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Abstract: Necroptosis, a form of programmed lytic cell death, has emerged as a driving factor in the
pathogenesis of acute lung injury (ALI). As ALI is often associated with a cytokine storm, we deter-
mined whether pro-inflammatory cytokines modulate the susceptibility of lung cells to necroptosis
and which mediators dominate to control necroptosis. In this study, we pretreated/primed mouse
primary lung epithelial and endothelial cells with various inflammatory mediators and assessed cell
type-dependent responses to different necroptosis inducers and their underlying mechanisms. We
found that interferon-γ (IFNγ) as low as 1 ng/mL preferentially promoted necroptosis and acceler-
ated the release of damage-associated molecular patterns from primary alveolar and airway epithelial
cells but not lung microvascular endothelial cells. Type-I IFNα was about fifty-fold less effective
than IFNγ. Conversely, TNFα or agonists of Toll-like receptor-3 (TLR3), TLR4, TLR7 and TLR9 had
a minor effect. The enhanced necroptosis in IFNγ-activated lung epithelial cells was dependent on
IFNγ signaling and receptor-interacting protein kinase-3. We further showed that necroptosis effector
mixed lineage kinase domain-like protein (MLKL) was predominantly induced by IFNγ, contributing
to the enhanced necroptosis in lung epithelial cells. Collectively, our findings indicate that IFNγ is a
potent enhancer of lung epithelial cell susceptibility to necroptosis.

Keywords: IFNγ; necroptosis; acute lung injury; lung epithelial cells; MLKL

1. Introduction

Acute respiratory distress syndrome (ARDS) is a form of life-threatening respiratory
failure that is associated with high morbidity and mortality [1,2]. ARDS can develop follow-
ing various types of acute lung injuries (ALI) resulting from pulmonary (e.g., pneumonia,
aspiration) or nonpulmonary (e.g., sepsis, pancreatitis, trauma) insults [2]. Globally, ARDS
affects approximately 3 million patients annually and accounts for 10% of intensive care
unit admissions [3]. Due to the ongoing coronavirus disease 2019 (COVID-19) pandemic,
the number of patients diagnosed with ARDS/ALI increased substantially [4,5]. Clinically,
ALI/ARDS manifests as hypoxemia, lung edema, decreased lung compliance and diffuse
pulmonary infiltrates [1,2,4]. Despite decades of efforts on research, the pathogenesis of
ALI/ARDS is not fully elucidated and treatment options are limited as a result. Supportive
care with mechanical ventilation remains the mainstay of management for ALI/ARDS [2,4].

The pathological findings of ALI in the acute phase include the disruption of the
alveolar epithelial and endothelial barrier, recruitment of leukocytes and protein-rich fluid
in the alveolar space [1]. Inflammation is an important component to the pathogenesis of
ALI/ARDS. Previous studies indicate that inhibition of the chemokine CXC–CXCR receptor
axis prevents neutrophil recruitment and tissue injury in several sterile inflammation-
induced ALI animal models [1]. A recent study shows that palmitoylethanolamide inhibits
ALI in mice induced by endotoxin lipopolysaccharide (LPS) and may represent a potential
adjuvant anti-inflammatory therapeutic for treating lung injury [6]. Besides the involve-
ment of inflammation, necroptosis, a form of programmed lytic cell death, has emerged
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as a driving factor in the pathogenesis of ALI [7–10]. Necroptosis causes cell membrane
rupture, and triggers and amplifies inflammation via the release of damage-associated
molecular patterns (DAMPs), through which cell death and inflammation promote exag-
gerated tissue injury and organ dysfunction [11,12]. Necroptosis can be induced by the
TNF superfamily, Toll-like receptor 3 (TLR3) or TLR4 ligands when caspases are inhibited
and/or when the ubiquitin ligases cIAP1/2 (cellular inhibitor of apoptosis protein) are
degraded [13,14]. Necroptosis is executed by receptor-interacting protein kinase-3 (RIPK3)
and the downstream effector mixed lineage kinase domain-like protein (MLKL). It has been
shown that serum levels of RIPK3 are elevated in critically ill patients and are associated
with the development of ALI/ARDs in sepsis, trauma and COVID-19 patients [15–17].
Recent experimental studies have demonstrated that inhibition of necroptosis confers pro-
tection against ALI induced by LPS [18–20], mechanical ventilation [21], sepsis/systemic
inflammatory response syndrome [22–24], respiratory syncytial virus infection [25], bacte-
rial pneumonia [26–28], trauma [29], and blood transfusion [30]. Hence, the targeting of
necroptosis or its modulators holds significant promise for the treatment of ALI/ARDS.

The intracellular signaling pathways associated with necroptosis have been well stud-
ied [13,14]. However, the extracellular modulators of necroptosis including enhancers and
suppressors are not known. As ALI is often associated with a cytokine storm, it remains
unclear as to whether the pro-inflammatory cytokines control the susceptibility of lung
cells to necroptosis. The critical cytokines that modulate the necroptosis of different types
of lung parenchymally derived cells are likewise poorly understood. To address these gaps
in current knowledge, we pretreated/primed mouse primary lung epithelial and endothe-
lial cells with various inflammatory mediators and investigated the cell type-dependent
responses to necroptosis and the underlying mechanisms. We provide compelling evidence
that IFNγ preferentially among various inflammatory mediators promotes necroptosis in
primary alveolar and airway epithelial cells but not in lung microvascular endothelial cells.
This process involves the upregulation of necroptosis effector MLKL in lung epithelial cells.
Our findings provide a mechanistic link and a novel interpretation of the contribution of
IFNγ to the pathogenesis of ALI.

