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Summary: Alcohol dependence is a common mental disorder that is associated with substantial disease 
burden. Current efforts at prevention and treatment of alcohol dependence are of very limited effectiveness. 
A better understanding of the biological mechanisms underlying dependence is essential to improving the 
outcomes of treatment and prevention initiatives. To date, most of the efforts have focused on the key role 
of the dopamine system in the complex etiological network of alcohol dependence. This review summarizes 
current research about the relationships between alcohol consumption and the dopaminergic system. We 
find that many of the currently available studies have contradictory results, presumably due to differences 
in methodology, non-linear dosage effects, use of different samples, and the possible confounding effects of 
other neurotransmitter systems. 
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1.	 Introduction
Alcohol is one of the most widely used psychoactive 
substances in the world. Alcohol-induced changes 
in brain functions can lead to disordered cognitive 
functioning, disrupted emotions and behavioral 
changes. Moreover, these brain changes are important 
contributing factors to the development of alcohol use 
disorders, including acute intoxication, long-term misuse 
and dependence. According to a survey sponsored by 
the World Health Organization, approximately 50% of 
the world adult population drank alcohol in 2004 and 
76 million individuals met criteria for alcohol-related 
mental or behavioral disorders listed in the 10th Revision 
of the International Statistical Classification of Diseases 
and Related Health Problems (ICD-10).[1] A report on 
the relative contribution of different conditions to 
the ‘global burden of disease’ (which considers both 
premature mortality and disability) found that in 2010 
alcohol ranked third out of the 25 major causes of the 
global burden of disease. In high-income countries the 
relative importance of alcohol-related health problems 
compared to other health problems is usually greater 
than in low- and middle-income countries.[2] Alcohol 
dependence, one of the most important alcohol-related 

conditions, is widely recognized as a growing global 
problem with serious medical, economic and social 
consequences.

Ethanol is a liposoluble neurotropic substance 
which penetrates the blood-brain barrier and inhibits 
central nervous system (CNS) functions; it is directly 
toxic to the brain. The etiology and pathology of alcohol 
dependence is the outcome of a complex interplay 
of biological, psychological and socio-environmental 
factors. CNS neurotransmitters play an important role in 
the development of alcohol addiction. Previous studies 
identified a wide range of neurotransmitters related 
to alcohol metabolism including dopamine, 5-HT, 
γ-aminobutyric acid, glutamate, endogenous opioid 
transmitter, acetylcholine and norepinephrine.[3] This 
review summarizes research progress in understanding 
the relationships linking the dopaminergic system and 
alcohol consumption. 

2.	 The dopamine system and brain reward circuitry
The dopamine (DA) system in the CNS includes the 
nigrostriatal pathway, the mesolimbic pathway and 
the tuberoinfundibular pathway. Dopamine is mainly 
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studies also found that alcohol withdrawal is related to 
reduced release of DA in the striatal.[19] This suggests 
that the negative mood during alcohol withdrawal is 
related to the inhibition of DA in the limbic system and 
that the voluntary alcohol intake of animals experiencing 
withdrawal may be reinforced by restoration of DA 
levels in relevant brain areas after re-initiation of alcohol 
intake.

Researchers have successfully bred several lines of 
rats to aid in research about alcohol use and alcohol 
dependence[4,20]: (a) alcohol-preferring (P) / alcohol-
nonpreferring (NP) rats; (b) high-alcohol-drinking (HAD) 
/ low-alcohol-drinking (LAD) rats; (c) University of Chile 
bibulous (UChB) /University of Chile abstainer (UChA) 
rats, (d) Alko alcohol (AA) / Alko non-alcohol (ANA) rats, 
(e) Sardinian alcohol-preferring (sP) / Sardinian alcohol–
nonpreferring (sNP) rats, (f) high alcohol consuming 
(HARF) / low alcohol consuming (LARF) rats and so forth. 
Alcohol-preferring rats are of special importance for 
research on the role of DA in alcohol preference because 
rats highly susceptible to alcohol dependence have 
defects of the DA system in the mesolimbic pathways.[4,20-

