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Abstract

Proteins are typically denatured and aggregated by heating at near-boiling temperature.

Exceptions to this principle include highly disordered and heat-resistant proteins found in

extremophiles, which help these organisms tolerate extreme conditions such as drying,

freezing, and high salinity. In contrast, the functions of heat-soluble proteins in non-extremo-

philic organisms including humans remain largely unexplored. Here, we report that heat-

resistant obscure (Hero) proteins, which remain soluble after boiling at 95˚C, are wide-

spread in Drosophila and humans. Hero proteins are hydrophilic and highly charged, and

function to stabilize various “client” proteins, protecting them from denaturation even under

stress conditions such as heat shock, desiccation, and exposure to organic solvents. Hero

proteins can also block several different types of pathological protein aggregations in cells

and in Drosophila strains that model neurodegenerative diseases. Moreover, Hero proteins

can extend life span of Drosophila. Our study reveals that organisms naturally use Hero pro-

teins as molecular shields to stabilize protein functions, highlighting their biotechnological

and therapeutic potential.

Introduction

Proteins are polymers composed of 20 different amino acids, whose side chains have various

properties such as aliphatic, aromatic, acidic, basic, and sulfur-containing. This diversity allows

proteins to fold into three-dimensional structures, which determine their activity and function.

Although proteins are generally stable at the physiological temperature or even at
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approximately 50–60˚C [1], heating at near-boiling temperature destroys structures and

induces denaturation and aggregation for most proteins. However, there are some exceptions.

For example, tardigrade disordered proteins (TDPs), found in the supernatant of tardigrade

lysate after boiling [2], are required for tardigrades to survive desiccation [3]. Another example

is late embryogenic abundant (LEA) proteins in plants, whose expression is associated with

their tolerance to dehydration, freezing, or high salinity [4,5]. LEA proteins are also found in

extremophiles including the radiation-resistant bacterium Deinococcus radiodurans and desic-

cation-tolerant animals such as Artemia, Caenorhabditis elegans, and rotifers [6,7]. TDPs and

most LEA proteins are extremely hydrophilic and heat soluble, and can be classified into

intrinsically disordered proteins (IDPs). Currently, these heat-resistant proteins are viewed as

special cases required by organisms living in extreme conditions to protect their functional

proteins. Although mammals have been reported to produce some highly heat-soluble proteins

[8,9], their functions remain largely unexplored.

Here, we show that a class of heat-soluble proteins, which we call “Hero” (heat-resistant

obscure) proteins, are widespread in non-extremophilic animals such as Drosophila and

humans. Hero proteins act as molecular shields to protect various “client” proteins from dena-

turation even under stress conditions, such as heat shock, desiccation, and exposure to organic

solvents. Moreover, Hero proteins can suppress several forms of pathogenic protein aggregates

in cells and in in vivo models for neurodegenerative diseases, and extend life span of Drosoph-
ila. Our findings not only have significant implications for our fundamental understanding of

protein stability and functions but also highlight potential biotechnological and therapeutic

applications of Hero proteins.

Results

Boiled supernatants of crude cell lysates improve Ago2 molecular behavior

Many proteins are naturally unstable even under physiological conditions, probably because

they need to prioritize function over structural durability. For example, Argonaute (AGO)

proteins, the core of RNA-induced silencing complex (RISC), must load a small RNA duplex,

eject the passenger strand from the two strands of the duplex, recognize target RNAs comple-

mentary to the remaining guide strand, and endonucleolytically cleave RNA targets or recruit

downstream silencing factors [10]. AGO proteins are highly unstable; in particular, empty

AGO is structurally flexible at the single-molecule level [11] and susceptible to proteolytic

digestion in vitro [12]. During the course of our studies on AGO, we observed a strange phe-

nomenon: when immunopurifying Drosophila Ago2 fused with a tobacco etch virus (TEV)-

cleavable FLAG-tag using anti-FLAG magnetic beads, we were unable to elute the protein

from the beads, even after the FLAG-tag was removed using TEV protease (Fig 1A and 1B).

We concluded that purified, free Ago2 protein is unstable and tends to stick nonspecifically to

the beads. Strikingly, addition of crude Drosophila S2 cell lysate during the TEV protease treat-

ment promoted efficient elution of Ago2 (Fig 1B). To test whether a protein(s) was responsible

for this effect, we boiled the crude S2 cell lysate at 95˚C for 15 minutes and removed the pre-

cipitated proteins by centrifugation. Unexpectedly, the supernatant of the heat-denatured

lysate, which contained only approximately 4.3% of the total protein concentration in the orig-

inal crude lysate, was as competent in eluting Ago2 as the original lysate. Digestion of proteins

in the boiled supernatant with proteinase K, followed by its inactivation by a second round of

heating, halved its activity in Ago2 elution (Fig 1B). To explore what materials other than pro-

teins contribute to Ago2 elution, we utilized benzonase to deplete DNAs and RNAs. Treatment

of the boiled lysate by both proteinase K and benzonase abolished the elution activity, while

the benzonase treatment alone only modestly decreased the activity (Fig 1B). Elution of
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Fig 1. Activity of heat-soluble proteins and nucleonic acids on Ago2 molecular behavior and LDH desiccation. (A)

Schematic representation of FLAG-TEV-SNAP-Ago2 immunopurified on magnetic beads. (B) FLAG-TEV-SNAP-Ago2 was

immunopurified onto magnetics beads via anti-FLAG antibody, and then the FLAG-tag was cleaved off by TEV protease in

buffer, crude lysates, or their boiled supernatants from fly S2 or human HEK293T cells. PK indicates that the boiled

supernatant had been mostly deproteinized by proteinase K in advance. BZ indicates that DNA and RNA in boiled

supernatant had been degraded by benzonase. BZ/PK indicates that DNA and RNA had been degraded by benzonase,

followed by the deproteinization by proteinase K. Eluted Ago2 (top) and Ago2 still remaining on the beads (bottom) were

visualized by a red fluorescent dye covalently attached to the SNAP tag. The values on the top indicate relative amounts of

eluted Ago2 normalized to that with S2 crude cell lysate. Proteins remaining in the boiled supernatants have an activity to

promote Ago2 elution. (C) Small RNA pull-down assay for pre-Ago2-RISC and mature Ago2-RISC assembled in the

reconstitution system, containing a 32P-radiolabeled small RNA duplex, Ago2, Dicer-2/R2D2, and the Hsp70/Hsp90

chaperone machinery. Supplementation of the boiled supernatants from S2 or HEK293T cells promoted the formation of both

pre- and mature Ago2-RISC. (D) Quantification of (C). Data represent means ± SD from 3 independent experiments. (E)

Heat-soluble proteins in the boiled supernatants protect the LDH activity from desiccation. LDH mixed with the indicated

boiled supernatants or buffer was dried up overnight, and the remaining LDH activities were measured. Data represent

means ± SD from 3 independent experiments. The numerical data pertaining to this figure can be found in S1 Data file. Ago,

Argonaute; GST, glutathione S-transferase; Hsp, heat shock protein; LDH, lactate dehydrogenase; RISC, RNA-induced

silencing complex; TEV, tobacco etch virus.

https://doi.org/10.1371/journal.pbio.3000632.g001
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Drosophila Ago2 was similarly promoted by crude lysate from human HEK293T cells and by

its boiled supernatant (approximately 6.0% of the original protein concentration). Again, the

efficiency was nearly halved by the proteinase K treatment, modestly decreased by benzonase,

and abrogated by proteinase K and benzonase together (Fig 1B). These results suggest that

some heat-soluble proteins as well as nucleic acids contained in the boiled S2 or HEK293T cell

supernatants promote elution of free Ago2 from the beads.

We asked whether the boiled supernatants were capable of influencing any of the functional

features of Ago2. Assembly of Drosophila Ago2-RISC requires not only a small RNA duplex

and Ago2 itself but also the Dicer-2/R2D2 heterodimer and the heat shock protein (Hsp)70/90

chaperone machinery [13]. All these factors are present in crude S2 cell lysate, and incubation

of FLAG-tagged Ago2 immobilized on magnetic beads with a 32P-radiolabeled small RNA

duplex and S2 cell lysate efficiently assembled pre-RISC, containing both strands of the duplex,

and mature RISC, containing only the single-stranded guide (Fig 1C). Compared to the crude

S2 lysate, reconstitution of Ago2-RISC assembly using high concentrations of purified Hsp70/

90 chaperone machinery and Dicer-2/R2D2 efficiently formed pre-Ago2-RISC, but its conver-

sion into mature Ago2-RISC was inefficient. Adding the supernatant of heat-denatured S2 or

HEK293T cell lysates strongly promoted the formation of both pre- and mature Ago2-RISC,

although without the chaperones, the supernatants themselves showed no reconstitution activ-

ity (Fig 1C and 1D). Thus, the boiled supernatants from either fly S2 or human HEK293T cells

can promote the assembly of Ago2-RISC by Dicer-2/R2D2 and the chaperone machinery.

Together, our data suggest that factors in the boiled supernatants improve the molecular

behavior of Ago2, either in its free form (Fig 1A and 1B) or upon RISC assembly (Fig 1C and

1D), and that these factors act beyond the species boundary.

