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Abstract

Purpose

In this study, we investigate to what degree augmented reality technology can be used to

create and evaluate a visual-to-auditory sensory substitution device to improve the perfor-

mance of blind persons in navigation and recognition tasks.

Methods

A sensory substitution algorithm that translates 3D visual information into audio feedback

was designed. This algorithm was integrated in an augmented reality based mobile phone

application. Using the mobile device as sensory substitution device, a study with blind partic-

ipants (n = 7) was performed. The participants navigated through pseudo-randomized

obstacle courses using either the sensory substitution device, a white cane or a combination

of both. In a second task, virtual 3D objects and structures had to be identified by the partici-

pants using the same sensory substitution device.

Results

The realized application for mobile devices enabled participants to complete the navigation

and object recognition tasks in an experimental environment already within the first trials

without previous training. This demonstrates the general feasibility and low entry barrier of

the designed sensory substitution algorithm. In direct comparison to the white cane, within

the study duration of ten hours the sensory substitution device did not offer a statistically sig-

nificant improvement in navigation.

Introduction

Many of our everyday tasks and activities rely on the sense of vision. In fact, visual information

has been estimated to sum up to more than 99% of all the information perceived by the human

senses [1]. Although only a rough estimation, this number gives an impression of the
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importance of vision and at the same time of the severe restrictions that come with the loss of

that sense.

Worldwide, it is estimated that almost 40 million people are considered blind and another

245 million people are living with severe visual impairments [2]. Yet, despite this large number

of people affected and the massive effect that blindness or visual impairment has on their

everyday life, only few advances in the field of vision rehabilitation for navigation and naviga-

tion assistance tools for the blind have reached widespread use in public within the last

decades, with the white cane still being the most common assistance tool for the blind [3–5].

One of the approaches made towards the rehabilitation of visual perception, meaning the

reduction of the restrictions originating from a lack of vision, is sensory substitution. The term

was first introduced in 1969 by the neuroscientist Paul Bach-y-Rita [6] and describes a non-

invasive process to translate sensory stimuli like brightness or color into stimuli of a different

sense, for example volume and pitch. It is most often used to compensate for the loss of one

sense and works in all cases where the neuronal function of the brain is unaffected by the dam-

age causing this disability [7, 8]. The sensory information is translated by a sensory substitu-

tion device (SSD), which typically consists of three parts: The input device that captures

information of the type to be translated, a processing unit that translates the information fol-

lowing a specified algorithm, and an output device that transmits the translated information to

the user. As an example, a visual-to-auditory SSD would require a visual input device such as a

camera, a processing unit like a smartphone or notebook, and an auditory output device such

as headphones.

What sensory-substitution-based devices excel at in regard to other visual aids is its direct

translation of information without any interpretation or summary of information done by the

device [9]. Every change in the input signal leads to a distinct change of the output. Thus, sen-

sory substitution can offer almost the same flexibility and natural feeling that the original sense

would offer. It is possible that the substituting sense leads to very similar activities in the brain

as the original sense would, even in cases of congenital sensory disabilities—a process called

‘brain plasticity’ [7, 10–12] or, in the context of sensory substitution, ‘compensatory plasticity’

[13]. It was shown that the substituting signals evoke an increased activity in the occipital cor-

tex after sufficient training with a device that translates visual information into tactile or audi-

tory stimuli [14–16]. This indicates that the output signal, despite being an auditory or tactile

stimulus, is perceived and processed in the same way as a visual stimulus.

However, the capacity to process information was found to vary greatly between the differ-

ent senses, with the visual sense being able to process manifolds the amount of information of

every other sense [1, 17, 18], as can be estimated by the number of fibers and their spike rates

in optic, auditory or haptic nerves [19–23]. This is a problem always faced when designing a

visual-to-auditory or visual-to-tactile sensory substitution algorithm, as it requires to compro-

mise between translating the visual information as direct and unprocessed as possible while at

the same time filtering only the most important information [24, 25].

Over the years, several different approaches have been made towards the substitution of the

visual sense using either the auditory or tactile sense [26–28]. Two of the most popular devices

in that field are the visual-to-auditory SSDs ‘the voice’ [24, 29–31] and ‘EyeMusic’ [32, 33].

These devices translate the brightness of a captured image into sound volume, with the image

being scanned and translated from left to right in 2-second-intervals. EyeMusic additionally

uses different instrumental sounds for each color, allowing to perceive not only brightness, but

color as well. However, the interpretation of the output signals of these types of SSDs is diffi-

cult and requires long training phases [34–37], especially for navigational tasks, where the per-

spective constantly changes while moving.
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Some newer devices, such as the SSDs ‘EyeCane’ [38], ‘Sound of Vision’ (SoV) [39] or

‘Array of Lidars and Vibrotactile Units’ (ALVU) [40] use depth as their primary visual input.

Using this information, they directly translate the visual distance into either tactile or auditory

feedback.

The EyeCane is a hand-held device that captures depth in a single direction and translates

the distance into vibration strength. This results in the device functioning very similar to a

standard white cane, however, it offers the advantage of increased detection range of up to 5m

[41].

The SoV uses a combination of stereo camera and infrared sensor, both worn on the fore-

head, to capture a depth information array of the scene and translate each point of the array

into the volume of an auditory output signal [42]. The auditory output of the array happens

simultaneously, resulting in a high update rate, which allows for an easier understanding of the

3D shape of the environment. The SSD however requires a multitude of peripheral devices–

multiple cameras and depth sensors and a laptop carried in a backpack–which makes it not

only impractical and inconvenient in mobile scenarios such as navigation, but also increases

the cost of the device.

