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 Abstract: Autophagy and phagocytosis are two important endogenous lysosomal dependent clear-
ing systems in the organism. In some neurological disorders, excessive autophagy or dysfunctional 
phagocytosis has been shown to contribute to brain injury. Recent studies have revealed that there 
are underlying interactions between these two processes. However, different studies show incon-
sistent results for the contribution of autophagy to the phagocytic process in diverse phagocytes and 
relatively little is known about the link between them especially in the brain. It is critical to under-
stand the role that autophagy plays in phagocytic process in order to promote the clearance of en-
dogenous and exogenous detrimental materials. In this review, we highlight the studies focusing on 
phagocytosis and autophagy occurring in the brain and summarizing the possible regulatory roles of 
autophagy in the process of phagocytosis. Balancing the roles of autophagy and phagocytosis may 
be a promising therapeutic strategy for the treatment of some neurological diseases in the future. 
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1. INTRODUCTION 

Autophagy and phagocytosis are two highly conserved 
endogenous lysosomal dependent clearing processes with 
similar morphological characteristics and functions. Both 
processes can form transient vesicular structures (autophago-
somes and phagosomes, respectively) that engulf and deliver 
cargo to the lysosomes for digestion [1]. In addition, they are 
important in the maintenance of cellular and tissue homeo-
stasis through degrading detrimental intra- and extra-cellular 
material [2]. Autophagy is an intracellular homeostatic 
mechanism whereby cytosolic constituents including aber-
rant organelles and proteins are delivered to the lysosomes 
for degradation. Unlike autophagy, phagocytosis comprises 
of the ingestion of extracellular agents, such as dying cells 
and pathogens to prevent the spillover of proinflammatory 
and neurotoxic molecules. However, excessive autophagy or 
dysfunctional phagocytosis can also exacerbate brain injury 
under certain pathological conditions [3-5]. Balancing the 
roles of autophagy and phagocytosis may be important for 
the treatment of some neurological disorders. Recently more 
attention has been given to the link between autophagy and 
phagocytosis [1, 2, 6-8]. Some research results have shown  
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that autophagy can regulate phagocytosis via affecting the 
expression of target-recognizing receptors, phagosome matu-
ration, and recycling of the phagocytic receptors. However, 
contrary findings have been reported in different studies 
about the relationship between these two processes. The na-
ture of the interactions and underlying mechanisms between 
autophagy and phagocytosis remain unclear. In this review, 
we will discuss the role of autophagy and phagocytosis in the 
brain and summarize the recent advances that have been 
made in exploring the mechanisms underlying the cross-talk 
between autophagy and phagocytosis in diverse phagocytes. 
In summary, more experimental studies aiming to better un-
derstand the regulatory effect of autophagy on phagocytosis 
are needed to develop potential therapeutic avenues that can 
promote the phagocytic clearance of brain-derived patholog-
ical cargo in some neurological disorders. 

2. PHAGOCYTOSIS IN THE BRAIN 

2.1. Mechanism of Phagocytosis 

Phagocytosis is the process through which cells recog-
nize, engulf, and digest large particles (>0.5um) [9, 10]. It is 
a receptor-mediated process consisting of three major steps: 
“find me”, “eat me”, and “digest me” that eventually results 
in the removal and elimination of particles including, but not 
limited to, bacteria, apoptotic cells, neoplastic cells, or cellu-
lar debris [10, 11]. Common phagocytes include monocytes, 
macrophages, microglia, dendritic cells, Langerhans cells, 
osteoclasts, and so on [12, 13]. Microglia have been regarded 
as the major phagocytes in the brain [14, 15]. During 
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Fig. (1). The major steps of phagocytosis: “find me”, “eat me”, and “digest me”. This figure shows dying cells as an example to depict 
the process of phagocytosis. Dying cells release “find me” signals to attract the migration of phagocytes. The attracted phagocytes recognize 
and tether the target through “eat me” signals. Next, the phagocytes engulf and internalize the cells via scavenger receptors.Finally, the phag-
osome fuses with lysosome and the formed phagolysosome which degrades the target. LPC: lysophosphatidylcholine; G2A:LPC receptor, 
also termed G-protein–coupled receptor 132(GPR132); S1P:sphingosine-1-phosphate; CX3CL1:CX3C motif chemokine ligand 1; CX3CR1: 
CX3C chemokine receptor 1;PtdSer: phosphatidylserine; Tim: T-cell immunoglobulin and mucin domain-containing molecule; BAI1: Brain-
specific angiogenesis inhibitor 1; RAGE: Receptor for advanced glycation end products; LRP1: Low density lipoprotein receptor-related pro-
tein 1; MSR1: Macrophage scavenger receptor 1; MARCO: macrophage receptor with collagenous structure. (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
 