2. Materials and Methods
2.1. Antibodies and Reagents

GSK872 (no. 530389) and JAK kinase inhibitor-1 (no. 420099) were from EMD Millipore
(Burlington, MA, USA). GSK843 (HY-125402) and GW806742X (no. HY-112292) were from
MedChemExpress (Monmouth Junction, NJ, USA). Vinculin (no. V9131) antibody and
LPS (Escherichia coli 0111:B4) were from Sigma (St. Louis, MO, USA). Mouse specific
MLKL antibody (no. 28640) was from Cell Signaling Technology (Beverly, MA, USA).
Recombinant mouse IL-4 (no. 574304), IL-10 (no. 575804) and M-CSF (no. 576404) were
from Biolegend (San Diego, CA, USA). Recombinant mouse IFNα2 (no. 14-8312) and IFNγ

(no. 34-8311 and no. 14-8311) were from Thermo Fisher Scientific (San Diego, CA, USA).
Recombinant mouse TNFα (no. 410-MT) was from R & D Systems (Minneapolis, MN, USA).
Polyinosinic-polycytidylic acid (poly(I:C)) (no. tlrl-pic), CL075 (no. tlrl-c75), and ODN
1585 (no. tlrl-1585) were from InvivoGen (San Diego, CA, USA). Z-VAD-FMK (no. A1902)
was from ApexBio (Houston, TX, USA). Smac mimetic AZD5582 (no. CT-A5582) was
from Chemietek (Indianapolis, IN, USA). Myristoylated autocamtide-2-related inhibitory
peptide (Myr-AIP, no. BML-P212) was from Enzo (Farmingdale, NY, USA). Clarity Western
ECL substrate (no. 1705060) was from Bio-Rad (Hercules, CA, USA).

2.2. Cell Cultures

Primary alveolar epithelial cells (AECs, no. C57-6053), tracheal and bronchial epithelial
cells (TBECs, no. C57-6033) and lung microvascular endothelial cells (no. C57-6011) from
wild type C57BL/6 mice were obtained from Cell Biologics (Chicago, IL, USA). These
primary lung cells were cultured in epithelial cell growth medium (M6621, Cell Biologics)
or endothelial cell growth medium (M1168, Cell Biologics) and used for experiments within
3 passages. RAW264.7 murine macrophages (no. TIB-71) were from American Type Culture
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Collection (ATCC, Manassas, VA, USA) and cultured in DMEM medium supplemented
with 10% fetal bovine serum (FBS).

2.3. Cell Viability, Lactate Dehydrogenase Release and Real Time Necroptosis Assays

Primary cells were seeded into 96-well plates, grown overnight to subconfluence and
incubated with control PBS, IFNγ (1–50 ng/mL), IFNα2 (5–50 ng/mL), TNFα (25 ng/mL),
LPS (100 ng/mL), poly(I:C) (0.5 µg/mL), CL075 (1 µg/mL), ODN1585 (1 µM), IL-4
(15 ng/mL), or IL-10 (15 ng/mL) for 24 h in the complete growth medium. The media were
then aspirated, and the cells were washed once with PBC containing 1% FBS and treated in
a 0–10 h period with mouse TNFα (15 ng/mL), poly(I:C) (0.2 µg/mL) or LPS (200 ng/mL)
plus Smac mimetic AZD5582 (100 nM) and z-VAD-FMK (25 or 40 µM) to induce necroptosis
in the phenol-free epithelial cell growth medium (no. PCS-300-040, ATCC, Manassas, VA,
USA) (for lung epithelial cells) or in RPMI-1640 medium supplemented with 2.5% FBS (for
endothelial cells). In some experiments, JAK kinase inhibitor-1 (1 µM), GSK872 (5 µM),
GSK843 (2 µM), GW806742X (1–2 µM) or Myr-AIP (1 and 5 µM) were added to the medium.
All the cells were incubated with the same amount of DMSO. Cell supernatants were saved,
and the cell viability was assessed by MTS assay using CellTiter AQueous one solution
reagent (no. G3580) according to the manufacturer’s instructions (Promega, Madison,
WI, USA). Cell survival rates were calculated by comparison to individual control groups
without treatment of necroptosis inducers and are presented as means ± SE from at least
three independent experiments.

Lactate dehydrogenase (LDH) activities in cell supernatants were determined by using
the LDH-Cytox™ assay kit (no. 426401, Biolegend, San Diego, CA, USA) according to the
manufacturer’s protocol. Relative changes in the release of LDH are presented as fold ± SE
of individual control groups without treatment of necroptosis inducers from at least three
independent experiments.

Real time necroptosis is monitored by a 0–10 h period using the CellTox™ green
cytotoxicity assay (no. G8742, Promega, Madison, WI, USA) according to the manufac-
turer’s protocol. The assay system uses an asymmetric cyanine dye that is excluded from
viable cells but preferentially stains the dead cells’ DNA. The percentage of lytic cell death
(green dye+ cells) was calculated by comparison to the maximal fluorescence induced by a
lysis buffer in each group and is presented as mean ± SE from at least three independent
experiments.

2.4. DNA and High-Mobility Group Protein B1 Release Assays

After treatment with necroptosis inducers for 6 h, cell supernatants were saved, and
the contents of released double-stranded DNA (dsDNA) were determined by a sensitive
fluorescence dsDNA quantitation kit (no. 31007-T, Biotium, Fremont, CA, USA) according
to the manufacturer’s protocol. The amounts of high-mobility group protein B1 (HMGB1)
in cell supernatants were determined by using ELISA kits (no. MBS2701751, MyBioSource,
San Diego, CA, USA).

2.5. Real Time Measurement of ATP Release

Kinetic monitoring of ATP released from lytic cells was performed by using RealTime-
Glo™ extracellular ATP assay kits (no. GA5010, Promega, Madison, WI, USA) according
to the manufacturer’s protocol. The assay uses an optimized, bioluminescence detection
chemistry to measure ATP that has been released into the cultured cell environment as a
result of cell death and stress. The nonlytic, homogeneous ATP assay substrate was added
directly to cells at the time of treatment with necroptosis inducers for a period of 0–10 h to
assess continuous ATP release.

