
predicted AhpC/TSA family peroxiredoxin RS03200,
respectively (Blakeway et al., 2019). Additionally, in a recent
study aiming to reveal the correlation between serum resistance
and phase variation, Mcat strains that survived in human serum
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
have higher mRNA levels of uspA2 whereas mid/hag and uspA1
showed reduced expression over a longer time of exposure to the
human serum (Tan et al., 2020). Under this selection pressure,
variable SSR tract lengths that regulate transcription hence phase
variation in uspA1, uspA2 and mid/hag is likely to occur.
Antigenic variation of outer membrane proteins is another
strategy of Mcat for host immune evasion (Murphy et al.,
2019; Tan et al., 2020).

Another gene regulatory mechanism of Mcat is the TCS
signaling systems (Figure 2B). mesR is a gene of this signalling
system, and potentially regulates expression of two lysozyme
inhibitor genes as a defence against the host immune response
(Joslin et al., 2015). Another example of TCS is the narX/narL
involved in denitrification pathway. This system counteracts
reactive nitrogen species produced exogenously and could
possibly ensure Mcat survival under anaerobic conditions
(Blakeway et al., 2019).
CONCLUSION

The ability to overcome environmental challenges during
colonization inside the host is crucial for bacterial survival and
persistence, hence establishment of infection. Spn senses the
environmental stimuli and regulates its gene expression through
short peptide pheromone-mediated signallingpathways andLuxS/
AI-2-dependent quorum sensing system. This enables Spn to
regulate the switch between biofilm and planktonic phenotype
for colonization or invasion, respectively; genetic competence, and
fratricide activities, and expression of regulons involved in
environmental adaptation and evasion of host immune system.
On the other hand, in addition to transcriptional regulators, gene
regulation in NTHi and Mcat is mainly mediated via phase
variation mechanisms that reversibly switches the expression
“ON” or “OFF” of the target genes. The system is based on the
presence of the variable number of SSRs, as a result of slipped-
strand mispairing that occurred either on the promoter or within
theORF, orboth, of the target gene.This enablesNTHi andMcat to
regulate their biofilm formation, adherence, serum resistance and
other virulence phenotype according to growth phase or in
response to selective pressure caused by host immune response.
The findings discussed in this review could help to improve our
understanding regarding the gene expression governing system in
these pathogens and can be a potential target of future
antimicrobial intervention strategy against Spn, NTHi and
Mcat infection.
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