Drosophila and human heat-soluble proteins protect lactate dehydrogenase

activity from desiccation

We next asked whether heat-soluble proteins in the boiled supernatants could act generally to

enhance or protect the activity of other proteins, especially in stress conditions. We first exam-

ined the effect of boiled supernatants on protein dehydration. When purified lactate dehydro-

genase (LDH) from rabbit muscle was dried up at room temperature overnight, addition of

the boiled supernatants from S2 or HEK293T cells efficiently preserved the LDH activity com-

pared to the PBS buffer only condition (Fig 1E). This effect was eliminated by proteinase K

and/or benzonase treatment of the supernatants (Fig 1E), indicating that heat-soluble Drosoph-
ila and human proteins as well as nucleic acids can protect the activity of LDH from desicca-

tion. Because it is already known that nucleic acids participate in maintaining protein

homeostasis [14,15], we decided to focus on heat-soluble proteins in the following analyses.

Hydrophilic and highly charged proteins are enriched in the boiled

supernatants

Heat generally denatures protein structures by exposing hydrophobic regions. Thus, proteins

remaining soluble in the boiled supernatant are likely to be hydrophilic and intrinsically disor-

dered. To test this idea, we subjected the crude lysates and their boiled supernatants of fly S2

and human HEK293T cells to liquid chromatography-mass spectrometry (LC-MS/MS) analy-

sis. In total, we identified 910 (S2) and 980 (HEK293T) proteins with high confidence (false

discovery rate [FDR] < 0.01). We then divided the identified proteins into five groups accord-

ing to the degrees of depletion or enrichment by boiling (Group I [most depleted] to Group V

[most enriched]), in such a way that each group contained virtually the same number of pro-

teins (Fig 2A and 2B, and S1 and S2 Tables; also see Materials and methods). To examine the
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overall characteristics of heat-soluble proteins, we utilized a prediction tool for intrinsically

disordered regions (IDRs) called IUPred, whose score above 0.5 indicates that the amino acid

residue at a given position is likely to be a part of a disordered region [16]. For simplicity, we

calculated the median IUPred score of all the residues for each protein. As expected, the pro-

teins enriched by boiling showed much higher distributions of the median IUPred score than

the depleted ones in both Drosophila or humans (Fig 2C and 2D). Moreover, hydrophilic

amino acids were overrepresented, while hydrophobic amino acids were underrepresented in

the boil-enriched proteins (Fig 2E and 2F). Thus, structurally disordered, hydrophilic proteins

were indeed enriched in the boiled supernatant.

Motifs previously associated with LEA proteins were not found among the proteins identi-

fied in the boiled supernatants. In fact, no common or conserved motifs were detected among

their primary sequences. Moreover, the DRSC Integrative Ortholog Prediction Tool (DIOPT)

score, which integrates 15 different ortholog prediction tools for the comparison between Dro-
sophila and humans [17], was gradually decreased as the enrichment by boiling was increased,

Fig 2. Hydrophilic and highly charged proteins are enriched in the boiled supernatants. (A–B) LC-MS/MS analysis of lysates from Drosophila S2 (A) and human

HEK293T (B) cells before and after boiling. Scatterplots indicate the PSM values (plus 1, to avoid zeros), which correlate with the protein amount, in the original crude

lysates on the x-axes and those in the boiled supernatants on the y-axes. The identified proteins were divided into five groups according to the degrees of depletion or

enrichment by boiling (Group I [most depleted] to Group V [most enriched]) and used for further analysis in C–J. (C–D) Violin plots of the median IUPred score of the

proteins classified into the five groups in Drosophila (C) and humans (D). The proteins enriched by boiling are predicted to be much more disordered. (E–F) Boxplots of

the proportion of hydrophilic or hydrophobic amino acids of the proteins classified into the five groups in Drosophila (E) and humans (F). The proteins enriched by

boiling are more hydrophilic. Boxplot center and box edges indicate median and 25th or 75th percentiles, respectively, while whiskers indicate the median ± 1.5 × IQR or

the most extreme observations within these limits, and outliers are plotted individually. (G–H) Boxplots of the DIOPT score of the proteins classified into the five groups

in Drosophila (G) and humans (H). The proteins enriched by boiling are predicted to be evolutionally less conserved. Boxplot center and box edges indicate median and

25th or 75th percentiles, respectively, while whiskers indicate the median ± 1.5 × IQR or the most extreme observations within these limits, and outliers are plotted

individually. (I–J) Violin plots of the pI values of the proteins classified into the five groups in Drosophila (I) and humans (J). The proteins enriched by boiling show the pI

values concentrated in the acidic (approximately 5) or basic (approximately 10) range but avoiding the neutral (between 7 and 8) range. (K) Violin plots of the median

IUPred score of the entire human proteome and that of the proteins selected by their high IUPred scores and expression levels. (L) Violin plots of the pI values of the

entire human proteome and that of the highly disordered proteins selected by their high IUPred scores and expression levels. The selected proteins also show the pI values

concentrated in the acidic or basic range but avoiding the neutral range. The PSM data pertaining to this figure can be found in S1 and S2 Tables files. DIOPT, DRSC

Integrative Ortholog Prediction Tool; LC-MS/MS, liquid chromatography-mass spectrometry; pI, isoelectric point; PSM, peptide spectrum match.

https://doi.org/10.1371/journal.pbio.3000632.g002
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indicating that heat-soluble proteins are evolutionarily less conserved in their primary amino

acid sequences than regular heat-vulnerable proteins (Fig 2G and 2H). These data suggest that

heat-soluble proteins as a whole cannot be defined by conventional, sequence-, and homol-

ogy-based classifications. Instead, we found that the isoelectric point (pI) values of boil-

enriched proteins have a bimodal distribution, concentrating on the acidic (approximately 5)

or basic (approximately 10) region but avoiding the neutral (between 7 and 8) region (Fig 2I

and 2J). Thus, heat-resistant proteins tend to be either highly negatively charged or highly pos-

itively charged under the physiological pH.

Because the LC-MS/MS analysis has an intrinsic bias that depends on the size range of pro-

tease-digested peptide fragments and can only detect proteins expressed in HEK293T cells, we

also utilized the IUPred score itself, independently of the MS-identified list, to select proteins

from the entire human proteome for further functional analyses. In the human protein atlas

[18], we found approximately 450 proteins (Fig 2K) that have both high IUPred scores across

their entire sequences (median IUPred> 0.6, excluding locally structured proteins with >25%

of residues having an IUPred score of<0.4) and high expression levels (median reads per kilo-

base of exon per million mapped sequence reads [RPKM] > 25), which also showed a bimodal

pI distribution (Fig 2K and 2L). Of these, we chose six representative proteins (C9orf16,

C11orf58, BEX3, SERBP1, SERF2, and C19orf53; S1A and S1B Fig) whose mRNA levels are as

high as that of the most abundant form of Hsp70 (HSPA8) in HEK293T cells, four of which

(C9orf16, C11orf58, SERBP1, and SERF2) were detected by the LC-MS/MS analysis of the

boiled supernatant. The pI values for the six proteins were 4.13 (C9orf16), 4.57 (C11orf58),

5.31 (BEX3), 8.66 (SERBP1), 10.44 (SERF2), and 11.55 (C19orf53), respectively.

We next assayed the heat solubility of these six candidate proteins, together with green fluo-

rescent protein (GFP) and glutathione S-transferase (GST) as controls (Fig 3A). We expressed

them as FLAG-tagged proteins in HEK293T cells, boiled the cell lysate at 95˚C for 15 minutes,

then examined the supernatant by anti-FLAG western blotting. All of six proteins were readily

detectable in the soluble supernatant after boiling, whereas GFP and GST were essentially

eliminated from the boiled supernatant (Fig 3A). Based on their unusual heat resistance and

unstructured nature, we call this protein class heat-resistant obscure (Hero) proteins (hero-
hero in Japanese means flimsy, loose, or flexible) and add the molecular weight to distinguish

each protein, following the naming convention for heat shock proteins (e.g., Hsp70). Hereaf-

ter, we call C9orf16, C11orf58, BEX3, SERBP1, SERF2, and C19orf53 as Hero9, -20, -13, -45,

-7, and -11, respectively, for convenience.

Hero proteins protect the activity of various proteins under stress

conditions

To evaluate the function of each of the six representative Hero proteins, we produced recombi-

nant human Hero proteins in Escherichia coli. We then mixed 5 μg/mL of LDH with 4 μg/mL

of each Hero protein and subjected the mixture to overnight dehydration. Like the boiled

supernatants (Fig 1E), all six Hero proteins protected the LDH activity at approximately 50%,

which was much stronger compared to bovine serum albumin (BSA), GST, or the conven-

tional protein stabilizers arginine or trehalose (Fig 3B). The LDH-protecting activity under

desiccation is similar to what was previously observed for TDPs [3], which share no common

sequence motifs with human Hero proteins.