phagocytosis, self and non-self target particles can be recog-
nized by specific receptors on the plasma membrane, and 
this recognition relies on coordinated specific engulfment 
signals [12]. We depict the engulfment of apoptotic cells as 
an example to elucidate the process of phagocytosis (Fig. 1).  

First, the apoptotic cells release “find me” signals to at-
tract phagocytes toward them [16]. Some of the most repre-
sentative “find me” signals include lysophosphatidylcholine 
(LPC), sphingosine-1-phosphate (S1P), CX3C motif chemo-
kine ligand 1 (CX3CL1), and nucleotides [17]. The signals 
bind with the corresponding “find me” receptors expressed 
on the phagocytes to facilitate the migration of macrophages 
to the apoptotic cells [12, 13, 16-18].  

Next, when the macrophages are close enough to the tar-
get cells, a set of cell surface molecules expressed on the 
apoptotic cells can tag these cells as dead. These tags are the 
so-called “eat me” signals for phagocytosis [13]. Therefore, 
in the second step the dying cells expose “eat me” signals to 
be engulfed by macrophages. The most well-known and im-
portant “eat me” signal is phosphatidylserine (PtdSer). 
PtdSer is a type of phospholipid located on the inner mem-
brane leaflet of the lipid bilayer in healthy cells, and when 

under apoptotic stress, PtdSer will be externalized on the 
outside cell surface [19]. The exposed PtdSer on apoptotic 
cell surface is recognized directly by PtdSer receptors (e.g. T 
cell immunoglobulin and mucin domain containing (Tim) 
family proteins, Brain-specific angiogenesis inhibitor 
1(BAI1), Stabilin-2, CD300f and Receptor for advanced 
glycation end products (RAGE)) or indirectly by some bridg-
ing molecules (e.g. proteinS and C1q) [17]. In addition, 
Calreticulin (CRT), integrins, immunoglobulins (IgG super-
family), and complement proteins are other important “eat 
me” signals expressed on the apoptotic cell surface [17, 20]. 
As for healthy cells, “don’t eat me” signals on the cell sur-
face such as CD47 and CD31 prevent live cells from being 
phagocytosed. CD47 was found to bind to signal regulatory 
protein-α(SIRPα) on macrophages to inhibit phagocytosis 
[13, 21]. It has been reported that there exists a repulsive 
signal CD31-CD31 homotypic interaction between viable 
neutrophils and phagocytes, which can mediate detachment 
of viable cells from phagocytes. However, this repulsive 
signal does not exist in apoptotic cells [22]. 

Finally, in the “digest me” stage, phagocytes engulf and 
completely degrade apoptotic cells in the lysosomal com-
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partment [23]. After receptor-target recognition, complex 
signaling cascades are elicited leading to cytoskeletal rear-
rangement of actin filaments (F-actin). Actin polymerization 
serves as the force driving membrane extension and phago-
some formation [12, 17]. The cargo is internalized into sin-
gle-membrane phagosomes, and then these compartments 
fuse with lysosome to form the phagolysosome, promoting 
the cargo degradation [24]. 