22] Using these rat models, researchers have located lower 
extracellular baseline DA levels in the cerebral cortex 
and NAc in P rats;[21,22] in the striatal, olfactory tubercle 
and NAc in HAD rats;[22,23] and in the NAc in UChB rats.[24] 
Smith and Weiss[25] injected ethanol intraperitoneally 
to P rats, NP rats and genetically heterogeneous Wistar 
rats for five consecutive days and found elevated 
extracellular DA levels in P rats and Wistar rats but not 
in NP rats. Bustamante and colleagues[20] found that 
intraperitoneal injection of saline water to UChB and 
UChA did not induce any changes in the extracellular 
DA levels in the NAc, but injection of ethanol induced 
significant increase in DA levels in both lines of rats. 
Furthermore, ethanol affects the release of DA in the 
CNS more in UChB rats than UChA rats. Tuomainen and 
colleagues found[26] that microdialysis of ethanol (of 
varying concentrations) in the NAc area induced dose-
related increases in extracellular levels of DA among AA 
and ANA rats, and the inceases in AA rats were more 
than those in ANA rats. Katner and Weiss[27] studied 
HAD/LAD, AA/ANA, and Wistar rats, and found elevated 
extracellular basal DA levels induced by intraperitoneal 
injection of ethanol; moreover, the degree of elevation 
of DA levels predicted subsequent alcohol drinking 
behavior. In summary, these studies suggest that 
ethanol-induced increases in extracellular DA in the CNS 
NAc and amygdala play a role in ethanol preference. 

Not all studies support this conclusion. Some 
experiments found no difference in DA release in the 
NAc after intraperitoneal injection of ethanol between 
P and NP rats. For example, Yoshimoto and colleagues[11] 
and Gongwer and colleagues[23] found that although 
HAD and LAD rats differed in their basal level of 
extracellular DA, they did not differ in CNS DA release 
after intraperitoneal injection of ethanol. Similarly, 
Kiianmaa and colleagues[28] found no differential 
increase of extracellular DA concentration in the NAc 
between AA and ANA rats after microdialysis of ethanol. 

produced in the substantia nigra, projected along the 
nigrostriatal pathways and stored in the striatum. Five 
subtypes of DA receptors have been identified and 
cloned. All of them function both individually and 
interactively as G-protein coupled receptors. 

There has been continuous research since the 
1970s on the role DA plays in the brain reward system. 
The reward reinforcement circuitry is part of the limbic 
system that includes the ventral tegmental area (VTA), 
nucleus accumbens (NAc), ventral striatum, bed nucleus 
of the stria terminalis, hippocampus, amygdale, and 
other brain structures. DA is the main neurotransmitter 
of this system.[4-8] The reward system modulates primary 
physiological functions related to survival including the 
intake of food and water and sexual behavior. It is also 
the target of psychoactive substances including alcohol, 
cocaine, amphetamine and opioids. The mesolimbic DA 
pathway (the NAc is the central regulation structure for 
the reward effect) and the mesocortical pathway are the 
key structures that modulate the reward reinforcement 
circuitry.[4-8]

3.	 Influence of alcohol consumption on the 
dopaminergic system

Several studies have confirmed a dose-response 
relationship between alcohol intake and DA release 
in the NAc.[9-11] Other experiments have also found 
that injection of ethanol in the NAc induces local 
DA release in a dose-response fashion.[11-12] In 2000 
Yoshimoto and colleagues[13] reported a dose-
related elevation of extracellular DA levels in the 
amygdala after intraperitoneal injection of ethanol 
and a delayed elevation of DA after ethanol injection 
in the central amygdaloid nucleus via a microdialysis 
membrane.[13] These results suggest that the amygdala, 
part of the reward circuitry, plays a central role in 
the alcohol-induced effects on the brain. Yim and 
colleagues[14] documented the process of DA release 
in the brain induced by various doses of ethanol (0-2.0 
g/kg). They found that extracellular DA levels did not 
respond to ethanol in a linear fashion with high doses (1 
and 2 g/kg); the DA level returned to baseline within 90 
minutes while the ethanol level was still elevated.[14] This 
suggests acute tolerance to ethanol-induced DA release 
in the NAc and that ethanol-induced DA release is 
dependent on the concentration of ethanol. Research by 
Yim and Gonzales[10] exploring the underlying mechanism 
of ethanol-induced DA release using animal models 
found that ethanol increases DA via the promotion 
of synaptic terminal DA release rather than via the 
inhibition of DA transporters.[10] Other studies found that 
ethanol can also indirectly increase DA levels by affecting 
GABAergic neurons and opioid receptors in the NAc.[15-17] 

Other lines of research related to alcohol withdrawal 
reinforce this model of alcohol-related changes in DA. 
Electrophysiological studies found that acute ethanol 
intake can increase DA neuron discharge in the nigra and 
VTA; this discharge is reduced during alcohol withdrawal 
and restored after restarting ethanol intake.[18] Animal 
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These varying results may be due to the use of different 
animal models or different research protocols.   