We next explored the protective effect of Hero proteins in organic solvents, a drastically

harsh and foreign condition for proteins. When GFP was exposed to chloroform, its fluorescent

intensity was reduced to approximately 10% of the native state (Fig 3C). In contrast, the addi-

tion of four out of six Hero proteins maintained>60% of the GFP activity (Fig 3C). Strikingly,
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in the presence of Hero45, GFP fluorescence remained undiminished even in chloroform (Fig

3C). This is reminiscent of the ability of methacrylate-based random heteropolymers (RHPs) to

Fig 3. Hero proteins protect the activity of various proteins in stress conditions. (A) Heat solubility of the six Hero

proteins selected. Each Hero protein, GFP, or GST was fused with a FLAG-tag and expressed in HEK293T cells. The

cell lysates were prepared with (+) or without (−) boiling, and then the proteins in the lysates or their supernatants

were detected by anti-FLAG western blotting. The result was confirmed by two independent experiments. (B) Hero

proteins protect the LDH activity from desiccation. LDH mixed with the indicated Hero protein or controls was dried

up overnight and the remaining LDH activities were measured. Note that much higher concentrations of arginine

(500-fold) and trehalose (100-fold) were used, compared to those of the proteins. Data were normalized to the activity

of LDH incubated on ice overnight and represent means ± SD from 3 independent experiments. (C) Hero proteins

protect GFP in organic solvent. GFP mixed with the indicated Hero protein or controls was exposure to chloroform

and the remaining GFP fluorescence was measured. Data were normalized to the activity of GFP without the exposure

to chloroform and represent means ± SD from 3 independent experiments. (D) Hero proteins protect the luciferase

activity from heat shock. Firefly luciferase was transfected into HEK293T cells, together with each Hero protein or

chaperone factor, and then the cells were exposed to heat shock. Remaining luciferase activities after heat shock were

measured. Data were normalized to the activity of luciferase in cells without the exposure to heat shock, and represent

means ± SD from 5 independent experiments. The numerical data pertaining to this figure can be found in S1 Data

file. BSA, bovine serum albumin; GFP, green fluorescent protein; GST, glutathione S-transferase; Hero, heat-resistant

obscure; Hsp, heat shock protein; LDH, lactate dehydrogenase.

https://doi.org/10.1371/journal.pbio.3000632.g003
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preserve horseradish peroxidase (HRP) activity in toluene [19]. Thus, naturally occurring Hero

proteins act as molecular shields to stabilize proteins, even against harsh conditions.

To investigate the effect of Hero proteins in cells, we expressed firefly luciferase together

with each of the six Hero proteins, Hsp70, or Hsp90 in HEK293T cells, then subjected the cells

to heat shock at 45˚C for 8 minutes. Heat shock reduced the luciferase activity to between 10%

and 20% of the original level when co-transfected with an empty or GST-expressing vector.

Overexpression of the conventional chaperones, Hsp70 or Hsp90, maintained between 30%

and 50% of luciferase activity (Fig 3D). Remarkably, Hero proteins protected luciferase from

the heat shock as well as the chaperones, with Hero9, -7, and -11 preserving approximately

40% of luciferase activity (Fig 3D). We concluded that Hero proteins have the ability to stabi-

lize various proteins both in vitro and in cells.

Hero proteins prevent pathogenic protein aggregations in cells

Protein instability is often linked to diseases, especially neurodegenerative disorders. For

example, aggregation of trans-activation response element (TAR) DNA-binding protein of 43

kDa (TDP-43) is observed in virtually all cases of amyotrophic lateral sclerosis (ALS) and in

about half the cases of frontotemporal dementia (FTD) [20]. Given the strong activity of Hero

proteins to stabilize proteins (Figs 1–3), we tested if Hero proteins could prevent pathogenic

aggregation of TDP-43. We constructed TDP-43 lacking the nuclear localization signal (TDP-

43ΔNLS), which is more prone to aggregation than the wild type because of its forced cyto-

plasmic localization. We expressed TDP-43ΔNLS as a GFP fusion in HEK293T cells, together

with each of the six human Hero proteins or GST as a control. Aggregates of GFP-TDP-

43ΔNLS and their suppression by co-expression of Hero proteins were apparent at the micro-

scopic level (Fig 4A). To quantitatively analyze the degree of aggregation, the cells were lysed

by sonication, and aggregates in the extracts were measured by a filter trap assay using a

0.2 μm cellulose acetate membrane in the presence of 1% SDS. We found that Hero45, Hero7,

and Hero11 strongly suppressed TDP-43ΔNLS aggregation, compared to typical structured

proteins such as GST, firefly luciferase (Luc), phosphoglycerate kinase 1 (PGK1), eukaryotic

initiation factor 4A-I (EIF4A1), aspartate aminotransferase (GOT1), and ubiquitin (Ub) (Fig

4B and S2 Fig). In addition to TDP-43, we also analyzed two additional model proteins that

use different mechanisms to form pathological aggregates. HTTQ103 consists of a stretch of

103 polyglutamine residues deriving from the abnormal CAG expansion found in Huntington

disease–causing huntingtin mutant [21]. GA50 (50 Glycine-Alanine repeats) is derived from

the abnormal GGGGCC repeats found in the ALS-causing C9orf72 intron [22]. Both at the

microscopic level and by the filter trap assay, aggregates of HTTQ103 and GA50 were also

markedly reduced by Hero9 (HTTQ103), Hero45 (GA50), and several other Hero proteins

(Fig 4A and 4B and S2 Fig). Of note, prevention of pathogenic polyglutamine and polyalanine

aggregations in the T-REx293 cell line was previously shown for LEA proteins derived from an

anhydrobiotic nematode or soya bean [23,24]. Thus, anti-aggregation may be a common fea-

ture for heat-soluble proteins.

Interestingly, among the six Hero proteins tested, there was no “super-Hero” protein able

to function for all proteins. Instead, distinct subsets of human Hero proteins were more effec-

tive in preventing different types of aggregations (Fig 4B). For example, Hero11 promoted

rather than prevented aggregation of GA50 compared to GST, while strongly suppressing that

of TDP-43ΔNLS and HTTQ103 (Fig 4B). Similarly, Hero7 was previously shown to promote

aggregation of HA-tagged HTTQ74 in SK-N-SH cells [25], whereas we found that it strongly

suppressed aggregation of GFP-tagged TDP-43ΔNLS in HEK293T cells (Fig 4B). We suggest

that different Hero proteins have different preferences for their protein “clients,” which may
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vary depending on the cellular environments. Nevertheless, it is remarkable that, for a variety

of assays with different client proteins and experimental settings (Figs 3 and 4), there were

always multiple Hero proteins (despite looking at only six out of hundreds of putative Hero

proteins in humans) that showed strong protein-stabilization and anti-aggregation effects.

Extreme charges of Hero proteins are necessary and sufficient to suppress

TDP-43 aggregations

Apparently, there was no common rule for the effective combination between different Hero

proteins and different client proteins. However, we noticed that Hero45, -7, and -11, which

were particularly effective in preventing the cellular aggregation of TDP-43ΔNLS (Fig 4B),

have unusually high positive charges (pI = 8.66, 10.44, and 11.55, respectively), with high

Fig 4. Hero proteins prevent pathogenic protein aggregation in cells. (A) Representative microscopic images of GFP signals in the cells transfected

with GFP-tagged TDP-43ΔNLS, HTTQ103, or GA50, together with the GST control or each Hero protein. Note that signals from aggregations are

saturated. (B) Filter trap assay of aggregation-prone proteins expressed in cells. TDP-43ΔNLS, HTTQ103, or GA50 was expressed in a GFP-fusion

form in HEK293T cells, together with each Hero protein or the GST control. The original or 5-fold diluted samples were loaded on a cellulose acetate

membrane in the presence of 1% SDS and the trapped aggregates were probed with anti-GFP antibody. (C) Filter trap assay of aggregation-prone

proteins expressed in cells. GFP-TDP-43ΔNLS was expressed in HEK293T cells, together with each Hero protein, its KR-less mutant, in which

positively charged amino acids (Lys and Arg) were substituted with neutral Gly, or the GST negative control. Five-fold serial dilutions of the cell

lysates were subjected to the filter trap assay and probed with the anti-GFP antibody. Experiments were simultaneously performed, and the presented

data were spliced from the same membrane. (D) Filter trap assay of aggregation-prone proteins expressed in cells. GFP-TDP-43ΔNLS was expressed

in HEK293T cells, together with the GST control, each Hero protein, or their shuffled amino acid sequences with 42– or 100–amino acid length.

Five-fold serial dilutions of the cell lysates were subjected to the filter trap assay and probed with anti-GFP antibody. Experiments were

simultaneously performed, and the presented data were spliced from the same membrane. aa, amino acid; GFP, green fluorescent protein; GST,

glutathione S-transferase; Hero, heat-resistant obscure; KR, lysine and arginine; TDP-43ΔNLS, TDP-43 lacking the nuclear localization signal; WT,

wild-type.

https://doi.org/10.1371/journal.pbio.3000632.g004
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proportions of basic amino acid residues (proportion of Arg + Lys = 18.4%, 32.2%, and 27.3%,

respectively). This raised a possibility that these positively charged properties may be impor-

tant for their functions to prevent TDP-43ΔNLS aggregation. To confirm this idea, we con-

structed mutants of Hero7 and Hero11, in which Lys and Arg (positively charged) were

replaced to Gly (non-charged). As shown in Fig 4C, lysine and arginine (KR)-less mutants of

Hero7 and Hero11 have largely lost the anti-aggregation activity, suggesting that positive char-

ges of Hero proteins are necessary for this activity, at least for TDP-43 aggregation.