The ALVU consists of an array of seven infrared depth sensors fixed to a wearable belt that

capture the distance to obstacles and surfaces in an ±70˚ horizontal and ±45˚ vertical angle in

front of the user, translating the information into vibration strength of a vibratory motor

array. This allows the perception of obstacles and surfaces in a horizontal arc, similar to the

information gathered by sweeping motion with a white cane, and additionally allows to per-

ceive obstacles at waist or head level. This SSD was found to have a low learning barrier and

allowed navigation performance similar to a white cane. However, due to the amount of indi-

vidual sensors and vibratory motors, the cost sums up to around 1300$ [40]. Given that 89% of

visually impaired people live in low- or mid-income countries [43], a low-cost solution for

SSDs is crucial.

Thanks to recent development in the field of real-time tracking of environmental struc-

tures–driven by the advancements in augmented reality software–new strategies to design,

benchmark and implement SSDs in everyday life are emerging and allow novel applications.

This paper describes a spatial-information-based visual-to-auditory translation algorithm that

has minimal hardware requirements and is intuitive and fast to learn. To speed up the design

and the test of the translation algorithm, it is simulated using an augmented-reality-based

smartphone application. The performance of this approach is evaluated in both navigation and

object recognition in a psychophysical experiment with blind participants.

Translation algorithm and SSD

The design of the translation algorithm was led by the focus on easy and intuitive interpreta-

tion of the output signal. This design principle ensures a low entry barrier for potential users,

while still giving it the precision and flexibility that is offered by direct information translation

[9]. The algorithm translates visual spatial information, meaning distance, horizontal and ver-

tical position, into the auditory stimuli pitch and volume and the proprioceptive sense of head

movement (see Fig 1(A)), as it is designed to be used with a head-mounted camera.

The choices for the individual translations with regard to intuitiveness and accuracy will be

further addressed in the discussion.

To decrease the information load on the auditory system and by that make it easier to focus

on and interpret individual sounds of the auditory output, the proposed translation algorithm

only translates a single, centered column of visual image points as opposed to the full field of

view (Fig 1(B)). When implemented in a head mounted SSD, it allows to rotate the head

PLOS ONE Sensory substitution for navigation of the blind

PLOS ONE | https://doi.org/10.1371/journal.pone.0237344 August 20, 2020 3 / 18

https://doi.org/10.1371/journal.pone.0237344


horizontally in order to quickly scan the entire scene. To further reduce the auditory output,

the algorithm suppresses sound output of visual image points whenever they do not show a

change in height compared to ground level. This is visualized by the green area in Fig 1(B).

Thus, the auditory output sound is generated only in situations in which the user faces an

obstacle, reducing potentially distracting sounds to a minimum.

To test the newly designed translation algorithm, it was implemented in an augmented real-

ity (AR) based SSD. Using the game engine Unity3D and the AR development kit ARCore

[44], a software for Android devices was developed that is capable of full position- and rotation

tracking. It allows the synchronization of a virtual environment with real-world obstacles (as

shown in Fig 1(C)) and applies the designed translation algorithm to the virtual environment.

The vertical angle of the visual input field was set to 45˚ to align with the vertical viewing angle

of the smartphone camera. In the horizontal axis, the angle of the visual input equals 0˚ due to

the single-column design of the translation algorithm (Fig 1(B)). The device tracks the distance

to obstacles and surfaces in 9 different directions along the vertical axis, which results in a reso-

lution of 5.6˚.

The information about the distance to the next surface measured by each individual ray is

translated by the SSD into non-monotone sounds similar to burbling water. Each ray has its

own respective pitch depending on its vertical direction, starting at around 143Hz for the low-

est ray up to 880Hz for the highest.

Fig 1. (A) Translation algorithm. Schematic visualization of the designed translation algorithm. (B) Translation algorithm visualization. Visualization of a translation

algorithm translating the 3D information of the direction the user is facing. The color indicates the relative difference in height based on ground level. (C) Obstacle

synchronization. A cardboard box used as an obstacle, overlaid with a virtual model that is synchronized to the real-world box using an image tracker.

https://doi.org/10.1371/journal.pone.0237344.g001
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As this SSD is aimed towards ease of access in terms of both training and hardware require-

ments, it was named Easy-Access SoundView (EASV).

Experimental methods

Ethics

Based on the above setup, an experiment was proposed and approved by the ethics committee

of the faculty of medicine and the university hospital of the Eberhard-Karls-University Tue-

bingen in accordance with the 2013 Helsinki Declaration. All participants signed informed

consent forms. The individual shown in Fig 2(A) of this manuscript has given written

informed consent (as outlined in PLOS consent form) to publish these case details.

Study population

Seven participants (5 female, 2 male) aged 19 to 75, average 33.1 ± 17.4, were recruited

(Table 1). According to their self reports, all participants were considered blind or severely

visually impaired following the ICD-10-system, having a visual acuity of 0.1 or below on both

eyes [45].

All participants used the cane as the only direct navigation tool. Some of them occasionally

use smartphone-apps with GPS-based navigation like Google Maps. None of the participants

had any prior experience with an SSD.