Methylphenidate (MP) is a stimulant that inhibits the 
DA transporter and increases the level of extracellular 
DA;[29] some researchers suggest that this is associated 
with the subjective feeling of being ‘high’.[30] Positron 
emission tomography (PET) using radiolabelled 
raclopride (11C-RAC)—a D2 antagonist that competes 
with endogenous DA – can be used to observe changes 
in extracellular DA levels. Using this method, MP was 
found to decrease the binding of 11C-RAC to receptors 
in a dose-responsive fashion which indirectly suggested 
an increased binding of DA to receptors; moreover, 
the magnitude of DA release was positively correlated 
with the intensity of MP-induced subjective feeling of 
being ‘high’.[30] Recently, Setiawan and colleagues have 
found decreased binding of 11C-RAC to DA receptors 
(which suggest increased extracellular DA levels) among 
youths at high risk for alcohol dependence.[31] This 
finding in humans parallels the animal studies by Katner 
and Weiss;[27] both sets of studies provide support for 
a quantitative dose-response relationship between 
DA functioning and the intensity of the reward effect 
after the intake of psychoactive substances (including 
alcohol).

In addition to the effect of ethanol on DA release, 
it can also affect the functioning of DA receptors, 
particularly D2 and D1 receptors. The D1 receptor 
binds with excitatory G protein and activates adenylate 
cyclase (AC) via Gs; AC catalyzes the production of cAMP 
and cAMP regulates cAMP-dependent protein kinases 
to open calcium ion channels. D2 receptors bind with 
inhibitory G protein and thus reduce the production of 
AC and resulting cAMP.

Several animal studies report reduced D2 receptor 
concentration among P rats compared to NP rats in the 
olfactory tubercle, caudate putamen, NAc, VTA, and 
the cortex.[32-34] Based on these findings, researchers 
have inferred a connection between the reduced D2 
receptor density in the limbic system and preference for 
alcohol. This hypothesis has been supported by clinical 
studies using PET scans that report a 20% reduction 
in striatal D2 receptor efficiency (i.e., the ratio of D2 
receptor density and affinity) in individuals with alcohol 
dependence compared to controls.[35-36] Another study 
using single-photon emission computed tomography 
(SPECT) found low D2/D3 receptor affinity in the left 
temporal cortex among individuals with Type I alcohol 
dependence.[37] Using whole-hemisphere autoradiography 
(WHA), researchers found that compared to controls 
individuals with Type I alcohol dependence had a 20% 
reduction of D2/D3 receptor affinity in the NAc region 
and a 41% reduction in the amygdala.[38] Results from an 
endocrinological study also showed decreased CNS D2 
affinity in alcohol dependence.[39]  

Studies about the relationship of D1 receptors 
and affinity for alcohol have had inconsistent results. 
A study reported higher striatal D1 receptor efficiency 
among alcohol preferring C57BL/6J mice compared 

to non-alcohol preferring DBA/2J mice.[40] Other 
studies using autoradiography techniques found no 
statistically significant differences in D1 receptor affinity 
at multiple sites in the mesolimbic and nigrostriatal 
regions between P and NP rats[41], between HAD and 
LAD rats[42] or between AA and ANA rats.[43] A clinical 
study using autoradiography found a 23% reduction in 
D1 receptor affinity in the NAc region among individuals 
with Type I alcohol dependence and a 14% reduction 
in D1 receptor affinity among individuals with Type II 
alcohol dependence compared to controls, but these 
differences showed no statistical significance.[44] Clearly, 
more research is needed to clarify the relationship 
between the D1 receptor and alcohol dependence.