To test the sufficiency of positive charges of Hero proteins, we next randomly scrambled the

amino acid sequences of Hero7 and -11, and GST as a control, while keeping their original

amino acid composition ratio (i.e., percentage of each amino acid) and fixing the total amino

acid lengths at 100 amino acids (aa) or 42-aa (Fig 4D and S3 Table; three different shuffles for

100-aa and two different shuffles for 42-aa). Strikingly, the randomized 100-aa sequences,

derived from extremely positively charged Hero7 and -11, prevented the aggregation of TDP-

43ΔNLS with comparable or even higher efficiencies than the original ones. Importantly, none

of the scrambled 42-aa sequences were able to prevent the TDP-43ΔNLS aggregation, regardless

of their amino acid compositions. These results indicate that their amino acid composition and

length (i.e., their molecular nature as long, hydrophilic, and highly charged “polymers”), but not

their amino acid sequence per se, are the key for Hero proteins to impart their client-protecting

functions, at least for TDP-43ΔNLS. Of note, it was previously shown that short peptide frag-

ments of randomly chosen IDPs in humans (35–45 amino acids) have weak cryoprotective and

lyophilization-protective activities (up to 1.3–1.5-fold compared to BSA) [26], suggesting that

the amino acid length is also important for protecting other proteins under stress conditions.

Hero proteins suppress the neurotoxicity caused by protein aggregates in

motor neurons

We next examined the anti-aggregation activity of Hero proteins in human induced-pluripo-

tent stem (iPS)-derived motor neurons. We expressed GFP-tagged TDP-43ΔNLS together

with each of the six representative human Hero proteins or the GST negative control, as in

HEK293T cells. Aggregates of GFP-tagged TDP-43ΔNLS gave saturated fluorescent signals,

which were suppressed by co-expression of Hero7 (Fig 5A). To quantify the degree of aggrega-

tion, we defined the ratio of the saturated area as the aggregation index (Fig 5B). Similarly to

the analysis in HEK293T cells (Fig 4B), Hero9, -45, -7, and -11 strongly reduced the aggrega-

tion formation in motor neurons (Fig 5C).

The neurite length is widely used as a measurement of the neuronal condition. Indeed, it is

known that ALS patient–derived motor neurons with mutations in TDP-43 have shorter neur-

ites compared to those from healthy donors [27]. To evaluate neuronal protective activity of

Hero proteins, we measured the total neurite length of the transfected neurons. Except for

Hero45, overexpression of Hero proteins themselves had no or little effect on neuronal mor-

phology (Fig 5D). In contrast, overexpression of GFP-TDP-43ΔNLS markedly reduced the

neurite outgrowth to approximately 30% compared to that of control neurons without aggre-

gation (Fig 5F). However, co-expression of Hero9, -7, and -11 almost fully rescued the neurite

outgrowth defects by TDP-43 aggregation (Fig 5E and 5F). Therefore, Hero proteins can effi-

ciently protect human motor neurons from the neurotoxicity of TDP43 aggregation.

Hero proteins suppress the neurotoxicity of protein aggregates in

Drosophila eyes

Hero proteins’ protective activity can be observed not only in cultured cells but also in Drosoph-
ila in vivo. The fly eye has been used as a valuable model system for studying neurodegenerative
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diseases. Indeed, expression of human TDP-43 fused with yellow fluorescent protein (YFP)

(TDP-43-YFP) in the differentiating photoreceptor cells using a glass multimer reporter

(GMR)-Gal4 driver causes retinal degeneration [28] (Fig 6A, middle). We generated transgenic

flies expressing human Hero9, -13, -45 or -11 in the retina and introduced the transgenes into

strains expressing TDP-43-YFP. Strikingly, the eye degeneration by TDP-43-YFP was almost

completely suppressed by co-expression of Hero9 (Fig 6A, middle). The rescue effect of TDP-

43-YFP by Hero45 was moderate but could be boosted by doubling the copy number of the

transgene (Fig 6A, bottom). There were no harmful effects by retina-specific expression of Hero

proteins per se; neither YFP nor any of the transgenic Hero proteins alone caused a detectable

change in the normal eye morphology (Fig 6A, top). These data show that Hero proteins can

suppress pathogenic protein aggregations in the living fly eye.

Fig 5. Hero proteins suppress the neurotoxicity of TDP-43ΔNLS aggregates in motor neurons. (A) Representative images of

aggregation in human iPS-derived motor neurons transfected with GFP-TDP-43ΔNLS, together with the GST negative control or

Hero7. Note that signals from aggregations are saturated. (B) Scheme for counting the saturated area of TDP-43ΔNLS aggregates. (C)

Aggregation index analysis in motor neurons. GFP-TDP-43ΔNLS was expressed in motor neurons, together with each Hero protein

or the GST negative control. Data indicate normalized saturated area (aggregation index), and represent means ± SD from 3

independent experiments. Hero9, -45, -7, and -11 reduced the aggregate formation. (D) Neurite length analysis in motor neurons.

Each Hero protein or the GST control was individually expressed in motor neurons. Data indicate neurite length, and represent

means ± SD from 8 cells. Hero45 showed a modest defect in neurite outgrowth. (E) Representative images of the neuron marker

TUJ1 in motor neurons transfected with GFP-TDP-43ΔNLS, together with Hero7 or the GST control. Note that signals are saturated

to clearly visualize the neurites. (F) Neurite length quantification in motor neurons transfected with GFP-TDP-43ΔNLS together with

each Hero protein or the GST negative control. Data indicate neurite length, and represent means ± SD from 8 cells. Hero9, -7 and

-11 rescued the neurite outgrowth defect by GFP-TDP-43ΔNLS aggregation. The numerical data pertaining to this figure can be

found in S1 Data file. GFP, green fluorescence protein; GST, glutathione S-transferase; Hero, heat-resistant obscure; iPS, induced-

pluripotent stem; TDP-43ΔNLS, TDP-43 lacking the nuclear localization signal; TUJ1, neuron-specific class III beta-tublin.

https://doi.org/10.1371/journal.pbio.3000632.g005
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Fig 6. Hero proteins suppress the neurotoxicity of protein aggregates in Drosophila eyes. (A) Expression of Hero9, -13,

-45, or -11 alone showed no phenotype in the external eye morphology, much as the YFP control (upper). Expression of

TDP-43-YFP caused the external eye degeneration. Hero9 and double copies of Hero45 strongly suppressed the eye

degeneration by TDP-43-YFP (middle and lower). (B) Knockdown of Hsc70-4 or CG17931 caused detectable external eye

degeneration, compared to the mock knockdown of Piwi. (C) Nail polish imprint of eyes. Knockdown of Hsc70-4 or

CG17931 caused irregular arrangements of ommatidia and bristles. (D) Knockdown of Hsc70-4 or CG17931 decreased the

retinal depth. Arrowhead in the left picture indicates the retinal depth. Data represent means ± SD from 5 individual flies. (E)

Knockdown Hsc70-4, CG17931, CG14818, or Vig2 caused exacerbation of the eye morphology defect by overexpression of

TDP-43-YFP (upper). Knockdown of fly Hero proteins, CG17931, CG12384, or CG11444 caused exacerbation of the eye

morphology defect by overexpression of aggregation-prone MJDtr-Q78 (lower). Note that female flies were used for (E),

while male flies were used for (A–D). We observed the same phenotype for at least 10 flies per each genotype in each assay.
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Using this Drosophila eye system, we next investigated functions of the endogenous Hero

proteins. It is known that Hsc70-4, the most abundant and constitutively expressed Hsp70

chaperone, is required for normal eye development in Drosophila [29–31]. Indeed, knockdown

of Hsc70-4 in the eyes showed a modest but detectable defect in external eye morphology,

whereas mock depletion of germline-specific Piwi caused no abnormality (Fig 6B). Interest-

ingly, eye-specific knockdown of CG17931, a homolog of human Hero7 (identity = 58%, simi-

larity = 68%), also showed a similar eye degeneration phenotype as that of Hsc70-4. Moreover,

irregular arrangements of ommatidia and bristles (Fig 6C), as well as reduction of the retinal

depth (Fig 6D), were also caused by knockdown of Hsc70-4 or CG17931. These observations

suggest that not only chaperones but Hero proteins also play important roles in fly eye

development.