The participants’ hearing performance was measured in a simple up-down-method audi-

ometry [46] to ensure that all participants are able to perceive the lowest volume in all frequen-

cies of the auditory output of the EASV device. The audiometry used 0.5 second sound

samples of five different frequencies (143Hz, 220Hz, 440Hz, 593Jz, 880Hz), covering the fre-

quency range of the auditory output of the SSD. Each frequency was tested for 60 seconds,

with randomized 4 to 10 second intervals between individual sound cues. After each correct

Fig 2. (A) Wearable device. A mobile VR-headset used to mount the smartphone to the head of the user. (B) Tutorial scenes. Cardboard boxes, overlaid with their

virtual counterpart, in different tutorial scenes focused on distance (B1) and height (B2). The middle bar shows the visual representation of the auditory output, where

dark blue/black indicates silence and yellow/red indicates a sound with the respective pitch. (C) Obstacle course. Layout of one of the 23 obstacle courses designed for

the navigation task.

https://doi.org/10.1371/journal.pone.0237344.g002
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response to the sound cue, the volume of the next cue was decreased by 33%. After each missed

or false response, the volume was increased by 50%. After 60 seconds, the volume of the last

recognized sound cue was saved and the test automatically proceeded with the next higher fre-

quency. All volumes were measured in software-internal, unitless values, allowing the direct

comparison to the auditory output of the SSD which uses the same software-internal values

with a minimum volume threshold of 0.1. The results of the audiometry are listed in Table 1,

with all results below the threshold of 0.1 indicating that the participant is able to fully perceive

the auditory output in the respective frequency.

The audiometry was done in the same room and under the same noise conditions as the

main experiments. There was no test for each individual ear as the auditory output of the SSD

is monaural.

Experimental setup

The per-participant study duration was set to ten hours, separated into five sessions (S1 Fig).

The study was carried out in the timeframe of two months in three different seminar rooms of

the Philipps-University Marburg, Germany. All rooms were well-lit and had a floor area larger

than 60m2. 12 cardboard boxes (0.65mx0.3mx0.35m) marked with distinct image tracking tar-

gets were used in the tutorial and navigation tasks. The camera footage captured by the SSD,

combined with the overlaid virtual environment, was streamed to a laptop for easier supervision.

SSD setup

By using a mobile virtual reality headset (Fig 2(A)) to fixate the smartphone used as SSD on

the head, participants could move around freely without any wires or other constraints. This is

a major advantage to the limited tracking space provided by most virtual reality headset setups.

This choice also allowed to use real-world obstacles as opposed to a purely virtual setup, which

increased immersion and representativeness.

Participant tasks

In the tutorial, which took place in the first two-hour-session, participants were able to famil-

iarize themselves with the headset and the translation algorithm. Different scenes were created

Table 1. Study population.

Participant Sex &

Age

Duration of

blindness

ICD 10 blindness category Clinical picture Hearing thresholds (143Hz, 220Hz,

440Hz, 593Hz, 880Hz)

1 m, 31 ~6 years H54.0X34 (VA = 0.03 on right eye, <

0.02 on left eye)

multiple scotoma on both eyes 0.040, 0.0086, 0.0049, 0.0015, 0.0013

2 f, 19 ~3.5 years H54.0X44 (VA < 0.02 on both eyes) Myopia, Astigmatism, Tissue shrinkage

of optical nerves

0.0018, 0.0006, 0.0006, 0.0008, 0.0003

3 m, 75 since childhood H54.0X55 (no light perception) N/A 0.015, 0.0032, 0.0013, 0.0049, 0.0015

4 f, 25 since birth H54.0X44 (VA < 0.02 on both eyes) N/A 0.0028, 0.0022, 0.0015, 0.0026, 0.0022

5 f, 29 since birth H54.0X44 (light perception) Retinitis Pigmentosa, Myopia,

Astigmatism, Nystagmus

0.0058, 0.0038, 0.0038, 0.0026, 0.0015

6 f, 27 ~6 years H54.1224 (VA = 0.08 on right eye, <

0.02 on left eye)

Cone-Rod Dystrophy, Glare sensitivity 0.0086, 0.0056, 0.0015, 0.0022, 0.0015

7 f, 26 since birth H54.0X44 (VA < 0.02 on both eyes) N/A 0.015, 0.0058, 0.0086, 0.0058, 0.0019

Detailed information about the study population. All data regarding duration of blindness, degree of blindness and clinical picture is based on participants’ self report.

The hearing threshold is given in form of a unit-less, software-internal value for sound volume. The threshold required to hear the lowest volume of the SSDs auditory

output is 0.1.

https://doi.org/10.1371/journal.pone.0237344.t001
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using the cardboard boxes (as seen in Fig 2(B)). Each scene focuses on a different part of the

translation algorithm (distance, height, width) and by presenting the scenes to the participants,

the meaning of the changes of the auditory output of the SSD was explained by the experi-

menter. The participants could inspect the scenes and touch the cardboard boxes, thus con-

necting the auditory output signals to their own tactile input.