2.2. Scavenger Receptors 

Scavenger receptors(SRs) are transmembrane glycopro-
teins that typically bind numerous ligands and promote the 
clearance of non-self or altered-self targets [11]. They are 
important in the recognition and internalization of the tar-
gets. Based on the sequence similarity or shared structural 
features, scavenger receptors can be classified into different 
classes [25-28]. However, there is still a lack of a consensus 
standardized nomenclature system, which may affect com-
munication and collaboration among investigators. The most 
studied classes of receptors include the class A, class B and 
class I scavenger receptors. SR-A1, also called macrophage 
scavenger receptor 1 (MSR1), is one of the most common 
class types of A scavenger receptors (SR-A) in macrophages, 
monocytes, microglia and dendritic cells. It has been found 
that SR-A1 can bind to β-amyloid (Aβ), heat shock proteins, 
surface molecules of bacteria, hepatitis C virus, and modified 
low density lipoprotein (acetylated LDL and oxidized LDL) 
[29]. The macrophage receptor with collagenous structure 
(MARCO) is another member of the class A SRs family. The 
expression level of MARCO in human brain, cultured human 
astrocytes and rodent microglia is very low. However, it is 
highly expressed in rodent astrocytes and macrophages [26]. 
CD36 is one of the most widely studied class B SRs ex-
pressed in monocytes, endothelial cells, and microglia. CD36 
plays an important role in the recognition and endocytic up-
take of erythrocytes, thrombospondin, collagen, lipids, fatty 
acids, apoptotic cells and amyloid proteins [30-32]. CD163 
is the prototype class I scavenger receptor for haptoglobin-
hemoglobin (Hp-Hb) complexes [25, 31]. In addition, high 
levels of CD163 is a feature of macrophages undergoing 
differentiation toward the “alternatively activated” M2 phe-
notype [27]. 

2.3. Detection of Phagocytosis 

Quantifying phagocytosis is critical for understanding its 
contribution to pathophysiological process of various diseas-
es. Multiple in vitro and in vivo techniques have been applied 
to study phagocytosis. Flow cytometry and microscopy are 
frequently used to assess the uptake by cells in vitro of fluo-
rescently-labeled synthetic or physiological particles (e.g. 
latex, Aβ, myelin, zymosan or dextran) [10, 33, 34]. In one 
of the studies, the phagocytosis of erythrocytes by microglia 
was detected by 5(6)-carboxyfluorescein diacetate-labeled 
red blood cells (RBCs) applied to tag the target. The fluores-
cence intensity of the cell lysate from microglia containing 
engulfed RBCs can be referred to as phagocytosis index in-
dicating the phagocytic efficacy of microglia [34]. However, 
the in vitro culture environment of phagocytes is different 
from the microenvironment in vivo. Furthermore, cultured 
cells are often used with synthetic phagocytic targets such as 
latex beads. Performing either in vitro or in vivo phagocytic 
assays with beads is artificial, as these particles do not re-

lease any chemoattractant and therefore cannot promote 
phagocytosis [35]. Thus in vitro assays may not accurately 
recapitulate physiological phagocytosis. It has been reported 
that alternatively activated M2-like microglia promote phag-
ocytosis of RBCs and tissue debris in intracerebral hemor-
rhage (ICH) rodent model [36]. In addition, M2 microglia 
also play important roles in phagocytosis and toxicity clear-
ance in other brain diseases, such as ischemic stroke [37, 38], 
traumatic brain injury (TBI) [39] and epilepsy [40]. In vivo 
studies have used the ratio of M2/M1 microglia (e.g. CD16, 
CD86 for M1 markers and CD206, Arginase 1 for M2 mark-
ers) to reflect phagocytosis indirectly [36, 41]. However, it 
might be misleading to use “markers” as a proxy for phago-
cytosis. Some studies have developed different methodologi-
cal approaches to directly quantify phagocytosis in vivo, such 
as 3D electron microscopy reconstruction and live imaging 
using 2-photon microscopy [42-44]. In one study, research-
ers suggested that a novel magnetic resonance imaging(MRI) 
post-processing technique of gradient-recalledecho (GRE), 
the quantitative susceptibility mapping (QSM), is an accurate 
and noninvasive method for quantifying brain iron level, 
reflecting the hematoma clearance indirectly in an ICH Min-
ipig Model [45]. 