2.6. Western Blot Analysis

Western blot analysis was performed as we described previously [31]. Briefly, cells
were washed twice with ice-cold PBS and then lysed on ice in Nonidet P-40 lysis buffer
(25 mM Tris-HCl, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10 mM NaF, 1 mM Na3VO4,
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1 mM phenylmethylsulfonyl fluoride, 10 mg/mL each leupeptin and aprotinin). Equal
amounts of whole cell lysates were subjected to SDS-PAGE and then transferred to polyvinyli-
dene difluoride membranes. The membranes were blocked 1 h at room temperature with
5% low fat milk in Tris-buffered saline plus 0.05% Tween 20, and then incubated 1 h at
room temperature with primary antibodies against mouse MLKL (1:500, no. 28640, Cell
Signaling Technology, Danvers, MA, USA) or vinculin (1:3000, no. V9131, Sigma, St. Louis,
MO, USA), followed by 1 h incubation with anti-mouse (no. 7076) or anti-rabbit (no. 7074)
HRP-conjugated secondary antibodies (Cell Signaling Technology, Beverly, MA, USA).
Labelled proteins were detected with Bio-Rad Clarity Western ECL substrate (no. 1705061,
Hercules, CA, USA). Relative changes in the expression levels of the proteins of interest
were measured by densitometric analysis using ImageJ 1.47 software and normalized to
vinculin and are represented as fold or percentage of control.

2.7. RNA Isolation and Reverse Transcription (RT)-PCR

Total RNA was isolated using the RNeasy RNA isolation kit (no. 74104) according
to the manufacturer’s protocol (Qiagen, Valencia, CA, USA). Primers were designed by
using Oligo6 software (Molecular Biology Insights) as follows: MLKL (expected product of
269 bp), 5′-CCG AAA GTG TTG GAA TAG TGA-3′ (forward) and 5Ȳ-GAG TGT TTC CGA
ATG GTG TAG-3′ (reverse); and internal control glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) (608 bp), 5′-CGC TGA GTA CGT CGT GGA G-3′ (forward) and 5′-GAG
GAG TGG GTG TCG CTG TTG-3′ (reverse). RT-PCR conditions were 50 ◦C for 30 min and
95 ◦C for 15 min, followed by 30 cycles of 94 ◦C for 30 s, 55 ◦C for 1 min, and 72 ◦C for
1 min, followed by 72 ◦C for 10 min. The relative changes in mRNA levels were measured
by densitometric analysis and normalized to GAPDH.

2.8. SiRNAs and siRNA Transfection

AllStars non-targeting negative control siRNA (no. 1027280) and mouse MLKL siRNA
(no. SI00868812) were from Qiagen (Valencia, CA, USA). For siRNA transfection, cells
were seeded into 96-well plates for 24 h to reach 50–70% confluence, and then siRNA was
transfected into the cells in a final concentration of 20 nM by using Lipofectamine 2000 and
Opti-MEM I reduced serum medium according to the manufacturer’s protocol (Invitrogen,
Carlsbad, CA, USA). The silencing effects of siRNAs were confirmed by Western blot
analysis.

2.9. Statistical Analysis

Data are expressed as mean± SE. Statistical analyses were performed using GraphPad
Prism 9 (GraphPad Software, La Jolla, CA, USA). Data were analyzed by using an unpaired,
Student’s t test between means of two groups and one-way ANOVA for differences among
means with three or more groups. Two-way ANOVA followed by Sidak multiple compar-
isons were performed to compare a response with 2 factors. Differences with p < 0.05 were
considered statistically significant.

3. Results
3.1. IFNγ among Inflammatory Mediators Preferentially Promotes Necroptosis in Primary
Alveolar Epithelial Cells