We then evaluated the protective effect of endogenous fly Hero proteins against patho-

genic protein aggregates. To this end, we utilized the abovementioned aggregation-prone

TDP-43-YFP (Fig 6E, upper) as well as human Ataxin3 containing a pathogenic expansion

of 78 glutamine repeats (Machado-Joseph disease truncated-polyglutamine 78 [MJDtr-

Q78]; Fig 6E, bottom), which also causes retinal degeneration when overexpressed in Dro-
sophila eyes [32] (Fig 6E, bottom). Strikingly, defects by these aggregation-prone proteins

were markedly exacerbated by simultaneous knockdown of the Hero7 homolog CG17931,

compared to the negative control of Piwi knockdown (Fig 6E). Exacerbated eye phenotypes

with MJDtr-Q78 and TDP-43-YFP were also apparent in the eye depleted of other endoge-

nous fly Hero proteins, such as CG14818 and Vig2, which are potential homologs of human

Hero9 (identity = 23%, similarity = 40%) and Hero45 (identity = 30%, similarity = 41%),

respectively, and CG12384 and CG11444 (Fig 6E). Together, these data show that Hero pro-

teins act to suppress aggregation-associated eye degeneration in living flies, consistent with

our in cell data (Figs 4 and 5).

Hero proteins are essential both in cells and in vivo

To understand Hero proteins’ functions in non-overexpressed, physiological conditions, we

performed clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated

knockout (KO) of six Hero proteins in HEK293T cells. We found that KO of Hero13 and 7

showed defects in cell proliferation under the normal culture condition (Fig 7A). Moreover,

whole-body knockdown of endogenous Hero proteins in Drosophila using actin-GAL4-driven

long hairpin RNAs often caused lethality (Fig 7B). Thus, Hero proteins play essential roles in

human cell proliferation and Drosophila early development. We note that Frost in Drosophila,

which is highly up-regulated after cold shock [33] and required for maintaining female fertility

following cold exposure [34], is extremely disordered and charged, and presumably represents

another example of Hero proteins with physiological functions in flies.

Hero proteins can promote longevity in Drosophila
It is well known that aging is tightly associated to the loss of protein homeostasis [35,36]. For

example, overexpression of Hsp70 significantly increases life expectancy in flies [37]. Such

“longevity factors” are not limited to Hsp70 but include other chaperones and proteins related

to autophagy and the Ub-proteasome system [35]. Strikingly, whole-body overexpression of

endogenous Hero proteins in Drosophila often led to elongation of life span by more than

The numerical data pertaining to this figure can be found in S1 Data file. Hero, heat-resistant obscure; Hsc, heat shock

cognate; MJDtr-Q78, Machado-Joseph disease truncated-poly-glutamine 78; RNAi, RNA interference; YFP, yellow

fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000632.g006
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approximately 30%, while YFP overexpression had no significant effect (Fig 7C and 7D). This

was also true for interspecies overexpression of human Hero proteins in the fly whole body

(Fig 7D). These observations support the idea that Hero proteins can combat against proteo-

toxic stress caused by aging.

Discussion

Our study demonstrates that Hero proteins can stabilize various client proteins and protect

them from denaturation or aggregation. Thus, not only plants, tardigrades, and other extremo-

philes, but non-extremophilic organisms such as humans universally utilize highly heat-resis-

tant, hydrophilic, and charged proteins as molecular shields against protein instability. The

simplest mode of action as molecular shields will be to reduce intermolecular collision/cohe-

sion rates sterically and/or electrostatically, as previously proposed for LEA proteins [38].

However, this may not be the only mechanism for the client-protective activities. TDPs, LEA

proteins, and Hero proteins belong to a large family of IDPs and can be regarded as their

Fig 7. Physiological functions of Hero proteins. (A) Cell growth assay of HEK293T cells acutely knocked out for the indicated genes. Four days after transfection of

gRNA, the numbers of the cells were measured by a coloring assay. Knockout of Hero13 and Hero7 reduced the cell proliferation. Data represent means ± SD of the cell

numbers from 8 independent wells. (B) Whole-body knockdown phenotypes in Drosophila. Knockdown of endogenous fly Hero proteins were performed by two

independent RNAi strains (GD and KK lines). Whole-body depletion of Hero proteins often caused lethality, suggesting that Hero proteins play essential roles in

Drosophila early development. Note that we used two different GD lines for CG3760. We observed the same phenotype for at least two independent crosses per each

genotype. (C) Survival plots of Drosophila. Whole-body overexpression of CG12384 or CG14818 elongated life spans, compared to the wild type. (D) Summary of life

span analysis in Drosophila. Whole-body overexpression of Hero proteins except human Hero11 significantly elongated life spans. (E) A model for the modes of action

of chaperones and Hero proteins. Chaperones usually act on the inactive/denatured state of their client proteins and actively reverse them to the functional state by using

ATP, while Hero proteins likely act on the functional state of their client proteins and protect them from lapsing into the inactive/denatured state in an ATP-

independent manner. The numerical data pertaining to this figure can be found in S1 Data file. gRNA, guide RNA; Hero, heat-resistant obscure; RNAi, RNA

interference; WT, wild-type; YFP, yellow fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000632.g007
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extreme instances with extensive disorders. Currently, IDPs and proteins with IDRs are often

linked to their abilities to cause liquid-liquid phase separation (LLPS), which is commonly

thought to be a stage prior to aggregation. Indeed, we noticed that purified recombinant

Hero7 protein spontaneously undergoes reversible gelation at a low temperature in vitro.

Moreover, among different conditions tested in this study, there were some cases where Hero

proteins promoted rather than inhibited aggregations, e.g., Hero20 for GA50 (Fig 4B). How-

ever, on the whole, Hero proteins tended to prevent aggregations of various proteins efficiently

(Figs 3–7). This client-protective action of Hero proteins is seemingly opposite to the common

notion of IDPs/IDRs as autonomous aggregation inducers. Notably, however, it was recently

proposed that a prion-like IDR in yeast Sup35 acts to protect Sup35 itself against proteotoxic

damage by extending its soluble/reversible phase space and thereby preventing it from irre-

versible aggregation [39,40]. Thus, it is tempting to speculate that Hero proteins can impart at

least a part of their protective functions in a similar manner as the prion-like IDR in Sup35,

except that they do so in trans on their client proteins.

Trans-acting protective functions of Hero proteins may be reminiscent of those of conven-

tional molecular chaperones. Indeed, overexpression of Hero proteins protected the luciferase

activity in HEK293T cells under heat shock, much as Hsp70 and Hsp90 chaperones (Fig 3D).

Hero proteins also significantly increased the longevity of Drosophila (Fig 7C and 7D), as pre-

viously reported for Hsp70 [37]. Moreover, depletion of CG17931 (a homolog of human

Hero7) and that of Hsc70-4 caused similar degeneration in the Drosophila eye (Fig 6B–6D).

However, unlike molecular chaperones that often use cycles of ATP binding and hydrolysis,

Hero proteins lack any apparent ATPase or any other domains. Moreover, chaperones usually

act on the inactive/denatured state of their client proteins and actively reverse them to the

functional state, whereas Hero proteins likely act on the functional state of their client proteins

and protect them from lapsing into the inactive/denatured state (Fig 7E). We suggest that

cooperation between chaperones and Hero proteins with distinct modes of action is central to

the maintenance of the functional proteome. Moreover, it is also possible that some Hero pro-

teins rely on classical chaperones for their activities or, conversely, some chaperones may be

assisted by the protective effect of Hero proteins.

The fact that the primary sequences of Hero proteins are poorly conserved (Fig 2G and 2H)

suggests that the molecular nature of Hero proteins as hydrophilic, charged, and disordered

polymers is important for their functions. Supporting this idea, scrambling the amino acid

sequences of Hero7 and Hero11 did not compromise their anti-aggregation activities for TDP-

43ΔNLS in cells (Fig 4D). This observation challenges our conventional view of protein func-

tions, in which the amino acid sequence of a protein determines its unique three-dimensional

structure and thereby its function. Given the apparent importance of Hero proteins’ physical

properties, it is not surprising that other charged biopolymers such as nucleic acids are likely

to play similar roles as protein stabilizers, as we observed (Fig 1B and 1E) and as reported

recently [14,15].

Historically, the goal of biochemistry is to deconstruct biological events, identify enzymes

responsible for the reactions of interest, and reconstitute them in a cell-free system. However,

the enzymatic activity in reconstituted systems is often much less efficient than in crude cell

lysate (Fig 1C and 1D), even when enzyme concentrations and buffer conditions are opti-

mized. This may be at least in part explained by the absence of Hero proteins in classical recon-

stitution systems. If so, we might need to revise our approaches of biochemistry to take into

consideration not only catalytic enzymes but also Hero proteins (and other environmental bio-

molecules). In addition, Hero proteins may be useful as stabilizers for protein pharmaceuticals,

especially because those from humans are less likely to evoke immune responses than artificial

polymers or biomolecules from other organisms. They may be co-expressed, used as additives
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like polyethylene glycol (PEG), or can be fused to proteins of interest like PEGylation or PASy-

lation (proline-alanine-serine) [41]. The finding that some Hero proteins can block pathogenic

protein aggregates in cells and in fly models for neurodegenerative diseases may also serve as a

starting point for future development of therapeutics or diagnostic methods.