2.4. Phagocytosis in Neurological Disorders 

Microglia are the major phagocytes in the brain which 
can engulf and degrade microbes as well as various brain-
derived cargo such as apoptotic cells, synapses, myelin and 
protein deposits such as Aβ and aggregated α-synuclein (α-
syn) [12, 46, 47]. Whether microglial phagocytosis plays a 
beneficial or detrimental role in brain diseases remains con-
troversial although most researchers now are inclined to the 
former [47]. Numerous studies show that microglia maintain 
homeostasis and possibly contribute to the neural network by 
assisting in synaptic remodeling and plasticity [48]. Synaptic 
pruning is mediated by microglia during neuronal circuit 
formation in the developing brain [49]. It has been found that 
efficient clearance of tissue debris is critical in the recon-
struction and reorganization of neuronal networking after an 
injury in the brain [43, 50, 51]. Microglia phagocytosis pro-
moted axon regeneration and microenvironment restoration 
during the recovery of an acute brain injury [47]. However, 
microglia have also been found to pathologically phagocy-
tose synapses of neurons with tau pathology in Alzheimer’s 
disease (AD), which can indirectly lead to more tau-induced 
synapse loss [49], and the loss of synapses has emerged as a 
major correlate of cognitive decline in AD recently [52]. 
Apart from microglia, other phagocytes in the brain can also 
play a role in the removal of brain-derived cargo [53]. A 
study showed that monocyte-derived macrophages (MDMs), 
once localized to the site of injury, have a higher phagocytic 
capacity than microglia in cerebral ischemic stroke model 
[54]. In addition, astrocytes can also participate in the elimi-
nation of synapses and neuronal debris [10, 14, 15]. Recent-
ly, it has been found that phagocytosis by astrocytes can be 
actuated when microglial phagocytic activity is impaired. 
Astrocytes express TAM phagocytic receptors (MerTK and 
AXL),which are the main astrocytic phagocytic receptors for 
cell debris [55]. Moreover, infiltrated T cells also play an 
indirect role in regulation of phagocytosis. T cells extravasat-
ing into the brain can modulate the adaptive immune makeup 
in central nervous system (CNS)for not only the clearance of 
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patho-proteins but can also promote the repair of damaged 
neurons by secreting neurotropic factors [56]. Furthermore, 
activated microglia enhanced the phagocytosis of degenerat-
ing myelin in the presence of infiltrated myelin-reactive T 
cells possibly through interleukin-2 (IL-2) and interleukin-1 
beta (IL-1β) secretion [57, 58]. 