We determined whether lung epithelial cells that are pre-activated by pro-inflammatory
mediators preferentially undergo necroptosis. As shown in Figure 1A, primary alveolar
epithelial cells (AECs) from C57BL/6 mice were incubated with control PBS, IFNα, IFNγ,
agonists of TLR3 (poly(I:C), TLR4 (LPS), TLR7 (CL075) and TLR9 (ODN1585), IL-4 or IL-10
for 24 h, and then treated for 6 h with control vehicle DMSO or three different necroptosis
inducers including TNFα plus Smac mimetic and a pan-caspase inhibitor z-VAD-FMK
(TSZ), poly(I:C) plus Smac mimetic and z-VAD-FMK (PSZ), or LPS plus Smac mimetic and
z-VAD-FMK (LSZ) [32–36]. Cell viability was assessed by an MTS assay that determines
the number of viable cells. We found that IFNγ remarkably enhanced cell death induced
by TSZ, PSZ and LSZ (Figure 1A). Type-I IFNα also augmented cell death by TSZ and PSZ,
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but the effect was less than IFNγ. In contrast, TLR agonists, IL-4 or IL-10 demonstrated
relatively minor effects (Figure 1A).
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Figure 1. IFNγ preferentially promotes cell death and the release of LDH induced by various
necroptosis inducers in primary AECs. Mouse primary AECs were incubated with LPS (100 ng/mL),
IFNα2 (50 ng/mL), IFNγ (50 ng/mL), poly(I:C) (PIC, 0.5 µg/mL), CL075 (1 µg/mL), ODN1585
(1 µM), IL-4 (15 ng/mL), or IL-10 (15 ng/mL) for 24 h, then treated for 6 h with TNFα (15 ng/mL)
plus 100 nM Smac mimetic AZD5582 and 25 µM z-VAD-FMK (TSZ), poly(I:C) (0.2 µg/mL) plus
100 nM Smac mimetic AZD5582 and 40 µM z-VAD-FMK (PSZ), or LPS (200 ng/mL) plus 100 nM Smac
mimetic AZD5582 and 25 µM z-VAD-FMK (LSZ). (A) AEC viability was assessed by MTS assay using
CellTiter AQueous reagent and cell survival rates were calculated by comparison to individual control
groups without treatment of necroptosis inducers and are presented as means ± SE. Con.+TSZ or
PSZ, n = 12; IFNγ+TSZ or PSZ, n = 10; all other treatments, n = 4–8. ** p < 0.01; *** p < 0.001 versus
control (Con.) in each treatment group. NS, no significance. (B) LDH activities in cell supernatant
were determined. Relative changes in LDH are presented as fold ± SE of individual control groups
without treatment of necroptosis inducers. Con. or IFNγ+TSZ, n = 10; Con. or IFNγ+PSZ, n = 12;
all other treatments, n = 4–7. * p < 0.05; ** p < 0.01; *** p < 0.001 versus control (Con.) in each
group. NS, no significance. (C) Mouse AECs were incubated without or with IFNγ (50 ng/mL) in
the presence of DMSO or JAK kinase inhibitor-1 (JAKi, 1 µM) for 24 h, washed and then treated
for 6 h with necroptosis inducers TSZ or PSZ in the presence of DMSO, GSK872 (5 µM) or JAKi
(1 µM). LDH activities in cell supernatant were determined and the relative changes are presented as
fold ± SE of individual control groups without treatment of necroptosis inducers. TSZ group: DMSO
or DMSO+IFNγ, n = 7; others, n = 3–4. PSZ group: DMSO or DMSO+IFNγ, n = 9; others, n = 5.
*** p < 0.001 versus DMSO in each group. ### p < 0.001 versus DMSO+IFNγ in each group. NS, no
significance. One-way ANOVA was performed in (A–C).
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The release of LDH is a hallmark of lytic cell death. Consistent with the cell survival
data (Figure 1A), the release of LDH from primary AECs by necroptosis inducers TSZ, PSZ
or LSZ was greatly enhanced by IFNγ pretreatment (Figure 1B). Type-I IFNα also enhanced
the release of LDH induced by TSZ and PSZ, but the effect was much less than IFNγ. In
contrast, TLR agonists, IL-4 or IL-10 had a minor effect. To verify the effect of IFNγ, AECs
were pretreated with IFNγ in the presence of DMSO or a selective JAK kinase inhibitor [37]
and then exposed to necroptosis inducers TSZ or PSZ for 6 h. We found that the enhanced
release of LDH by TSZ or PSZ from IFNγ-treated AECs was essentially abolished by the
selective JAK kinase inhibitor, indicating a requirement of IFNγ signaling (Figure 1C). The
selective JAK kinase inhibitor did not significantly affect the release of LDH from control
AECs in response to TSZ or PSZ. Noticeably, the releases of LDH from both control and
IFNγ-treated AECs were blocked by a selective RIPK3 inhibitor GSK872 [36,38] (Figure 1C),
indicating a key involvement of the RIPK3 kinase activity-dependent signaling pathway.

We next utilized the CellTox™ green cytotoxicity assay to monitor lytic cell death
in real time. The assay system uses an asymmetric cyanine dye that is excluded from
viable cells, so the viable cells produce no appreciable increases in fluorescence. When the
dye binds DNA of compromised cells with impaired membrane integrity, its fluorescent
properties are substantially enhanced. Therefore, the fluorescent signal produced by the dye
binding to the dead-cell DNA is proportional to cytotoxicity and can be used to accurately
monitor real-time lytic cell death. We found that IFNγ greatly accelerated mouse AEC
necroptosis in real time by TSZ, PSZ and LSZ (Figure 2). The IFNγ-pretreated AECs had
the most susceptibility to TSZ with ~80% of the cells being lysed 5h after TSZ treatment
and all the cells lysed 6 h after TSZ treatment (Figure 2A). The IFNγ-promoted real-time
necroptosis by TSZ was blocked by a selective JAK kinase inhibitor [37] or two structurally
distinct specific RIPK3 inhibitors GSK872 or GSK843 [36,38], confirming the involvement
of IFNγ-mediated and RIPK3 kinase activity-dependent signaling pathways (Figure 2B).
Moreover, almost all the IFNγ-activated AECs underwent lysis after 10 h treatment with
PSZ or LSZ (Figure 2C,D). Type-I IFNα also enhanced real-time necroptosis by TSZ and
PSZ, but the effect was much less than IFNγ (Figure 2A,C). Conversely, TNFα, TLR-3, -4,
-7, or -9 agonists had a minor effect on necroptosis in primary AECs (Figure 2).