The navigation tasks were divided into three conditions–navigation with SSD, navigation

with cane and navigation with both SSD and cane combined. All trials were done in random-

ized order independent of their condition to minimize the influence of potential learning

effects when comparing the trials of all three conditions. Each of the trial conditions has the

same base structure: 12 cardboard boxes are positioned in an area of 5x8 meters according to

one of different pre-designed layout maps (S2 Fig). An example is shown in Fig 2(C). The par-

ticipant was directed to the starting point located at one side of the area, facing in the direction

of the other side. They were then instructed to navigate through the area, avoiding the obsta-

cles, until they reach the area marked as goal at the other side of the room. Time was recorded

between the moment the participant started walking and the moment they arrived in the goal

area. For each navigation trial a total duration of 7 minutes was estimated, including 4 minutes

to restructure the obstacle course in-between trials. Depending on the average required time

of the individual participant, 23–30 navigation trials were done per participant over the dura-

tion of the second to fifth session. The hardware setup of the SSD was worn during all naviga-

tion trials to measure time and collisions. Further, this method ensured that the results are not

influenced by the remaining eyesight of the participants. In trials in which only the cane was

used for navigation, the auditory output of the SSD was muted.

In the object recognition trials, participants were presented different virtual objects in indi-

vidual, otherwise empty scenes (examples of these objects are found in Fig 3(A) and 3(B)),

which they were asked to identify out of a selection of four different options using the SSD.

The users could control at which point in time the object is no longer shown. Only after that

they were allowed to answer. The goal of the object recognition trials was to find out if and to

what degree recognition and correct interpretation of more complex shapes than the boxes

used in the tutorial and navigation task is possible with the developed translation algorithm.

Fig 3. (A) Object recognition models. Examples of the 3D models used in the object recognition tasks. From left to right: Table with chairs; couch and couch table; tree;

bus stop sign. (B) Position anchor. A virtual object displayed at a specific point in space using the augmented reality features of the software ARCore.

https://doi.org/10.1371/journal.pone.0237344.g003
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For the trial duration, an average of 3 minutes for each object was estimated and 14–16 trials

were done per participant.

A concluding evaluation, comprised of five questions, assessed the learning rate, expected

future learning rate and the potential of the SSD in different visual tasks and navigation envi-

ronments, as subjectively perceived by the participants. It also served as means to collect final

feedback in the form of freely answerable questions. The first part of the evaluation uses a

structure based on a System Usability Scale [47], allowing participants to rate the different

aspects on a scale from 1 (very low) to 5 (very high).

Analysis and statistical methods

In the navigation task, a total of 190 trials (84 with SSD, 46 with cane, 60 with SSD+cane) in 23

different obstacle course layouts were done (S1 File). The time required to reach the goal area

as well as the number of collisions were measured, with the collisions automatically being

detected by the smartphone when its position overlapped with a virtual obstacle. The results

for the required time are normalized using a logarithmic function. Linear mixed models

(LMMs) were used to analyse the results of the conditions in which a learning effect is assumed

(SSD and SSD+cane). LMMs allow to test for fixed effects between certain variables while still

considering the random effects of other variables. The fixed effects are the correlations

between trial condition (SSD, cane, SSD+cane) and trial number with both the required time

for the trial and the number of collisions respectively, allowing to test for significant learning

effects over the duration of the study in any of the conditions. Variables with random effects

are all those that are assumed to have an influence on the results, however not in a predictable,

ordered manner (participants, maps). For the trials with just the cane it was assumed that no

correlation exists between required time and trial number. To test this, a Chi-squared test of

independence was used.

In the object recognition tasks, the correctness of the answer given by the participants and

the time during which the object was presented to them was measured in a total of 108 trials in

16 different scenes. A binomial test with the number of trials, the number of correct choices

and the probability for each answer in an even distribution is used to analyse the results. The

mean average and standard deviation of the required time in object recognition were calcu-

lated. The required time of 10 trials was not recorded due to either software issues or to partici-

pants not starting the timer before the trial.

All methods of analysis were done in the statistical computing environment R, using the

graphical user interface RStudio. For the LMM analysis, the lme4-package was installed in R.

All averages are shown as mean with the corresponding standard deviation.

The relatively low number of participants and thus low number of evaluations prevents a

statistical analysis of correlations. Therefore, raw results of the evaluation are presented. One

participant had to leave the last session early and was not able to fill the evaluation, leaving a

sample size of six.

Results

Fig 4 shows the normalized time needed for each navigation trial in relation to the trial num-

ber. Regression lines are drawn for each condition based on an LMM. To get an overview of

the actual results of this task, the right y-axis of the graph additionally shows the actual time on

a logarithmic scale.

With the SSD, the average time participants required to pass the obstacle course was 68.4

±54.7s. This is significantly longer than the time required with either the cane (27.0±12.2s) or

with both SSD+cane (37.3±29.7s) (p<0.001). While the independence between the navigation
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time in trials with cane and the trial number is found to be valid (p = 0.0031), the null-hypoth-

esis for the learning effects with SSD and SSD+cane could not be rejected (p = 0.36 with SSD,

p = 0.12 with SSD+cane). Thus, no significant learning effect can be shown based on the

required time for navigation. However, there is a tendency showing a performance increase

for both the trials with SSD and SSD+cane.

With a mean average of 2.96±4.33 collisions, trials in which only the SSD is used are shown

to have a worse navigation performance than trials in which a cane is used at an average 0.78

±1.28 collisions (p<0.001). In trials with SSD+cane, the average number of collisions is almost

identical to the trials with just the cane at 0.77±1.69. In the LMM, no significant performance

increase could be found over the duration of the study (p = 0.48 for SSD trials, p = 0.094 for

SSD+cane trials), but the tendencies of the regression again show a decrease of collisions only

in trials in which the SSD is used (see Fig 5).