2.4.1. Phagocytosis and Neurodegenerative Diseases 

Some human genetic and experimental studies showed a 
clear link between impaired microglial phagocytosis and 
neurodegenerative diseases [12, 59]. Triggering receptor 
expressed on myeloid cells 2(TREM2), a kind of pattern 
recognition receptor in the brain with various anionicligands 
(e.g. phosphatidylethanolamine (PE), phosphatidylserine 
(PS), cardiolipin (CL), phosphatidic acid (PA)), signals by 
forming a complex with the co-receptor DNAX-activation 
protein 12 (DAP12) [60, 61]. TREM2-DAP12 complex in-
duces the activation of the spleen tyrosine kinase (Syk)/ 
phospholipase C-gamma (PLC-γ)/phosphoinositide 3-kinase 
(PI3K) signaling pathway, leading to the promotion of mi-
croglia phagocytosis [59]. Variants in TREM2 increase the 
risk for AD [59, 62], and have been associated with Parkin-
son’s disease (PD) [12]. For animal studies, TREM2-/- AD 
mice showed diffused amyloid plaques, with amyloid fila-
ments extending outwards, and fewer compact amyloid 
plaques compared to control AD mice [59]. On the other 
hand, overexpression of TREM2 reduced amyloid burden 
and improved cognitive function in AD mice [63]. It has 
been reported that TREM2 can promote Aβ phagocytosis via 
activating CCAAT enhancer-binding protein alpha 
(C/EBPα)-dependent CD36 expression in microglia [64]. In 
addition, TREM2 has also been demonstrated to be involved 
in myelin phagocytosis in Multiple Sclerosis(MS) [10]. Fur-
thermore, inhibition of TREM2 increased the severity of 
experimental autoimmune encephalomyelitis (EAE). 
TREM2 overexpression was found to be protective, partially 
caused by effects on clearance of myelin debris [65-67]. Re-
cently, another famous member of TREM family, TREM1, 
has been reported to facilitate microglial phagocytosis of Aβ 
[68, 69]. Evidence showed that rs6910730G, an intronic vari-
ant of TREM1, reduced the ability of human monocytes for 
Aβ phagocytosis in a cohort human study [68]. Additionally, 
knockdown of TREM1 in the brains of APP/PSEN1 mice 
increased Aβ1-42 levels and total amyloid burden. While se-
lective overexpression of TREM1 on microglia ameliorated 
Aβ neuropathology and rescued AD-related spatial cognitive 
dysfunction [68]. The TAM family receptors, MerTK and 
AXL, which bind PtdSer via the bridging molecules Protein 
S and Gas6, respectively, was shown to promote myelin 
phagocytosis in MS [70-72]. In the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced progressive 
model of PD, neurodegeneration was associated with de-
creased expression of scavenger receptor Mannose Receptor 
C-Type1 (MRC1) [46]. Scavenger receptors such as MSR1, 
CD36, and CD163 have been found to be involved in macro-
phage activation and increased phagocytosis of Aβ in AD 
[26, 73]. 

2.4.2. Phagocytosis and Acute Brain Disorders 

Promoting microglia phagocytic clearance of hematoma 
has been found to be a promising therapeutic target to ame-
liorate inflammation and improve neurological outcomes 

after ICH and germinal matrix hemorrhage (GMH) [31, 74-
76]. Endogenous scavenger receptors, such as CD36,MSR1, 
CD163 and low-density lipoprotein receptor related protein-
1 (LRP1, also called CD91) have been reported to play im-
portant roles in hematoma clearance [77]. In adult hemor-
rhagic stroke models, activated transcription factors Nrf2 and 
peroxisome proliferator-activated receptor (PPAR-γ) could 
upregulate CD163 and CD36 expression, and consequently 
augmented microglia/macrophage phagocytic clearance of 
hematoma [77-79]. Hp-Hb complex can be recognized by 
CD163 receptors in microglia, promoting hemoglobin degra-
dation and anti-inflammatory effects [80, 81]. Similarly, 
phagocytes expressing CD91 can endocytose the haem-
haemopexin complex and dissociate it by lysosomal activity 
[82, 83]. In addition, the class A scavenger receptors MSR1 
and MARCO play key roles in the internalization of damage-
associated molecular patterns (DAMPs) by mononuclear 
phagocytes to resolve inflammation and prevent the exacer-
bation of ischemic stroke pathologies [84]. 