We determined the dose-dependent effects of type-II IFNγ and type-I IFNα on real-
time necroptosis in primary AECs. We found that IFNγ at as low as 1 ng/mL markedly
promoted real-time necroptosis induced by TSZ or PSZ (Figure 3A,C). IFNα generally had
less of an effect. IFNα at 50 ng/mL enhanced TSZ-induced necroptosis (Figure 3A), while
at 10 and 50 ng/mL, it significantly promoted PSZ-induced necroptosis (Figure 3C). The
dose-dependent effects of IFNγ on necroptosis were verified by measuring the release
of LDH from AECs (Figure 3B,D). Moreover, the LSZ-induced real-time necroptosis was
dose-dependently accelerated by IFNγ, while IFNα essentially did not affect the necrop-
tosis (Figure 3E). Taken together, our findings indicate that IFNγ preferentially promotes
necroptosis in primary AECs.
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24 h, then treated in a 0–10 h period with DMSO, or TNFα (15 ng/mL) plus 100 nM Smac mimetic
AZD5582 and 25 µM z-VAD-FMK (A, +TSZ), poly(I:C) (0.2 µg/mL) plus 100 nM Smac mimetic
and 40 µM z-VAD-FMK (C, +PSZ) or LPS (200 ng/mL) plus 100 nM Smac mimetic AZD5582 and
25 µM z-VAD-FMK (D, +LSZ) in the presence of an asymmetric cyanine dye. (B) Mouse AECs were
incubated without or with IFNγ (50 ng/mL) in the presence of DMSO or JAK kinase inhibitor-1 (JAKi,
1 µM) for 24 h, washed and then subjected to TSZ-induced real-time necroptosis assay as described
above in the presence of DMSO, GSK872 (5 µM), GSK843 (2 µM) or JAKi (1 µM). The percentage
of lytic cell death (green dye+ cells) was calculated by comparison to the maximal fluorescence
induced by a lysis buffer in each group and presented as mean ± SE. In panel (A): Con.+TSZ, n = 16;
IFNγ+TSZ, n = 15; IFNα+TSZ, n = 11; other treatments, n = 4–6. In panel (B): DMSO, n = 10; others,
n = 5–7. In panel (C): Con.+PSZ, n = 15; IFNγ+PSZ, n = 14; IFNα+PSZ, n = 10; other treatments,
n = 4–5. In panel (D): Con.+LSZ, n = 8; IFNγ or IFNα+LSZ, n = 6; other treatments, n = 4–5. Two-way
ANOVA and unpaired Student’s t test were performed in (A–D). * p < 0.05; ** p < 0.01; *** p < 0.001
versus control (Con.) or DMSO in each group. The orders of each agonist-induced percentage of lytic
cell death were listed on the right in panels (A,C,D).
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Figure 3. Dose-dependent effects of IFNγ and IFNα on AEC necroptosis. (A,C,E) Mouse primary
AECs were incubated with control PBS (Con.), IFNα2 at 5, 10, or 50 ng/mL, or IFNγ at 1, 5, 10,
or 50 ng/mL for 24 h. The cells were then subjected to real-time necroptosis assay as described
in Figure 2 in response to TSZ (A), PSZ (C) or LSZ (E). The percentage of lytic cell death (green
dye+ cells) was calculated by comparison to the maximal fluorescence induced by a lysis buffer
in each group and is presented as mean ± SE. In panel (A): Con., IFNγ-1, IFNγ-10, IFNγ-50, or
IFNα-50+TSZ, n = 10; other treatments, n = 4–7. In panel (C): Con., IFNγ-50, or IFNα-50+PSZ, n = 10;
other treatments, n = 4–7. In panel (E): Con.+LSZ, n = 8; IFNα-5+LSZ, n = 3; all other treatments, n = 6.
Two-way ANOVA and unpaired Student’s t test were performed in (A,C,E). * p < 0.05; ** p < 0.01;
*** p < 0.001 versus control (Con.) in each treatment group. NS, no significance. The orders of each
agonist-induced percentage of lytic cell death were listed on the right in each panel. (B,D) Mouse
primary AECs were incubated with IFNα2 or IFNγ at 0, 1, 5, 10, or 20 ng/mL for 24 h, then treated for
6 h with necroptosis inducers TSZ (B) or PSZ (D). LDH activities in cell supernatant were determined
and the relative changes are presented as fold ± SE of individual control groups without treatment of
necroptosis inducers. Panel (B), n = 4–7; panel (D), n = 3–6. One-way ANOVA was performed in
(B,D). *** p < 0.001 versus control (0 IFN) in each treatment group. NS, no significance.
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3.2. IFNγ Preferentially Promotes Necroptosis in Primary Airway Epithelial Cells

We next assessed if IFNγ also promotes necroptosis in primary airway epithelial cells.
Tracheal and bronchial epithelial cells (TBECs) from wild type C57BL/6 mice were utilized
for this study. We found that IFNγ greatly accelerated TBEC necroptosis induced by TSZ,
PSZ and LSZ (Figure 4). IFNγ-activated TBECs had the most susceptibility to TSZ with
all cells lysed 5 h after TSZ treatment (Figure 4A). Almost all the IFNγ-activated TBECs
underwent lysis after 9 h of treatment with PSZ or LSZ (Figure 4C,E). Dose-dependent
real-time necroptosis studies indicate that IFNγ at 1 ng/mL is sufficient to achieve 100% cell
lysis after 8 h treatment with TSZ or PSZ (Figure 4B,D). Although type-I IFNα at 50 ng/mL
could enhance necroptosis by TSZ and PSZ, the effect was less than that of IFNγ at 1 ng/mL
(Figure 4B,D). In contrast, TNFα, TLR-3, -4, -7, or -9 agonists generally had a relatively
minor effect on the necroptosis in primary airway epithelial cells. Collectively, these
findings indicate that IFNγ also preferentially promotes necroptosis in primary airway
epithelial cells.
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Figure 4. IFNγ predominantly promotes TBEC necroptosis by real time lytic cell death analysis.
(A,C,E) Mouse primary TBECs were incubated with PBS (Con.), IFNα2 (50 ng/mL), IFNγ (50 ng/mL),
TNFα (25 ng/mL), LPS (100 ng/mL), poly(I:C) (PIC, 0.5 µg/mL), CL075 (1 µg/mL) or ODN1585
(1 µM) for 24 h. (B,D) Mouse primary AECs were incubated with control PBS (Con.), IFNα2 at 5, 10,
or 50 ng/mL, or IFNγ at 1, 5, 10, or 50 ng/mL for 24 h. The cells were then treated for 0 to 10 h with
necroptosis inducers TSZ (A,B), PSZ (C,D) or LSZ (E) in the presence of an asymmetric cyanine dye.
The percentage of lytic cell death (green dye+ cells) was calculated by comparison to the maximal
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fluorescence induced by a lysis buffer in each group and is presented as mean± SE. In panel (A): Con.
or IFNγ+TSZ, n = 7–8; all other treatments, n = 3. In panel (B): Con. or IFNγ-50+TSZ, n = 7–8; IFNγ-1
or IFNγ-5+TSZ, n = 5; other treatments, n = 3–4. In panel (C): Con. or IFNγ+PSZ, n = 7–8; all other
treatments, n = 3. In panel (D): Con. or IFNγ-50+TSZ, n = 7–8; all other treatments, n = 3–4. In panel
(E): n = 4–5. Two-way ANOVA was performed in (A–E). * p < 0.05; ** p < 0.01; *** p < 0.001 versus
control (Con.) in each treatment group. NS, no significance. The orders of each agonist-induced
percentage of lytic cell death were listed on the right in each panel.