Table 2 shows the percentage of object recognition trials in which the object is correctly

identified. The results of the binomial test for the data acquired in the object recognition task

—a total of 108 trials and 58 correct object identifications in a setup where sets of four answers

are given to the participants—confirm that the SSD does indeed lead to an identification rate

significantly above the 25% threshold of even distribution (p<0.001). On average, participants

spent 98±53.6s observing the object before being able to correctly identify it.

Fig 4. Required time for navigation trial. Normalized time required per navigation trial in relation to the trial number, with a normalized linear regression line drawn

for each condition.

https://doi.org/10.1371/journal.pone.0237344.g004
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The first question of the evaluation showed that 83% of the participants subjectively rate

their own learning progress positively, with an average of 3.75 on a scale from 1 = ‘no learning

progress’ to 5 = ‘very high learning progress’.

Following the results of the second question, four participants would also expect to have

further progressed at a similar rate if the training would have continued, whereas one partici-

pant expected a slower learning progress and one participant expected a faster learning

progress.

The third question shows that 100% of the participants saw high potential for the applica-

tion of the designed SSD in obstacle awareness. 67% could imagine using it in living spaces,

50% for navigation in public buildings. 33% saw potential for the device in traffic-free zones.

None of the participants saw potential for the device for navigation in traffic or for object

recognition.

The fourth question of the evaluation covered the advantages and disadvantages of the SSD.

Each participant gave individual answers, which are summarized by topic. 100% noted the

impractical and bulky design of the device. 67% noted the advantage of increased range to per-

ceive objects and obstacles. 67% noted the disadvantage of the auditory output of the SSD

interfering with real-world sounds. 50% mentioned the advantage of detecting gaps in a wall

or line of obstacles. One person mentioned the difficulty to precisely determine the distance

Fig 5. Collisions in navigation trial. Collisions in relation to the trial number as well as the regression lines for each condition. The two arrows indicate two data points

for SSD trials which surpass the scale of the y-axis.

https://doi.org/10.1371/journal.pone.0237344.g005
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based on the auditory volume. One person mentioned the disadvantage of a long training

duration.

The fifth question asked for desired adjustments or optimizations of the device. 33% sug-

gested to use bone conducting headphones to free the ear canals. 33% suggested to use haptic

feedback instead of auditory feedback. One person suggested to translate color or surface

structure into some form of auditory stimulus.

Discussion

The results demonstrate the feasibility and intuitive usability of the designed sensory substitu-

tion algorithm: participants were able to use it to navigate through complex obstacle courses

and correctly identify 3D objects within the very first trials. In addition, the technological feasi-

bility to use a consumer-level smartphone for spatial-information-based sensory substitution

was confirmed. However, within ten hours of training, the SSD could not outperform the

white cane as navigational aid. This finding is expected for SSD-only trials, as their main pur-

pose in the study was to train and familiarize participants with the new type of navigation aid

without the option to ignore it and rely solely on the white cane. It is also consistent with previ-

ous studies of similar devices [37]. The reason is that all participants already had years of train-

ing with the white cane, whereas the SSD poses as a new and unfamiliar experience. However,

the hypothesis of the SSD being able to improve the overall navigation performance of partici-

pants when combined with a white cane could also not be shown within the duration of train-

ing. This is shown by the navigation performance with SSD+cane not significantly varying

from those with just the cane, both in average collisions and required navigation time. While

this may be, as will be later discussed, only a result of lack of training rather than a showcase of

the absolute limit of the device, it certainly indicates that the device cannot be seen as instanta-

neous and learning-free improvement to standard navigation with a white cane.

Table 2. Object recognition results.

Scene Answer 1 Answer 2 Answer 3 Answer 4 % correct Avg. time

1 Table Car Garden fence Wardrobe 71.43 140s

2 Wardrobe Car Staircase Door 100 65s

3 Bus stop sign Trash can Window Tree 57.14 71s

4 Trash can Chair Nightstand Bathtub 28.57 68s

5 Table Bathtub Car Trash can 28.57 104s

6 Staircase Window Table Door 42.86 103s

7 Bus stop sign Bollard Door Human person 85.71 89s

8 Couch Staircase Window Bed 33.33 94s

9 Chair Bollard Trash can Bathtub 28.57 74s

10 Car Couch Bathtub Table 42.86 107s

11 Trash can Bollard Chair Guitar 42.86 90s

12 Car (in front of wall) Table (in front of wall) Staircase Door 57.14 103s

13 Bus stop sign Window Human person Tree 85.71 57s

14 Bus stop shelter and sign Couch and coffee table Table and chairs Park bench and trash can 42.86 142s

15 Group of people Park bench and trash can Multiple trees Bus stop shelter and sign 50 155s

16 Table Staircase Bus stop shelter Couch 50 106s

A list of all sets of answers, with the presented object marked bold, as well as the percentage of correct identifications and the average time required to identify the

object. The chance at even distribution is 25%.

https://doi.org/10.1371/journal.pone.0237344.t002
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Ideally for such an experiment, the recruited blind participants would have no experience

with the white cane. This way, they would be introduced to both navigational aids at the same

time. Only in this scenario results would be comparable. However, in a practical setup such a

limiting participation criterion is not feasible, as about 80% of blind or legally blind persons

have experience with a white cane [3]. With blindfolded sighted participants, this lack of par-

ticipants not familiar with the white cane could be tackled. However, multiple studies found

that results of blindfolded participant performance in navigation and recognition tasks are not

representative of the performance of blind participants [15, 48, 49].