3. AUTOPHAGY IN THE BRAIN 

3.1. Mechanism of Autophagy 

Autophagy is a conserved cellular pathway involved in 
protein and organelle degradation that delivers cytoplasmic 
constituents to the lysosomes for degradation [85]. There are 
three different types of autophagy including macroautopha-
gy, microautophagy, and chaperone-mediated autophagy 
[86-89]. Macroautophagy, the best characterized form of 
autophagy in mammalian cells, usually referred to simply as 
autophagy is mostly the focus in this review. Autophagy 
relies on the coordinated action of various members of the 
autophagy-related gene (ATG) protein family, which togeth-
er underlie the induction and nucleation, elongation and mat-
uration of autophagosome (AP), as well as the fusion of au-
tophagosomes with lysosomes [90]. Autophagy can be in-
duced by nutrient starvation through the inhibition of mam-
malian target of rapamycin (mTOR), resulting in transloca-
tion of mTOR substrate complex consisting of Unc-51-like 
kinase 1/2(ULK1/2), ATG13, FAK family interacting-
protein of 200 kDa (FIP200) and ATG101 from the cytosol 
to certain domains of the endoplasmic reticulum or closely 
attached structures [3, 91]. Next, the recruited class III phos-
phatidylinositol-3-OH kinase (PI(3)K) complex (Beclin-1-
Atg14L-Vps34) produces phosphatidylinositol-3-phosphate 
(PtdIns(3)P), which binds with effectors such as double 
FYVE-containing protein 1 (DFCP1) and WD-repeat domain 
phosphoinositide-interacting (WIPI) family proteins [89]. 
After the formation of phagophore, the membrane expands 
and envelopes the cargo to promote the maturation of the 
autophagosome. Next, the autophagosome delivers its cargo 
to the lysosome to form the autolysosomes for degradation 
[5, 89]. 

3.2. Microglia Autophagy in Neurological Disorders 

Most of the literature have been published on the role of 
neuronal autophagy in the brain, and few studies have fo-
cused on glial autophagy, such as that performed by micro-
glia and astrocytes. It has been reported that autophagy can 
regulate immune response of macrophages including in-
flammation and phagocytic functions [1, 91, 92]. However, 
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there are controversial results whether microglia autophagy 
plays beneficial or detrimental functions under different 
pathogenic states in the brain. For example, moderate re-
cruitment of autophagy is beneficial in abolishing brain hy-
poperfusion. However, its overactivity may be detrimental 
for cell survival [93]. The discrepant effects may depend on 
the timing and amount of autophagy activation, thus correct-
ly fine tuning of the time and intensity will be important for 
clinical application [93]. 

3.2.1. Microglia Autophagy and Neurodegenerative Dis-
eases 

One of the pathological characteristics of PD is the pres-
ence of Lewy bodies, an eosinophilic cytoplasmic inclusion 
comprised largely of α -syn fibrils. It has been found that 
activation of autophagy in BV2 cells can lead to a reduction 
of α-syn induced pro-inflammation [94]. On the other hand, 
inhibition of autophagy in microglia caused PD-like symp-
toms in mice through activating NOD-like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome via 
phosphodiesterase 10A (PDE10A)–cyclic adenosine mono-
phosphate (cAMP) signaling pathway [95]. In an Aβ-induced 
AD model, microglial autophagy was shown to participate in 
the degradation of extracellular Aβ fibrils, and the impair-
ment of microglial autophagy resulted in increased inflam-
mation via increasing IL-1β and activating inflammasome 
[96]. However, another study demonstrated positive correla-
tion between Beclin-1, IL-1β, and Tumor necrosis factor 
alpha (TNF-α) in the cortex and/or hippocampus of AD 
mice, suggesting a relationship between inflammatory re-
sponses and autophagy [97]. 

3.2.2. Microglia Autophagy and Acute Brain Disorders  

Microglia are activated in response to injury as one of the 
main drivers of inflammatory responses after neurotrauma [3, 
98]. An increase in markers of autophagy has been reported in 
microglia after TBI, spinal cord injury(SCI), ischemic stroke 
and ICH in cellular and animal models [99-102]. However, 
whether autophagy has positive or negative effects on the in-
flammatory response after acute brain injury remains unclear. 
Some studies showed that autophagy exerted neurotoxic ef-
fects. It has been reported that cerebral ischemia induced-
microglia autophagy closely accompanied ischemic neuroin-
flammation and injury in a permanent middle cerebral artery 
occlusion (pMCAO) model in mice [103]. And autophagy 
induced by toll-like receptor 4(TLR4) activation contributed to 
microglial activation and inflammatory injury in ICH model 
[104]. A study showed that the autophagy inhibitor 3-
methyladenine (3-MA) attenuated white matter injury and 
improved working memory during chronic cerebral hy-
poperfusion in mice [105]. While some other studies have 
reported that autophagy inhibited neuroinflammatory damage, 
the autophagy activator rapamycin promoted a shift in micro-
glia from M1 to the favorable M2 phenotype and produced 
anti-inflammatory effects in ischemic stroke and subarachnoid 
hemorrhage (SAH) models [106, 107]. 