In contrast to lung epithelial cells, we found that IFNα, IFNγ, TNFα, as well as TLR
agonists did not significantly promote necroptosis in response to TSZ, PSZ or LSZ in mouse
primary lung microvascular endothelial cells (Figure S1).

3.3. IFNγ Greatly Accelerates the Release of DAMPs from AECs

Necroptosis causes cell membrane rupture, which triggers and amplifies inflammation
through the release of DAMPs, such as ATP, the high-mobility group protein B1 (HMGB1),
nucleic acids, IL-1 family cytokines and S100 proteins [11,12]. We monitored kinetic ATP
release from lytic cells by using RealTime-Glo™ extracellular ATP assay. We found that
IFNγ greatly accelerated the release of ATP from AECs in response to TSZ, with a peak
at 3 h after TSZ treatment (Figure 5A). The basal level of HMGB1 was detectable in cell
supernatants from resting AECs. At 6 h of TSZ treatment, the levels of HMGB1 were not
significantly increased in control AECs but were markedly increased in IFNγ-activated
AECs (Figure 5B). We further found that IFNγ also accelerated the release of dsDNA
from AECs in response to TSZ (Figure 5C). The level of dsDNA was not detectable in cell
supernatants from resting AECs and control AECs treated with TSZ for 6 h (Figure 5C).
Collectively, these findings demonstrate that IFNγ greatly accelerates the release of DAMPs
from primary AECs.

3.4. MLKL Is Predominantly Induced by IFNγ in Primary Lung Epithelial Cells and MLKL
Silencing or Inhibition Largely Suppresses the IFNγ-Promoted Necroptosis

MLKL is a central effector downstream of RIPK3 kinase [13,14]. We found that
MLKL mRNAs were readily induced by IFNγ in primary AECs, TBECs and Raw264.7
macrophages (Figure 6A). We further found that MLKL protein levels were predominantly
upregulated by IFNγ among the tested inflammatory mediators, although type-I IFNα had
an effect (Figure 6B–D). In contrast, TNFα, IL-4, TLR-3, -4, -7 or -9 agonists had a minor
effect. Interestingly, MLKL expression could be synergistically induced by IFNγ plus TNFα
(Figure 6C).

We knocked down MLKL and determined the effect on the IFNγ-promoted necroptosis
in primary AECs. Real-time necroptosis analysis revealed that the enhanced necroptosis
in IFNγ-activated AECs was significantly and markedly inhibited by MLKL silencing,
although the inhibitory effect was reduced at a later time when necroptosis occurred
(after 6 h of TSZ treatment) (Figure 6E,F). We next determined the effect of a selective
murine MLKL inhibitor GW806742X on the IFNγ-promoted necroptosis. GW806742X
inhibits necroptosis by preventing MLKL membrane translocation [39]. We found that the
enhanced necroptosis in IFNγ-activated AECs was inhibited 98%, 92%, 90%, 87%, or 85%
from 2 to 6 h during TSZ treatments by GW806742X (1 or 1.5 µM), respectively (Figure 6G).
However, GW806742X became less effective, especially in the later stages of necroptosis
(after 7 h of TSZ treatment). GW806742X at concentrations of 1 and 1.5 µM appeared to have
slightly better inhibitory effects than that of 2 µM (Figure 6G). Interestingly, necroptosis in
IFNγ-activated AECs was no longer inhibited by GW806742X at three different doses (1, 1.5
or 2 µM) after 24 h of TSZ treatment, whereas necroptosis in control AECs was sustainably
and markedly suppressed by GW806742X at the time point (Figure 6H).