Each organism appears to encode hundreds of Hero proteins with no apparent common

motifs, and each Hero protein is likely to deal with many different client proteins, thus provid-

ing a rich but complex source to mine. Indeed, Hero45, which was originally identified as an

mRNA-binding protein [42], has been found in the structure of the 80S ribosomes, where it

occupies the mRNA-binding channel [43], but it is also known to be associated with hundreds

of diverse proteins [44] with dynamic changes in its subcellular localizations in the cytoplasm,

stress granules, nucleoli, etc. [45–47], highlighting the vast complexity of Hero proteins’

actions. Moreover, individual Hero proteins show some preferences toward client proteins

(Figs 3–6), and yet they may be at least partially overlapping in their functions. A combination

of comprehensive approaches will be needed to decipher the global relationship among Hero

proteins and their clients, including genetics to understand the physiological roles of Hero

proteins, biochemistry and biophysics to dissect the molecular mechanisms of Hero protein

actions, and evolutionary analyses to understand the birth and expansion of these genes.

Materials and methods

General methods

Drosophila S2 cells were cultured at 27˚C in Schneider’s Drosophila Medium (Gibco) supple-

mented with 10% fetal bovine serum (Gibco) and Antibiotic-Antimycotic (Gibco). HEK293T

cells were maintained in Dulbecco’s Modified Eagle Medium (Sigma) supplemented with 10%

FBS in 5% CO2 atmosphere at 37˚C. Lysis buffer (30 mM HEPES-KOH pH 7.4, 100 mM

KOAc, 2 mM Mg(OAc)2), wash buffer (lysis buffer containing 1% Trition X-100 and 800 mM

NaCl), and hypotonic lysis buffer (10 mM HEPES-KOH pH 7.4, 10 mM KOAc, 1.5 mM Mg

(OAc)2, 1× Complete EDTA-free protease inhibitor cocktail [Roche], and 5 mM DTT) were

used. To prepare lysate from S2 cells or HEK293T cells, cells were collected and washed once

with PBS. Cell pellets were resuspended with an equal volume of hypotonic lysis buffer, incu-

bated for 15 minutes, vortexed for 15 seconds, and centrifuged at 17,000g for 20 minutes. The

supernatant was collected into tubes, shock-frozen in liquid nitrogen, and stored at −80˚C. For

boiling, lysates were heated at 95˚C for 15 minutes, kept on ice for 1 minute, then centrifuged

at 20,000g for 5 minutes to remove aggregation.

Plasmid construction

pCold-Hsc70-4, Hsp83, Hop, Droj2, p23, and pCAGEN-Flag-DEST were described previously

[13].

pCAGEN-FlagTevSnap-DEST and pCAGEN-GFP-DEST

A DNA fragment containing N-terminal FLAG-tag, TEV protease recognition sequence, and

SNAP tag or the GFP sequence followed by the Gateway attR sites was inserted into pCAGEN

by NEBuilder HiFi DNA Assembly Master Mix (NEB).

pCAGEN-FlagTevSnap-Ago2(WT)

A DNA fragment containing a codon-optimized Drosophila Ago2 CDS sequence in pENTR/

D-Ago2 [11] was inserted into pCAGEN-FlagTevSnap-DEST using Gateway LR Clonase

(Invitrogen).
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pCAGEN-Flag-GFP, pCAGEN-Flag-GST, and pCAGEN-FLuc

A DNA fragment containing GFP or GST with N-terminal FLAG-tag, or Firefly luciferase was

inserted into pCAGEN by NEBuilder HiFi DNA Assembly Master Mix (NEB).

pCAGEN-Flag-Hero9, -20, -13, -45, -7, -11, PGK1, IF4A1, GOT1, or Ub

A DNA fragment containing Hero9 (C9orf16), -20 (C11orf58), Hero13 (BEX3), Hero45

(SERBP1), Hero7 (SERF2), Hero11 (C19orf53), PGK1, IF4A1, GOT1, or Ubiquitin was ampli-

fied from HEK293T cell cDNA by PCR and cloned into pENTR/D-TOPO (Invitrogen), fol-

lowed by recombination with pCAGEN-Flag-DEST using Gateway LR Clonase (Invitrogen).

pCAGEN-HTTQ103-GFP

A DNA fragment containing HTT103Q-GFP was amplified from p426 103Q GPD (Addgene

#1184; [21]) and inserted into pCAGEN by NEBuilder HiFi DNA Assembly Master Mix

(NEB).

pCAGEN-GFP-TDP43ΔNLS

A DNA fragment containing TDP-43 was amplified from HEK293T cell cDNA by PCR and

cloned into pENTR/D-TOPO (Invitrogen), followed by recombination with pCA-

GEN-GFP-DEST using Gateway LR Clonase (Invitrogen). NLS deletion (78–99) in TDP-43

was performed by PCR-based site-directed mutagenesis.

pCAGEN-GFP-GA50

A DNA fragment containing GA50 amplified from pAG303-Gal-GA50 (Addgene # 84907;

[48]) and a DNA fragment containing GFP were inserted into pCAGEN by NEBuilder HiFi

DNA Assembly Master Mix (NEB).

pCold I-GFP, GST, Hero9, Hero20, -13, -45, -7, or -11-FlagHis

A DNA fragment containing CDS of each Hero protein and C-terminal FLAG- and His-tags

was inserted into pCold I (Takara) by NEBuilder HiFi DNA Assembly Master Mix (NEB). For

BEX3 and SERBP1, a codon-optimized DNA fragment was synthesized (Eurofins) and utilized

as the template.

pCAGEN-Flag-KR-less Hero7 or Hero11

A DNA fragment containing mutants of Hero7 or Hero11, in which positively charged amino

acids (Lys and Arg) were substituted with neutral Gly, was inserted into pCAGEN-Flag-DEST

vector.

pCAGEN-Flag-shuffled 100[GST, Hero7, or Hero11]

A DNA fragment containing shuffled 100-aa sequences with the composition of GST,

SERBP1, Hero7, or Hero11 was inserted into pCAGEN-Flag-DEST vector. The amino acid

sequences are shown in S3 Table.

pCAGEN-superFlag-shuffled 42[GST, Hero7, or Hero11]

A DNA fragment containing N-terminal superFlag [49] and shuffled 42-aa sequences with the

composition of GST, SERBP1, Hero7, or Hero11 was inserted into pCAGEN vector. The

amino acid sequences are shown in S3 Table.
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Protein purification

Recombinant proteins of Hsc70-4, Hsp83, Hop, Droj2, p23, and Dicer-2/R2D2 heterodimer

were expressed and purified as described previously [13]. The same procedure was used to

express and purify recombinant GFP proteins. Recombinant proteins of GST, Hero9, -20, -13,

-45, -7, and -11 were expressed as C-terminal His-tagged proteins in E. coli Rosetta 2 (DE3)

strain. Typically, the cells were cultivated in 1 L culture to an OD600 of 0.4–0.6 at 37˚C with

ampicillin and then grown at 15˚C overnight with 1 mM isopropyl-β-D-thiogalactoside

(IPTG). The cell pellets were resuspend in His A buffer (30 mM HEPES-KOH pH 7.4, 200

mM KOAc, 2 mM Mg(OAc)2, 5% glycerol) containing 1× EDTA-free protease inhibitor cock-

tail (Roche), sonicated, and centrifuged at 10,000g for 5 minutes twice. The supernatant was

added to a slurry of cOmplete His-Tag Purification Resin (Roche) and incubated for 1 hour at

room temperature or 2 hours at 4˚C, then eluted with His B buffer (His A buffer containing

400 mM imidazole). The eluents were collected and buffer exchanged to PBS with PD-10 (GE

Healthcare).

Ago2 elution assay

FLAG-TEV-SNAP-Ago2 expressed in HEK293T cells was labeled with SNAP-Surface Alexa

Fluor 647 (NEB) and immunopurified by an anti-FLAG antibody conjugated onto Dynabeads

Protein G (Invitrogen). The beads were washed three times by wash buffer, three times by

wash buffer containing 2 mM ATP, and finally rinsed by lysis buffer. The beads were incubated

with lysis buffer, crude lysates, or their boiled supernatants containing 2 U/μL TurboTEV pro-

tease (Accelagen) at room temperature for 1 hour. To prepare benzonase and proteinase K–

treated (BZ/PK) supernatants, the supernatants were mixed with 1 U/mL benzonase (Milli-

pore) and incubated at 37˚C for 1 hour, then mixed with 2 mg/mL proteinase K and incubated

at 37˚C for 1 hour, and finally reboiled at 95˚C for 15 minutes to deactivate proteinase K. The

benzonase or proteinase K treatment was omitted for the PK or BZ condition, respectively.

Small RNA pull-down assay

Small RNA pull-down to detect pre-Ago2-RISC and mature Ago2-RISC formation was per-

formed as described previously [13] with slight modifications. FLAG-TEV-Halo-Ago2

expressed in S2 cells was immunopurified by an anti-FLAG antibody conjugated onto Dyna-

beads Protein G (Invitrogen). The beads were washed three times by wash buffer, three times

by wash buffer containing 2 mM ATP, and finally rinsed by lysis buffer. The Ago2-conjugated

beads were then incubated with the reconstitution system, 32P-radiolabeled small RNA duplex,

ATP regeneration system (1 mM ATP, 25 mM creatine monophosphate [Sigma], 0.03 U/μL

creatine kinase [Calbiochem], and 0.1 U/μL RNasin Plus RNase Inhibitor [Promega]) and

3.5 μL of each boiled supernatant in 10 μL lysis buffer at 25˚C for 60 minutes. The reconstitu-

tion system contained 20 nM Dicer-2/R2D2, 600 nM Droj2, 1.8 μM Hsc70-4, 1.5 μM Hop,

3 μM Hsp83, and 3 μM p23. In every case, the total protein concentration was adjusted by the

supplementation of GST. After incubation, beads were washed four times by wash buffer, then

bound RNAs were extracted by proteinase K treatment and analyzed by native PAGE.