4. LINK BETWEEN AUTOPHAGY AND PHAGOCY-
TOSIS 

It has been reported that there potentially exists a link be-
tween autophagy and phagocytosis. Many studies have 

shown that phagocytosis can be regulated by autophagy  
(Table 1). The potential regulatory effects of autophagy over 
phagocytosis may occur at various steps of the phagocytic 
cascade, including cargo uptake, phagosomes maturation, 
fusion with lysosomes and recycling of phagocytic receptors 
[1]. 

4.1. Microtubule-associated Protein 1 Light Chain 3 
(LC3) Associated Phagocytosis 

One recently discovered process called LC3-associated 
phagocytosis (LAP) bridges autophagy and phagocytosis in 
macrophages and retinal pigment epithelial (RPE) cells, 
since LC3 is involved in both processes. LAP is generally 
defined as a novel form of non-canonical autophagy, some-
times regarded as a special type of phagocytosis as well [46, 
108, 109]. It is well-known that autophagosome formation 
involves the recruitment of LC3 from the cytosol to the lim-
iting membrane of the phagophore where it provides a bind-
ing site for autophagy cargos and facilitates fusion with lyso-
somes [110]. LAP is a process activated by TLR signaling 
and NADPH oxidase (NOX) during phagocytosis of fungal 
and bacterial pathogens or apoptotic and necrotic cells, re-
sulting in attachment of LC3 to the cytosolic side of the 
phagosome membrane where it facilitates phagosome matu-
ration [108, 111]. LC3 is recruited to the single-membrane 
phagosome depending on the activity of autophagy enzymes 
Beclin-1, ATG5 and ATG7, but not the recruitment of ULK1 
[112-114]. It has been reported that Rubicon and NOX2 are 
uniquely required by LAP, which can help distinguish be-
tween LAP and canonical autophagy [111].  

The LC3-decorated phagosomes formed in this process, 
named LAPosomes, show enhanced fusion with lysosomes 
resulting in enhanced degradation of contained microbes 
[115]. In addition, LAP has been reported to be required for 
the daily clearance of ingested material in the RPE which is 
important for the photoreceptor outer segment (POS) renew-
al [116, 117]. 

Although most studies published so far have shown that 
LAP promotes phagosome maturation, a study in human 
macrophages observed quite the opposite-LC3 recruitment to 
zymosan-containing phagosomes was associated with de-
layed phagosome fusion with the lysosome [118]. Some re-
searches suggest that whether LAP promotes or suppresses 
phagosome maturation depends on the foreign target and 
requires function of synaptosomal associated protein of 23 
kDa (SNAP23). SNAP23 that is enriched on the phagosome 
membrane during LAP may be phosphorylated or 
dephosphorylated, thereby enhancing or inhibiting subse-
quent phagosome maturation, respectively [119]. Therefore, 
the influence of LC3 recruitment to phagosomes remains to 
be further studied.  

 In addition, it has been reported that LAP is not univer-
sally required for the fusion of phagosome with endosomes 
and lysosomes [24]. However, LC3-decorated phagosomes 
show enhanced lysosomal fusion, leading to a more effective 
degradation of their contents compared to LC3-lacking 
phagosomes [120]. Although few studies have focused on 
LAP in microglia, some researchers think this process exists 
in the brain [121, 122]. It has been reported that microglial 
autophagy associated phagocytosis is essential for the 
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Table1.  Current evidence of the cross-talk between autophagy and phagocytosis. 

- Phagocyte Disease/Model Relationship Mechanism Refs. 