Ca2+-calmodulin-dependent protein kinase-II (CaMKII) has been identified as a new
RIPK3 effector mediating myocardial necroptosis [40]. We treated IFNγ-activated AECs
with a specific CaMKII myristoylated peptide inhibitor (Myr-AIP) at two different con-
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centrations (1 and 5 µM) that have been shown to effectively inhibit CaMKII activities
in vitro and in cultured cells [41,42] and assessed the effects on TSZ-induced necroptosis in
primary AECs. We found that inhibition of CaMKII activity with Myr-AIP led to a small but
statistically significant reduction in the IFNγ-promoted necroptosis at 3 h (30% inhibition),
4 h (25% inhibition) or 5 h (14% inhibition) of TSZ treatment (Figure 6G). Myr-AIP did
not significantly affect necroptosis after 6 h of TSZ treatment. Interestingly, Myr-AIP plus
GW806742X did not lead to an additive inhibitory effect on necroptosis compared with
GW806742X alone (Figure 6G), suggesting that MLKL and CaMKII may signal and function
through the same necroptosis pathway in AECs.
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Figure 5. IFNγ greatly accelerates the release of DAMPs from AECs. (A) Mouse primary AECs
were incubated with PBS (Con.) or IFNγ (50 ng/mL) for 24 h, then treated for 0 to 10 h with DMSO
or necroptosis inducer TSZ. The release of ATP from AECs was continuously monitored by using
RealTime-Glo™ extracellular ATP assay kits, and the levels of ATP luminescence are presented as
means ± SE (n = 8). (B,C) Mouse primary AECs were incubated with PBS (Con.) or IFNγ (50 ng/mL)
for 24 h, then treated for 6 h with DMSO or necroptosis inducer TSZ. The levels of HMGB1 and
dsDNA in cell supernatant were determined and are presented as means ± SE (n = 4). Student’s
t test was performed in (B,C). *** p < 0.001 versus control (Con.) in each treatment group. NS, no
significance.
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Figure 6. MLKL is predominantly induced by IFNγ in primary lung epithelial cells, and MLKL
silencing or inhibition largely suppresses the IFNγ-promoted necroptosis. (A) RT-PCR showing the
induction of MLKL by IFNγ. Mouse primary AECs and TBECs or Raw264.7 macrophages were
treated with IFNγ (50 ng/mL) for 24 h, and mRNA levels of MLKL and GAPDH are shown in a
representative RT-PCR. (B–D) Western blots showing the expression of MLKL. Primary mouse AECs
were incubated with control PBS (Con.), IFNα2 (50 ng/mL), IFNγ (50 ng/mL), LPS (100 ng/mL),
poly(I:C) (PIC, 0.5 µg/mL), TNFα (25 ng/mL), TNFα (25 ng/mL) plus IFNγ (50 ng/mL) (T+γ), TNFα
(25 ng/mL) plus IFNα (50 ng/mL) (T+α), CL075 (1 µg/mL), ODN1585 (1 µM) or IL-4 (15 ng/mL) for
24 h. Equal amounts of cell lysates were subjected to Western blot analysis. Results represent the
findings of 3 independent experiments. (E) MLKL knockdown by siRNA. Primary mouse AECs were
transfected with 20 nM control siRNA (CS) or MLKL siRNA (MS) for 6 h, then treated with control
PBS (Con) or IFNγ (25 ng/mL) for 24 h. Equal amounts of cell lysates were subjected to Western blots.
Results represent the findings of 3 independent experiments. (F) MLKL silencing largely suppresses
the IFNγ-promoted necroptosis. Primary mouse AECs were transfected with control siRNA or MLKL
siRNA for 6 h, incubated with IFNγ (25 ng/mL) for 24 h, then subjected to TSZ-induced real-time
necroptosis assay as described in Figure 2. * p < 0.05; ** p < 0.01; *** p < 0.001 versus control siRNA in
each time point (n = 4). (G,H) Effects of MLKL or CaMKII inhibitors on necroptosis. Mouse AECs
were incubated without or with IFNγ (25 ng/mL) for 24 h, then subjected to TSZ-induced real-time
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necroptosis assay as described above in the presence of DMSO, GW806742X at 1 µM (GW42X-1),
1.5 µM (GW42X-1.5), 2 µM (GW42X-2) or 2 µM plus 1 µM Myr-AIP (GW42X+AIP), or Myr-AIP at
1 µM (AIP-1) or 5 µM (AIP-5) over a 0–10 h period (G) or at 24 h of TSZ treatment (H). In panel
(G): DMSO, n = 12; GW42X-1, n = 9; GW42X-1.5, n = 6; all others, n = 4. In panel (H): DMSO, n = 8;
GW42X-1 or GW42X-1.5, n = 6; all others, n = 4. * p < 0.05; ** p < 0.01; *** p < 0.001 versus DMSO in
each group. NS, no significance. Two-way ANOVA was performed in (F,G) and one-way ANOVA
was performed in (H).

4. Discussion

The present study provides compelling evidence that IFNγ preferentially among
various inflammatory mediators promotes necroptosis in primary alveolar and airway
epithelial cells but not in lung microvascular endothelial cells. This process involves the
IFNγ-mediated upregulation of necroptosis effector MLKL. Unlike apoptosis, necroptosis
causes cell membrane rupture, which triggers and amplifies inflammation through the
release of DAMPs, such as ATP, HMGB1, nucleic acids, IL-1 family cytokines and S100
proteins [11,12]. Our findings also demonstrate that IFNγ greatly accelerates the release
of ATP, HMGB1 and dsDNA from primary lung epithelial cells undergoing necroptosis.
DAMPs are detected by pattern recognition receptors that activate immune responses
by inducing the expression of cytokines and chemokines. HMGB1 is a highly conserved
ubiquitous protein present in the nucleus and cytoplasm of nearly all cell types and is the
prototypic DAMP molecule [43]. The inflammatory functions of HMGB1 are mediated
through the receptor for advanced glycation end products (RAGE), TLR2, TLR4, and
TLR9 [44,45]. ATP activates P2 purinergic receptors, through which it is involved in
multiple pulmonary disorders [46,47], while dsDNA including mitochondrial DNA triggers
an innate immune response through DNA sensors [48,49]. On the basis of these results, we
posit that enhanced necroptosis in IFNγ-activated lung epithelial cells not only promotes
cell death but also accelerates the release of immune-stimulatory DAMPs, through which
they may contribute to the exaggerated tissue injury, inflammation and lung dysfunction.

IFNγ can be produced by innate (NK, NKT, antigen-presenting cells, neutrophils)
and adaptive (CD4+, CD8+, B) immune cells [50,51] and is often elevated in patients with
autoimmune diseases [50,52,53] and infections with respiratory viruses such as SARS-
CoV-2 [54–58]. A prospective cohort study identified IFNγ, angiopoietin1/2, IL-6, and
plasminogen activator inhibitor-1 as four critical biomarkers for the “reactive” phenotype
group of ARDS, which has higher mortality than a less “inflamed” phenotypic group [59].
Prior studies demonstrate that neutralization of IFNγ or deficiency of IFNγ receptor confer
protection against ALI and/or lethality induced by LPS [60–62], sepsis/systemic inflamma-
tory response syndrome [62–65], hyperoxia/mechanical ventilation [66,67], and respiratory
viral infection [68–71]. Neutralization of both IFNγ and TNFα additionally protects against
mortality by SARS-CoV2 infection in mice [72]. Administration of recombinant IFNγ