It must also be noted that the effective training time–meaning the time in which the partici-

pant actively used the SSD–is considerably lower than the total duration of the study of ten

hours. Considering the navigation trials in which only the white cane was used and the time

that was required in between each navigation trial to change the obstacle course, the real train-

ing duration sums up to around one hour of tutorial and two to three hours of navigation and

obstacle recognition. As a consequence, even at the end of the study, participants have used

the SSD only for around four hours. The tendencies found in the regression lines of both the

required time and number of collisions in the navigation task, as well as the participants’ posi-

tive feedback, support the hypothesis that with extensive training, a significant performance

increase could be shown, and that four hours of training do not suffice to achieve significant

learning effects.

The correct identification rate in the object recognition trials was significantly above chance

level even without any previous training and without previously showing the objects and struc-

tures to the participants. This is an important finding, as it shows that even participants who

have been blind since birth or childhood interpreted the auditory output of the SSD well

enough to recognize objects by their visual shapes.

However, the concluding evaluation revealed that none of the participants saw potential for

the developed translation algorithm in the task of object recognition. This contrasts with the

positive recognition rate observed in the experiment. The most likely explanation for this con-

tradiction is the slow identification rate of almost 100 seconds per object on average, as it

makes this field of application impractical for everyday life. These findings suggest a follow-up

study with stronger focus on object recognition using the EASV, including training phases and

feedback questions aimed more towards this function and its usefulness in everyday life. Such

a study allows to assess potential reasons for the difference between objective results and sub-

jective rating of object recognition and whether the occurrence of this difference is limited to

the first trials or persists even through longer training periods.

Direct comparisons of the results found for the performance of the SSD in this study and

the results of previous studies are not possible due to the differences in experimental condi-

tions. Conditions differ e.g. by the type of environment–virtual, augmented or real–, the layout

of the obstacle courses or the method to measure the correct identification of objects. How-

ever, a qualitative comparison to other studies provides new insights. Specifically, it provides a

better overview of the strengths and weaknesses of the EASV and allows assumptions about

how the performance would develop over longer training durations.

In a study conducted by Malika Auvray, Sylvain Hanneton and John Kevin O’Regan [29],

the ability of sighted blindfolded people to recognize common objects, such as a table, bottle or

book, using ‘the vOICe’ was tested. It was found that over the course of 50 randomized trials

per participant, the time until the object was correctly recognized decreased by around 40%

over the course of the study. A similar result was found in another study using the same device,

where again a significant decrease in the time required to identify the object was shown over

the course of 36 trials [30]. This indicates that object recognition tasks with an SSD can greatly

enhance recognition speed through training, implying that the long time needed by
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participants to identify objects with the EASV is likely caused by insufficient training. It can be

assumed that some objects are statistically more difficult to identify due to their shape or com-

plexity, which will also have an influence on the comparability of the studies. However, an

objective assessment of that difficulty is a topic that—although already adressed in different

research papers, such as the ones by Heung-Yeung Shum [50] or Longin Jan Latecki and Rolf

Lakämper [51]—goes beyond the scope of the analysis in this study.

In a navigation study with both real and virtual maze environments, the navigation perfor-

mance of the participants using the EyeCane was found to significantly improve, with both the

average required time to navigate through the maze and the average collisions per trial being

reduced to around half after 3 sessions of 90 to 120 minute training [52]. However, in the

group of low vision and late blind participants, which is most comparable to the study popula-

tion of the EASV study, the time required to solve the maze was 152s on average. That is signif-

icantly higher than the average required navigation time measured for the SSD-only trials with

the EASV of 68±55s, despite an overall shorter distance from start to finish. While these differ-

ences in time may originate simply from differences of the experimental setup, such as the

complexity of the obstacle course, it further suggests a low entry barrier of the EASV.

In a study using the Sound of Vision SSD, a significant reduction of collisions was detected

within the first five trials [37]. The reduction was achieved by two hours of training in between

each trial and additionally four hours of introductory training in a virtual and real-world envi-

ronment each. Given that no training was done in between the trials of the EASV study and

the overall shorter training duration, the results of the study by Hoffmann et al. indicate that a

significant decrease in collision rate might be found for the EASV device within ten to twelve

hours of effective training. However, the study by Hoffmann et al. did not show a significant

decrease in the required time per trial and they also concluded that a much longer training

duration is required for the navigation speed to significantly increase.

The participant feedback on the SSD that was gathered in the last two questions of the eval-

uation revealed various potential optimizations to the translation algorithm as well as aspects

that should be considered in the future development of SSDs using such algorithms. First, the

overall hardware of the device must be changed in order to be more comfortable, subtle and

less obtrusive and also in order to no longer cover up the visual field, allowing to fully use any

remaining vision. This is especially important when considering the development of a proto-

type for use in everyday life. The lack of subtlety and wearing comfort is a problem that many

SSDs have not yet overcome and that is seen as a major factor that still prevents blind persons

from using SSDs [20, 53, 54]. A possible solution is to use a separate input device as opposed to

the internal smartphone camera, where only the input device is head-mounted, for example in

form of a small wireless camera attached to spectacle frames. Since the EASV only requires a

single image sensor for visual input, this solution is more subtle than in a setup with multiple

image- and depth sensors.