Mass spectrometry

Proteins in the crude lysates and their boiled supernatants were trypsinized, desalted by ZipTip

C18 (Millipore), concentrated, and subjected to nano liquid chromatography tandem mass

spectrometry (nanoLC-MS/MS) analysis. For this analysis, we used LTQ-Orbitrap Velos mass

spectrometer (Thermo Fisher Scientific) coupled with Dina-2A nanoflow LC system (KYA
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Technologies). The samples were injected into 75-μm reversed-phase C18 columns at a flow

rate of 10 μL/minute and eluted with a linear gradient of solvent A (2% acetonitrile and 0.1%

formic acid in H2O) to solvent B (40% acetonitrile and 0.1% formic acid in H2O) at 300 nL/

minute. The peptides were sequentially sprayed from nanoelectrospray ion source (KYA Tech-

nologies) and analyzed by the collision induced dissociation (CID) method. Mass spectra were

acquired in data-dependent mode, switching automatically MS and MS/MS acquisition. All

full-scan MS spectra in the range from m/z 380 to 2,000 were acquired in the FT-MS part of

the mass spectrometer with a target value of 1,000,000 and a resolution of 100,000 at m/z 400.

The 20 most intense ions that satisfied an ion selection threshold above 2,000 were fragmented

in the linear ion trap with normalized collision energy of 35% for activation time of 10 ms. For

accurate mass measurement, the Orbitrap analyzer was operated with the “lock mass” option

using polydimethylcyclosiloxane (m/z = 445.120025) and bis(2-ethylhexyl) phthalate ions (m/

z = 391.284286). The MS/MS signals were searched against the UniProt human proteome

(Homo sapiens; UP000005640) and fly proteome (Drosophila melanogaster; UP000000803)

using the Mascot algorithm (version 2.5.1; Matrix Science). Carbamidomethylation of cysteine

was set as a fixed modification, whereas oxidation of methionine, protein N-terminal acetyla-

tion, and pyro-glutamination for N-terminal glutamine were set as variable modifications.

Trypsin was defined as a proteolytic enzyme and a maximum of two missed cleavages were

allowed. The mass tolerance was set to three parts per million (ppm) for peptide masses and

0.8 Da for MS/MS peaks. In the process of peptide identification, we conducted decoy database

searches using Mascot and applied a filter to satisfy a false positive rate of less than 1%. One (1)

was added to all the peptide spectrum match (PSM) values (to avoid zeros), which correlate

with the protein amount, and the ratio between (PSM + 1) in the original crude lysate and that

in the boiled supernatant was calculated in order to divide the identified proteins into 5

groups, each of which contained virtually the same number of proteins, according to the

degree of enrichment or depletion by boiling.

Prediction of structural disorders

Amino acid sequences were collected from UniProt human proteome (H. sapiens;
UP000005640) and fly proteome (D. melanogaster; UP000000803). These sequences were sub-

jected to the IUPred analysis [16]. The median IUPred score of all amino acid residues was

allocated for each protein, and their distributions were plotted on histograms.

Ortholog prediction

Ortholog prediction was performed by DIOPT, DRSC (Drosophila RNAi Screening Center)

Integrative Ortholog Prediction Tool. The scores of best matched proteins between Drosophila
and humans were plotted.

Selection of representative Hero proteins

First, proteins with high IUPred scores (median of IUPred scores of all residues >0.6, and

>75% of the residues have IUPred scores >0.4) and universally high expression profiles

(median RPKM >25 in all tissues and cultured cells) were selected from the human protein

atlas [18]. The proteins with clear organelle localization and/or known cellular functions were

excluded. Finally, C9orf16 (Uniprot identifier; Q9BUW7), BEX3 (Q00994), C11orf58

(O00193), SERBP1 (Q8NC51), SERF2 (P84101), and C19orf53 (Q9UNZ5) were selected for

further analyses.
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Western blot analysis

Anti-DDDDK antibody (M185, MBL) was used as the primary antibody at 1:10,000. Chemilu-

minescence was induced by Luminata Forte Western HRP Substrate (Millipore) and images

were acquired by Amersham Imager 600 (GE Healthcare).

Luciferase assay with a heat shock

HEK293T cells in a 96-well plate were transfected with 10 ng pCAGEN-FLuc and 90 ng empty

pCAGEN or pCAGEN-Flag-Hero9, -20, -13, -45, -7, or -11 by using Lipofectamine 3000

(Thermo Fisher Scientific). After approximately 48 hours, 4 mM cycloheximide was added to

the medium, and cells were incubated at 37˚C for 10 minutes and then subjected to a heat

shock at 45˚C for 8 minutes. The cells were lysed by Passive Lysis Solution (Perkin Elmer) and

incubated for 15 minutes at room temperature, and the lysates were collected. The luciferase

activity of Fluc was measured by using sensilite Enhanced Flash Luminescence (Perkin Elmer).

LDH dehydration assay

LDH from rabbit muscle (Roche) was diluted to 5 μg/mL in 5-fold diluted boiled supernatants

(for Fig 1E), or PBS containing 4 μg/mL BSA, GST, or each Hero protein, 400 μg/mL Trehalose

or 2 mg/mL Arginine (for Fig 2D). Samples were desiccated in SpeedVac vacuum concentrator

(Thermo) for 16 hours without heating. For normalization, the same amount of LDH in the

same conditions was kept on ice for the same duration as desiccation. Dried samples were

rehydrated by PBS, and the LDH activity was measured by Cytotoxicity LDH Assay Kit-WST

(Dojindo).

Chloroform exposure assay of GFP

A total of 10 μg/mL GFP was mixed with 50 μg/mL BSA, GST, or each Hero protein, followed

by the addition of the same volume of chloroform. The samples were continuously shaken at

room temperate for 30 minutes and centrifuged at 10,000g for 1 minute. The GFP intensity in

the supernatants (i.e., in the water phase) was measured.

Filter trap assay of aggregates

HEK293T cells in a 12-well plate were transfected with 100 ng pCAGEN-GFP-HTTQ103, 100

ng pCAGEN-GFP-GA50, or 200 ng pCAGEN-GFP-TDP43ΔNLS together with 900 ng (for

HTTQ103 and GA50) or 800 ng (for TDP43ΔNLS) of pCAGEN-Flag-Hero9, -20, -13, -45, -7,

-11, GST, Luciferase, PGK1, IF4A1, GOT1, or Ubiqutin by using Lipofectamine 3000 (Thermo

Fisher Scientific). After approximately 48 hours, the cells were resuspended in 200 μL PBS con-

taining 1× Complete EDTA-free protease inhibitor cocktail (Roche) and sonicated by Biorup-

tor II (BMBio). The total protein concentrations were adjusted and then 1% SDS was added.

Subsequently, a 5-fold volume of 1% SDS in PBS was added, then loaded onto a cellulose ace-

tate membrane with a 0.2-μm pore size (GE Healthcare) that had been incubated in 1% SDS in

PBS. After washes with 1% SDS, aggregates were detected by using anti-GFP antibody (Santa

Cruz; sc-9996; 1:10,000).

Microscopy

Cell images were acquired by an inverted type microscopy (IX83, Olympus) with a 20× objec-

tive lens (UCPLFLN 20×, 0.7 NA, Olympus).
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iPS-derived motor neuron differentiation and plasmid transfection

The procedure of motor neuron differentiation has been described previously [50]. Briefly,

induced pluripotent stem cells (409B2 from Riken cell bank) were seeded to a Matigel-coated

12-well plate at a density of 70%–80% confluency in mTeSR plus medium (STEMCELL Tech-

nology) with 10 μM of Y-23632 (Rock inhibitor, Wako). After the cells reached to 95% conflu-

ent, the differentiation into neural lineage cells was initiated in DMEM/F12 (Sigma)

supplemented with 15% KO serum replacement (KSR, Gibco), 1% GlutaMAX (Gibco), 1%

nonessential amino acid (NEAA, Sigma), 10 μM of SB431542 (Wako), and 100 nM of LDN-

193189 (Wako) for the initial 6 days of culture. For caudalization and ventralization, then, the

cells were further supplemented with 1 μM of retinoic acid (RA) and 1 μM of smoothened ago-

nist (SAG) and 10 μM of SU-5402 (Sigma), 10 μM of DAPT (Sigma), which accelerate neural

differentiation [51] for 4 to 12 days of culture. SAG was synthesized with previously described

protocol and purified by HPLC [52]. Then, the motor neurons (MNs) were maintained in

Neurobasal medium (Thermo Fisher Scientific) supplemented with 2% B27 (Gibco), 1% Glu-

taMAX, 1% penicillin/streptomycin, and brain-derived neurotrophic factor (BDNF), mainte-

nance medium. Before the Hero plasmid transfection, the MNs were re-seeded into a

Matrigel-coated 96-well plate at a density of 2,000 cells/cm2 dissociated by Accutase (Innova-

tive cell technology) for 10–15 minutes. Then, after 5–7 days from reseeding, GFP-TDP-

43ΔNLS (200 ng/wells) plasmid with and without each Hero plasmid (100 ng/wells) was trans-

fected by Lipofectamine Stem Transfection Reagent in maintenance medium. Then, the aggre-

gation, which is observed as a GFP-saturated area, was quantified after 48 hours from the

transfection. To quantify the neurite length, the cells were fixed by 4% paraformaldehyde for

15 minutes and permeabilized by 0.1% Triton-X 100 for 5 minutes, followed by blocking with

1% BSA. The cells were then incubated with anti-TUJ1 mouse antibody (Biolegend, 1:1,000) in

PBS at 4˚C for overnight and then further incubated with Alexa Fluor 647–conjugated anti-

mouse IgG (Thermo Fisher Scientific, 1:1,000) in PBS at 4˚C for overnight with Hoechst 33342

for nuclear staining, following three times wash with PBS. The fluorescent images were

acquired with a 20× objective by Axio observer (Zeiss).