4.	 Influence of dopaminergic system to alcohol 
consumption 

Several studies have shown that changes in the DA 
system in the CNS can influence drinking behaviors 
both in animals  and in humans.  Early  animal 
models have shown that injection of the neurotoxin 
6-hydroxydopamine (6-OHDA) in the ventricle or in other 
brain regions destroys dopaminergic neurons. In 1975, 
Myers and Melchior found that CNS DA level decreased 
and rats showed a lower preference for alcohol after 
bilateral cerebral ventricle injection of 6-OHDA.[45] More 
recently, Ikemoto and colleagues[46] found that bilateral 
injection of 6-OHDA in the NAc area of alcohol-naïve rats 
(compared with sham-operated controls) induced a 60% 
decline in alcohol consumption a week later and a 30% 
decline three weeks later. On the other hand, Quarfordt 
and colleagues found that selective destruction of 
the NAc and tuberculum olfactorium using 6-OHDA 
increased drinking behavior in rats.[47] Yoshimoto and 
colleagues found similar results in rats after injection of 
6-OHDA in the NAc[48] and ventricle.[49] The subsequent 
increase in alcohol consumption after injection of 
6-OHDA in these studies may either be the result of 
direct destruction of the mechanism that results in 
tolerance or the result of compensatory drinking due 
to 6-OHDA-induced damage to DA neurons. In order to 
pinpoint the specific mechanism, Lanca performed fetal 
dopaminergic transplants of ventral mesencephalon and 
found increased DA levels and a 40 to 50% reduction 
in voluntary alcohol intake; in contrast, this effect was 
not observed in rats receiving a sham-operation with 
dopamine-poor transplants.[50] These studies clarified 
the inverse relationship between DA activities and 
alcohol consumption, supporting the hypothesis which 
suggests that increased alcohol intake after 6-OHDA-
induced damage is compensating for the damage to DA 
neurons.

Research about the influence of DA receptor 
agonists and antagonists on alcohol consumption 
has had inconsistent results. Some studies find that 
injection of d-amphetamine (a non-specific DA receptor 
agonist) or quinpirole (a specific D2/D3 receptor 
agonist) in the NAc area can increase the frequency of 
alcohol-related reinforcement behaviors.[51] And local 
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injection of raclopride (RAC, a specific D2/D3 receptor 
antagonist) reduces alcohol-related reinforcement 
behaviors.[52] These results both support hypotheses 
about the positive correlation between DA activity 
and alcohol reinforcement. However, other studies 
using microinjection have found that both DA receptor 
agonists and antagonists can reduce voluntary alcohol 
intake in animal models.[52-54] For example, Samson and 
Hodge[52] found that administration of the antagonist 
RAC in the NAc reduced voluntary drinking in a dose-
response fashion, while local injection of the agonist 
quinpirole in the VTA also reduced voluntary drinking. 
Kaczmarek and Kiefer found that local injection 
of amphetamine or RAC in the NAc both reduced 
ethanol intake in rats.[53] Hodge and colleagues found 
a bidirectional effect of quinpirole injected in the NAc 
area on voluntary alcohol intake: quinpirole increased 
alcohol intake at lower dosages and decreased alcohol 
intake at higher dosages.[54] The underlying mechanism 
of this bidirectional effect may be that presynaptic 
receptors are only activated when quinpirole reaches a 
certain concentration, after which point there is a dose-
related inhibition of DA. This highlights the importance 
of dosage when studying the relationship between 
drinking and DA receptor agonists and antagonists.

5.	 Gene variants related to DA systems and alcohol 
dependence

Twin studies, linkage studies and large-sample 
prospective population studies have found that genetic 
factors play important roles in the development of 
alcohol dependence. Two groups of genes have been 
related to alcohol dependence. One group of genes 
encode enzymes involved in alcohol metabolism, 
including alcohol dehydrogenase, aldehyde dehydro-
genase and cytochromes P4502E1. The second group of 
genes encode neurotransmitters (and the receptors for 
these neurotransmitters) that respond to alcohol and its 
metabolites, (e.g., DA, GABA, 5-HT, and opium).[55] D1, 
D2 and D4 receptors and DA transporter polymorphisms 
have been shown to play a role in alcohol dependence, 
but there remains controversy about the pathways via 
which these effects are produced. In 1990 Blum and 
colleagues first proposed that: “the D2 receptor A1 
allele is closely related to the development of alcohol 
dependence”. They found that the D2 receptor A1 allele 
was associated with a 8.7 higher odds of developing 
alcoholism.[56] This finding has been replicated by many 
case-control studies and other works have shown that 
gene polymorphisms that inhibit the expression of 
the D2 receptor are associated with increased risk of 
alcohol dependence.[57,58] In support of this hypothesis, 
a recent study found increased alcohol intake among 
D2L receptor knock-out mice.[59] In contrast, other 
studies failed to find any association between the D2 
receptor and alcohol dependence.[60,61] Possible reasons 
for these contradictory findings include differences in 
sample characteristics (e.g., types of alcohol dependence, 
selection of controls, and race/ethnicity) and other 
methodological differences across studies. Parallel 