To oppose the interference of output signals with real-world sounds, the SSD should deploy

bone conduction. While in this case, the output signals of the SSD still demand mental capacity

of the auditory cortex, the auditory canals are unblocked and thus, all sounds from the real

world can be perceived unimpeded. One participant mentioned that the distance of objects is

not easily detectable, since it is indicated purely by volume and there is no intrinsic factor

between volume and distance. It is likely that with more training, users would achieve a better

understanding of the distance based on volume, but in order to make the algorithm more intu-

itive, additional auditory stimuli should be considered for the translation of distance. Further,

to support especially the object recognition function of the device, the color or surface struc-

ture captured by the center field of the visual input image could be translated into different

variations of non-monotone sounds. A similar method of color translation, using different
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instrumental sounds, was explored and successfully applied for object recognition tasks with

the EyeMusic SSD [32]. However, such an implementation of additional types of auditory sti-

muli must be carefully weighed up against the increased information load on the auditory

sense.

It could further be argued that the visual vertical position should translate into auditory ver-

tical position instead of pitch (see Fig 1(A) for the individual translations of stimuli). The deci-

sion to use pitch was made in regard to the fact that the auditory perception of vertical

position purely depends on the head related transfer functions [55]. This would require the

test person to resolve the slight changes in frequency and amplitude a sound wave experiences

when being reflected by the head and auricle. Because of this, the accuracy in determining

auditory vertical position is very low in comparison to other auditory stimuli [25].

While the EASV is not yet capable of capturing real-world obstacles without preliminary

marking and modeling of the obstacles, it is already foreseeable that this will be possible in the

near future. ARCore recently announced a new feature which allows to calculate depth- and

surface maps in real-time using a smartphone [56]. If this technology is fast and accurate

enough to be viable for navigation, the software of the EASV could be easily adjusted to allow

for any modern smartphone to be used as a spatial-information-based visual-to-auditory SSD.

In combination with the proposed optimizations especially to the hardware design, the EASV

would offer an easily accessible and intuitive introduction to sensory substitution, which

would likely increase the acceptance of SSDs as additional navigational vision aids.

Conclusion

In this study, the feasibility and performance of a spatial-information-based SSD was evaluated

in a navigational task, using a simulated environment synchronized with real-world objects.

The performance of the SSD was benchmarked against the performance with a white cane and

with a combination of both SSD and white cane. In addition, the ability to correctly identify

3D objects and structures using the same device was assessed by presenting virtual objects and

a selection of four answers. The participants’ feedback and perception of their learning prog-

ress was assessed in a concluding evaluation.

It was found that all participants were able to successfully navigate using the SSD, even

immediately after the instructions. Without any prior training in object recognition and only

three sessions using the SSD, participants recognized complex 3D objects such as cars, chairs

and staircases when presented in otherwise empty environments. Further, this was done using

a consumer-level smartphone, showing the technological feasibility of depth-based sensory

substitution without the use of expensive peripheral devices.

However, the study also reveals the limitations of the developed SSD. Within the duration

of the training, the SSD could offer no significant advantage compared to navigation with the

white cane, even when both these navigational aids were used in combination. Further, while

object recognition did show a significant success rate, the average time of almost 100 seconds

that was required to recognize one object makes this feature impractical for real-world applica-

tion without more extensive training.
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37. Hoffmann R, Spagnol S, Kristjánsson Á, Unnthorsson R. Evaluation of an Audio-haptic Sensory Substi-

tution Device for Enhancing Spatial Awareness for the Visually Impaired. Optom Vis Sci. 2018; 95:

757–765. https://doi.org/10.1097/OPX.0000000000001284 PMID: 30153241

38. Maidenbaum S, Hanassy S, Abboud S, Buchs G, Chebat DR, Levy-Tzedek S, et al. The “EyeCane”, a

new electronic travel aid for the blind: Technology, behavior & swift learning. Restor Neurol Neurosci.

2014; 32: 813–824. https://doi.org/10.3233/RNN-130351 PMID: 25201814

39. Spagnol S, Baldan S, Unnthorsson R. Auditory depth map representations with a sensory substitution

scheme based on synthetic fluid sounds. 2017 IEEE 19th International Workshop on Multimedia Signal

Processing, MMSP 2017. Institute of Electrical and Electronics Engineers Inc.; 2017. pp. 1–6. https://

doi.org/10.1109/MMSP.2017.8122220

40. Katzschmann RK, Araki B, Rus D. Safe local navigation for visually impaired users with a time-of-flight

and haptic feedback device. IEEE Trans Neural Syst Rehabil Eng. 2018; 26: 583–593. https://doi.org/

10.1109/TNSRE.2018.2800665 PMID: 29522402

41. Chebat DR, Maidenbaum S, Amedi A. Navigation using sensory substitution in real and virtual mazes.

PLoS One. 2015; 10. https://doi.org/10.1371/journal.pone.0126307 PMID: 26039580

42. Caraiman S, Zvoristeanu O, Burlacu A, Herghelegiu P. Stereo vision based sensory substitution for the

visually impaired. Sensors (Switzerland). 2019; 19. https://doi.org/10.3390/s19122771 PMID:

31226796

43. Ackland P, Resnikoff S, Bourne R. World blindness and visual impairment: Despite many successes,

the problem is growing. Community Eye Health Journal. International Centre for Eye Health; 2018. pp.