or local IFNγ induction greatly accelerates ALI following LPS challenge in mice [61]. It
has been demonstrated that necrosis (including necroptosis) rather than apoptosis is the
dominant form of AEC death in LPS-induced ALI in mice [73]. However, IFNγ alone is
unable to induce ALI in mice [61]. Collectively, these data indicate that IFNγ appears to
play an important role in ALI, but the underlying molecular mechanisms by which this
mediator regulates lung injury remain unclear. The present study has now identified a
mechanistic link between IFNγ and the enhanced necroptosis of activated lung epithelial
cells and expanded understanding of the contribution of IFNγ to the pathogenesis of ALI.
High levels of pulmonary IFNγ may cause a rapid initiation and fast progression of ALI
that is often observed in ARDS [2,74] where necroptosis signals are triggered by mechanical
ventilation, endotoxin inhalation, infections and trauma [7,8,10].

It has been shown that extended incubation (24 to 72 h) of IFNγ induces necroptosis
in murine embryo fibroblasts (MEFs) deficient of NF-κB signaling (rela-/-) or Fas-associated
death domain (fadd-/-) or when caspases are inhibited [75,76]. NF-κB, FADD and caspases
are negative intracellular regulators of necroptosis [13,14], thus IFNγ facilitates necroptosis
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in the sensitized MEFs. However, IFNγ had a minor effect on the cell survival of primary
normal MEFs [75,76]. Conversely, Lee et al. reported that IFNγ slightly promoted a
reduction in MLKL and inhibited the phosphorylation of MLKL in mouse splenocytes
treated with zVAD and TNFα, in which the mechanism was unknown [77]. Consistent with
the effect on primary normal MEFs [75,76], we found that 24 h incubation of IFNγ alone
had no effect on cell survival but slightly reduced LDH release from primary normal mouse
AECs (Figure S2). We further found that IFNγ markedly promoted the susceptibility of lung
epithelial cells to various necroptosis inducers. Hence, we posit that IFNγ has a minor effect
on cell survival in primary normal cells but, in a cell type-dependent manner, can greatly
promote necrotic cell death in necroptosis-sensitized cells and cells receiving necroptosis
signals. The IFNγ-promoted necroptosis of lung epithelial cells was blocked by a selective
JAK kinase inhibitor [37] or two structurally distinct specific RIPK3 kinase inhibitors
GSK872 or GSK843 [36,38]. These results indicate a requirement of IFNγ signaling and
support a key role of RIPK3 kinase activity in the initiation of necroptosis [35]. We further
found that the mRNA and protein levels of necroptosis effector MLKL were predominantly
upregulated by IFNγ in lung epithelial cells and that the enhanced necroptosis in the cells
was significantly and markedly inhibited by MLKL silencing. Moreover, the enhanced
necroptosis in IFNγ-activated AECs was almost completely abolished by preventing MLKL
membrane translocation with a selective murine MLKL inhibitor GW806742X [39] during
the early stages of necroptosis (from 2 to 6 h of TSZ treatments). These findings indicate
that the induction of MLKL is a critical determinant of enhanced necrotic cell death that
occurs in IFNγ-activated lung epithelial cells. We recently showed that IFNγ, LPS, or
poly(I:C) induced MLKL expression and promoted necroptosis in mouse bone marrow-
derived macrophages [78]. However, MLKL was barely induced by LPS and poly(I:C)
in primary lung epithelial cells and neither LPS nor poly(I:C) promoted lung epithelial
cell necroptosis. Similarly, we found that IFNγ did not promote necroptosis in lung
microvascular endothelial cells, which may be attributed to the inability of IFNγ to induce
MLKL expression. Cell type-dependent regulation of MLKL expression by IFNγ and the
underlying mechanism merit further investigation. Interestingly, we found that GW806742X
became less effective in suppressing necroptosis during the later stages of necroptosis (after
7 h of TSZ treatment). GW806742X inhibits necroptosis by retarding MLKL translocation to
membranes [39]. Our observation could be interpreted as that membrane translocation of
MLKL in IFNγ-activated lung epithelial cells may not be effectively blocked by GW806742X,
possibly due to a modification of MLKL. Other mechanisms beyond the participation of
MLKL could likewise contribute to the enhanced necroptosis at the later stages in IFNγ-
activated lung epithelial cells.

CaMKII is another necroptosis effector downstream of RIPK3, mediating myocardial
necroptosis [40]. We found that inhibition of CaMKII activity with a specific myristoylated
peptide inhibitor (Myr-AIP) [41,42] led to a small but statistically significant reduction in
the IFNγ-promoted necroptosis at 3 h (30% inhibition) and 4 h (25% inhibition) of TSZ
treatment, where the enhanced necroptosis was suppressed more than 90% by the MLKL
inhibitor GW806742X [39]. Furthermore, Myr-AIP plus GW806742X did not lead to an
additive inhibitory effect on necroptosis compared with GW806742X alone. A recent report
shows that CaMKII regulates necroptosis downstream of MLKL in smooth muscle cells [41].
Hence, our findings indicate that CaMKII contributes to a small proportion of necroptosis
early after induction of the process in IFNγ-activated lung epithelial cells and may likely
mediate necroptosis downstream of MLKL as well.

In conclusion, we provide compelling evidence showing that IFNγ preferentially
among various inflammatory mediators promotes necroptosis and accelerates the release
of DAMPs in primary alveolar and airway epithelial cells but not in lung microvascular
endothelial cells. We further show that MLKL is predominantly induced by IFNγ, contribut-
ing to the enhanced necroptosis in lung epithelial cells. Our findings provide a mechanistic
link and a novel interpretation of the contribution of IFNγ to the pathogenesis of cellular
perturbations that may contribute to ALI.
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