Image analysis for protein aggregation and quantifying neurite length

The images that show the exogenous expression of transfected GFP-TDP-43 were converted to

16-bit monochrome images and then masked according to saturated pixels (Fig 5B, red area).

The images were binarized and calculated the total number of saturated GFP pixels. Aggrega-

tion index is defined by the percentage of the number of GFP-saturated pixels divided by total

pixels in ROI. All post-image analysis was conducted by using Fiji (http://imagej.nih.gov/ij/).

To quantify the neurite length and the number of branches of motor neuron, the neurites

which are identified by TUJ1-positive features were traced by using the Simple Neurite Tracer

plug-in (http://imagej.net/Simple_Neurite_Tracer) in Fiji.

Drosophila eye degeneration assay

Fly culture and crosses were carried out at 25˚C. All general fly stocks and RNAi lines were

obtained from the Bloomington, Kyoto Fly Stock Center, FlyORF [53], or Vienna Drosophila

Resource Center [54]. Flies carrying pUASg.attB-Hero9, -13, -45, -11, and Vig2 transgenes

were generated by standard phiC31 integrase-mediated transgenesis (Bestgene). Gmr-Gal4

was used to express transgenes and/or induce RNAi by long hairpins in retina. UAS-MJDtr-

Q78 [32], UAS-TDP-43-YFP, and UAS-YFP lines [28] were kindly provided by Dr. Nancy

Bonini. Genotypes in Fig 6 were as follows: In (A), on the upper row, Oregon R is +/+;+/+.

Control (YFP), Hero9, -13, -45, or -11 is gmr-GAL4; UAS-YFP, UAS-Hero9, -13, -45, or -11/
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SM6a-TM6B. On the lower row,–is gmr-GAL4, UAS-TDP-43-YFP/+; TM3/+, Control (YFP) is

gmr-GAL4, UAS-TDP-43-YFP/+; UAS-YFP/+, and Hero9, -13, -45, or -11 is gmr-GAL4,

UAS-TDP-43-YFP/+; UAS-Hero9, -13, -45, or -11/+. Hero45(×2) is gmr-GAL4, UAS-TDP-
43-YFP/+; UAS-Hero45/UAS-Hero45. External eyes were imaged in 1-day-old male adult flies.

In (B),–is gmr-GAL4/+ and Piwi, Hsc70-4, CG17931, CG14818, or Vig2 is gmr-GAL4/UAS-KK
(Piwi), KK(Hsc70-4), KK(CG17931), KK(CG14818), or KK(Vig2). In (E),–is gmr-GAL4,

UAS-TDP43-YFP/+ and Piwi, Hsc70-4, CG17931, CG14818, or Vig2 is gmr-GAL4, UAS-TD-
P43-YFP /UAS-KK(Piwi), KK(Hsc70-4), KK(CG17931), KK(CG14818), or KK(Vig2) on the top

row. In the bottom row,–is gmr-GAL4/+; UAS-MJDtr-Q78/+ and Piwi, Hsc70-4, CG17931,

CG14818, or Vig2 is gmr-GAL4/UAS-KK(Piwi), KK(Hsc70-4), KK(CG17931), KK(CG14818),
or KK(Vig2); UAS-MJDtr-Q78/+. External eyes were imaged in 1-day-old female adult flies.

Nail polish imprinting of Drosophila eyes

Imprints of Drosophila eyes by transparent nail polish were taken essentially as previously

described [31,55], except that the imprints were mounted in 0.1% Tween 20. The preparations

were examined using differential interference contrast (DIC) installed in DeltaVision Elite

(GE healthcare).

Imaging of Drosophila eye cryosections

Heads of wild-type and RNAi flies were fixed by 2.5% glutaraldehyde, 2% paraformaldehyde,

and 0.1% Tween 20 in PBS at room temperature overnight. After washing with PBS, fixed fly

heads were embedded in OCT compound (SAKURA Finetek, Japan) and subjected to cryosec-

tioning. The internal retinal depth was quantified using ImageJ from cryosections at the same

anatomical position for all animals. Five female heads were quantified from each genotype.

Proliferation assay of acute-KO HEK293T cells

HEK293T cells stably expressing SpCas9 were established by a lentiviral system, using

pLX_311-Cas9 (Addgene #96924) [56], psPAX2 (Addgene #12260), and pCMV-VSV-G

(Addgene #8454) [57]. gRNAs were prepared as previously reported [58], and their sequences

are listed in S4 Table. Cas9-expressing HEK293T cells in a 24-well plate were transfected with

50 ng of two different gRNAs (100 ng in total) for each target gene by using Lipofectamine

RNAiMAX Transfection Reagent (Thermo Fisher Scientific). After approximately 72 hours,

cell number was counted by using Cell Counting Kit-8 (Dojindo) according to the manufac-

turer’s instruction.

Drosophila lethality assay

Fly culture and crosses were carried out at 25˚C, and the viability was checked immediately

after emergence. Actin-Gal4 was used to induce RNAi by long hairpins in the whole body.

Genotypes in Fig 7B were as follows: actin-GAL4/UAS-GD(CG14818), actin-GAL4/UAS-KK
(CG14818), actin-GAL4/UAS-GD(CG11844; Vig2), actin-GAL4/UAS-KK(CG11844; Vig2),
actin-GAL4/UAS-KK(CG17931), actin-GAL4/+; UAS-GD(CG1910)/+, actin-GAL4/UAS-KK
(CG1910), actin-GAL4/+; UAS-GD(CG3760-1)/+, actin-GAL4/+; UAS-GD(CG3760-2)/+.

Drosophila life span assay

Male files were cultured at 25˚C. Every third or fourth day, dead flies were scored and the sur-

vivors were tipped into a fresh food vial. Kaplan-Meir survival curves were plotted and a log-

rank test for trend was performed using R. Actin-Gal4 was used to express transgenes in the
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whole body. Genotypes in Fig 7C were as follows: WT is actin-Gal4/+, YFP, Hero9, -45, -11,

CG14818, or CG12384 is actin-GAL4/UAS-YFP, Hero9, Hero45, Hero11, CG14818, or

CG12384.
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S1 Fig. Prediction of disordered regions in Hero proteins. (A) Amino acid sequences of the

six representative Hero proteins. (B) Disorder prediction by IUPred using the default settings

[16]. GFP and GST were used as controls. GFP, green fluorescent protein; GST, glutathione S-

transferase; Hero, heat-resistant obscure.

(TIF)

S2 Fig. Structured proteins have little effect on pathogenic protein aggregation in cells. Fil-

ter trap assay of aggregation-prone proteins expressed in cells. TDP-43ΔNLS or HTTQ103 was

expressed in a GFP-fusion form in HEK293T cells, together with each Hero protein, GST, or

other structured proteins. The original or 5-fold diluted samples were loaded on a cellulose

acetate membrane in the presence of 1% SDS, and the trapped aggregates were probed with

anti-GFP antibody. We observed the same effects in two independent experiments. GFP,

green fluorescent protein; GST, glutathione S-transferase; Hero, heat-resistant obscure; TDP-

43ΔNLS, TDP-43 lacking the nuclear localization signal.

(TIF)

S1 Table. Drosophila proteins identified by LC-MS/MS analysis of lysate and boiled super-

natant. LC-MS/MS, liquid chromatography-mass spectrometry.

(XLSX)

S2 Table. Human proteins identified by LC-MS/MS analysis of lysates and boiled superna-

tant. LC-MS/MS, liquid chromatography-mass spectrometry.

(XLSX)

S3 Table. Shuffled amino acid sequences.

(XLSX)

S4 Table. gRNA sequences for acute KO. gRNA, guide RNA; KO, knockout.

(XLSX)

S1 Data. Excel spreadsheet containing the numerical values for each of the graphs repre-

sented in the manuscript.

(XLSX)

S1 Raw Images. This file contains the uncropped images of western blotting and filter trap

assays in the manuscript.

(PDF)
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