71–73. PMID: 30487691

44. ARCore. In: Google Developers [Internet]. [cited 2 Mar 2020]. Available: https://developers.google.

com/ar

45. Low Vision (Position Paper):: ECOO. In: European Councel of Optometry and Optics [Internet]. 2011

[cited 2 Mar 2020]. Available: https://www.ecoo.info/2011/03/10/position-paper-low-vision/

46. Psychologische Methodenlehre. 1998 [cited 9 Mar 2020]. Available: http://www.zwisler.de/scripts/

methoden/node4.html

47. Brooke J. SUS—A quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA,

McClelland, editors. Usability Evaluation in Industry. London: Taylor & Francis; 1996. pp. 189–194.

PLOS ONE Sensory substitution for navigation of the blind

PLOS ONE | https://doi.org/10.1371/journal.pone.0237344 August 20, 2020 17 / 18

https://doi.org/10.2139/ssrn.3350316
https://doi.org/10.3390/s17030565
https://doi.org/10.3390/s17030565
http://www.ncbi.nlm.nih.gov/pubmed/28287451
https://doi.org/10.1068/p5631
https://doi.org/10.1068/p5631
http://www.ncbi.nlm.nih.gov/pubmed/17455756
https://doi.org/10.1068/p6952
http://www.ncbi.nlm.nih.gov/pubmed/22208131
https://doi.org/10.1371/journal.pone.0033136
https://doi.org/10.1371/journal.pone.0033136
http://www.ncbi.nlm.nih.gov/pubmed/22438894
https://doi.org/10.3233/RNN-130338
http://www.ncbi.nlm.nih.gov/pubmed/24398719
https://doi.org/10.1163/22134808-20181327
http://www.ncbi.nlm.nih.gov/pubmed/31059468
https://people.psych.ucsb.edu/loomis/jack/Loomis sensory substitution sidebar 7 10.pdf
https://people.psych.ucsb.edu/loomis/jack/Loomis sensory substitution sidebar 7 10.pdf
https://doi.org/10.1016/j.neubiorev.2013.11.007
http://www.ncbi.nlm.nih.gov/pubmed/24275274
https://doi.org/10.3389/fnbeh.2016.00079
https://doi.org/10.3389/fnbeh.2016.00079
http://www.ncbi.nlm.nih.gov/pubmed/27148000
https://doi.org/10.1097/OPX.0000000000001284
http://www.ncbi.nlm.nih.gov/pubmed/30153241
https://doi.org/10.3233/RNN-130351
http://www.ncbi.nlm.nih.gov/pubmed/25201814
https://doi.org/10.1109/MMSP.2017.8122220
https://doi.org/10.1109/MMSP.2017.8122220
https://doi.org/10.1109/TNSRE.2018.2800665
https://doi.org/10.1109/TNSRE.2018.2800665
http://www.ncbi.nlm.nih.gov/pubmed/29522402
https://doi.org/10.1371/journal.pone.0126307
http://www.ncbi.nlm.nih.gov/pubmed/26039580
https://doi.org/10.3390/s19122771
http://www.ncbi.nlm.nih.gov/pubmed/31226796
http://www.ncbi.nlm.nih.gov/pubmed/30487691
https://developers.google.com/ar
https://developers.google.com/ar
https://www.ecoo.info/2011/03/10/position-paper-low-vision/
http://www.zwisler.de/scripts/methoden/node4.html
http://www.zwisler.de/scripts/methoden/node4.html
https://doi.org/10.1371/journal.pone.0237344


48. Li L, Peli E, Warren WH. Heading perception in patients with advanced retinitis pigmentosa. Optom Vis

Sci. 2002; 79: 581–589. https://doi.org/10.1097/00006324-200209000-00009 PMID: 12322928

49. Kolarik AJ, Scarfe AC, Moore BCJ, Pardhan S. Blindness enhances auditory obstacle circumvention:

Assessing echolocation, sensory substitution, and visual-based navigation. Sathian K, editor. PLoS

One. 2017; 12: e0175750. https://doi.org/10.1371/journal.pone.0175750 PMID: 28407000

50. Shum HY, Hebert M, Ikeuchi K. On 3D shape similarity. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. IEEE; 1996. pp. 526–531. https://doi.org/10.

1109/cvpr.1996.517122

51. Latecki LJ, Lakamper R. Shape Similarity Measure Based on Correspondence of Visual Parts. IEEE

Trans Pattern Anal Mach Intell. 2000; 22: 1185–1190. https://doi.org/10.1109/34.879802

52. Chebat DR, Schneider FC, Kupers R, Ptito M. Navigation with a sensory substitution device in congeni-

tally blind individuals. Neuroreport. 2011; 22: 342–347. https://doi.org/10.1097/WNR.

0b013e3283462def PMID: 21451425

53. Elli G V., Benetti S, Collignon O. Is there a future for sensory substitution outside academic laborato-

ries? Multisens Res. 2014; 27: 271–291. https://doi.org/10.1163/22134808-00002460 PMID: 25693297

54. Real S, Araujo A. Navigation systems for the blind and visually impaired: Past work, challenges, and

open problems. Sensors (Switzerland). MDPI AG; 2019. https://doi.org/10.3390/s19153404 PMID:

31382536
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