work with D1 receptors by El-Ghundi and colleagues 
found lower alcohol preference and intake among D1 
knockout mice compared to wild-type mice.[62] Using 
a case-control design, Zhong and colleagues studied 
three genetic polymorphisms of D2 (TAQI A, TAQI B, 
-141CINS/DEL), the 48bp variable number tandem 
repeat (VNTR) of the 3rd exon of the D4 receptors, and 
the 40bp VNTR of the non-coding region at the end of 
the DA transporter gene 3’ in a sample of Chinese Han 
individuals living in Yunnan province. They found that 
the D2 TaqIB genotype and allele frequencies were 
associated with alcohol dependence and that carriers of 
the B2 allele had a lower risk of alcohol dependence, but 
no differences were found for the other polymorphisms 
between cases and controls.[55]

6. Summary and prospect

Anatomy, physiology, pharmacology, and behavior 
studies have found ample evidence for the connection 
between the neurotensin (NT) and DA systems. A case-
control study conducted by our research team[63] in 
a sample of Chinese Han individuals found that the 
GG genotype of the single nucleotide polymorphism 
(SNP) rs6011914C/G and the G allele and GG genotype 
of the SNP rs2427422A/G of the NTR1 receptor 
were associated with alcohol dependence; linkage 
disequilibrium was found between rs6090453C/G, 
rs6011914C/G and rs2427422A/G; and the haplotypes 
rs6090453C/rs6011914C/rs2427422A and rs6090453C/
rs6011914C/rs2427422G were found associated with 
alcohol dependence.[63] These findings suggest that 
the NT system may affect the development of alcohol 
dependence via the dopaminergic system and shed 
some new light on the mechanism linking the DA system 
functioning to alcohol dependence.

Animal studies have found that selective D2 receptor 
agonist bromocriptine can reduce alcohol intake and 
acute ethanol tolerance in alcoholic rats.[64] Clinical studies 
also found that bromocriptine can relieve symptoms of 
alcohol dependence and related problems in humans.[65] 
In contrast, another study reported the treatment effect 
of tiapride, a selective D2/D3 receptor antagonist, in 
alcohol dependence.[66] Other double-blinded placebo-
controlled studies did not find any treatment effect 
of either DA agonist[67] or antagonist [68] compared to 
placebos, and documented some serious side effects 
of the drugs. Given these contradictory findings, 
dopaminergic drugs have not been recommended for 
the clinical treatment of alcohol dependence. Currently, 
the United States Food and Drug Administration 
(FDA) has approved acamprosate, tetraethylthiuram 
disulfide (TETD, disulfiram) and naltrexone as treatment 
mediations for alcohol dependence and alcohol misuse. 
The mechanism of action of these agents is related to 
their effects on the CNS glutamatergic system.[69,70] 

All psychoactive drugs can activate the mesolimbic 
DA system, but the DA system is not the only system 
involved in the positive reinforcement network in the 
NAc. Previous research about the neurobiochemisty 
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of alcohol dependence has focused on the DA system, 
but many of the findings have been contradictory. 
This may be related to varying methodologies, to non-
linear dosage effects, to non-transferability of animal 
results to humans, to different target groups (most 
previous studies have used samples from Western 
countries), and to the possible confounding effects of 
other inter-related neurotransmitter systems. Further 
research aimed at clarifying the interaction between 
the DA system, the glutamatergic system and other 
neurotransmitter systems is needed before it will be 
possible to improve the effectiveness of interventions 
for preventing and treating alcohol dependence. 
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摘要：酒精依赖是一种常见的精神疾病，社会危害大，
疾病负担重。目前致力于酒精依赖的预防和治疗的研
究取得的成果比较有限。为了进一步完善酒精依赖的
治疗和预防措施，有必要对酒精依赖潜在的生物学机
制进行深入探究。迄今为止，针对酒精依赖错综复杂
的病因学的研究，大部分聚焦于多巴胺系统的关键作
用。本综述总结了目前国内外对饮酒行为与多巴胺能
系统之间关系的研究，发现研究结果并不一致，甚至

相互矛盾，可能是由于方法学的差异、非线性的剂量
效应、样本的选取差异以及多巴胺系统与其它神经递
质系统之间可能存在交互作用等因素造成。

关键词：多巴胺，酒精依赖，神经生化，综述
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