 

 

 

 

 

 

 

 

 

 

 

 

Autophagy 

is negative-

ly correlat-

ed with 

phagocyto-

sis 

 

In vitro studies 

Macrophages 
Infecting macrophages with 

Mtb or BCG  
Myeloid-specific Atg7-/- macrophages 
exhibited higher Mtb and BCG uptake  

Accumulating SQSTM1 
activated Nrf2, leading to 
upregulation of MSR1 and 

MARCO 

 [2] 

Dendritic 
cells 

 

Irradiating live EG7 cells with 
γ-ray, and then coculturing 

with BMDCs 

Atg5-deficient dendritic cells showed 
increased phagocytosis of apoptotic 

tumor cells 

Increased expression of 
scavenger receptor CD36  

 [6] 

Macrophages 

Macrophages were exposed to 
CFDA-SE-labeled Escherichia 
coli K-12, CFDA-SE-labeled 
Lactobacillus reuteri ATCC 

PTA 6475, or 

Fluoresbrite YG microsphere 

Decreased phagocytosis was seen in 
Hrh2-/- macrophages with increased 

expression of autophagy genes Beclin-1 
and ATG12 

Increased Beclin-1 and 
ATG12 expression was 

accompanied by decreased 
MSR1 expression and 

MSR1 surface abundance in 
Hrh2-/- macrophages 

 [11] 

Macrophages 

Coculturing heat inactivated 
yeast particles or L. amazonen-

sis stationary phase pro-
mastigotes with macrophages 

Autophagy induced by physiological 
(starvation) and pharmacological (ra-

pamycin) methods was shown to reduce 
the phagocytic capacity of murine mac-

rophages 

Inhibiting particle internali-
zation  

 [126] 

Macrophages 
Infecting RAW264.7 cells with 

ST239-MRSA 
Autophagy inhibitor 3-MA promoted 

phagocytosis of macrophage 
-  [127] 

In vivo studies 

Macrophages 
Intranasally infecting mice with 

BCG 
Atg7-/- mice showed increased bacterial 

loads 
-  [2] 

Dendritic 
cells 

 

Injecting apoptotic tumor cells 
into the footpads of the indicat-

ed mice 

Atg5-deficient dendritic cells showed 
increased phagocytosis of apoptotic 

tumor cells  

Increased expression of 
scavenger receptor CD36  

 [6] 

Macrophages 
Intranasally inserting ST239-

MRSA to establish mouse 
pneumonia model 

Autophagy inhibitor 3-MA protected 
mice from MRSA pneumonia 

-  [127] 

Glia 

Knocking down Draper (iso-
form I) in cortex glia in the 
brain of Drosophila melano-

gaster 

Inactivating autophagy through TORC1 
activation could rescue the accumulation of 
apoptotic neurons in the brain of Draper-/- 

deficient Drosophila melanogaster 

-  [128] 

Microglia 
AD patients carrying TREM2 

risk variants; TREM2-deficient 
mice with AD-like pathology  

Increased autophagy was detected in 

TREM2-deficient microglia and in AD 
patients carrying TREM2 variants 

TREM2 maintained micro-
glia at high metabolic states 
through enhanced activation 

of the mTOR pathway 

 [130] 

Neutrophils 
NLRP3-deficient (Nlrp3-/-) 

mice in polymicrobial sepsis 
model induced by CLP 

HMGB1-/- peritoneal cells (primarily 
neutrophils) showed decreased autopha-

gy and augmented phagocytosis 
-  [131] 

 

 

 

 

Autophagy 

is positive-

ly correlat-

ed with 

phagocyto-

sis 

In vitro studies 

Microglia 
LPS treated microglia was 

incubated with Aβ1−42 fibrils 

TLR4 activation induced by LPS sup-
pressed autophagy and impaired phago-

cytic capacity of microglia 
-  [121] 

Macrophages 

 

Macrophages were exposed to 
apoptotic lymphocytes or 

Jurkat T cells induced by cy-
clophosphamide 

Autophagy inhibitor 3-MA decreased 
phagocytosis of the apoptotic cells by 

macrophages 
-  [138] 

(Table 1) contd…. 
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- Phagocyte Disease/Model Relationship Mechanism Refs. 

 

Microglia 

 

Uptake of latex beads for  
Beclin-1 knockdown BV2  

microglial cells 

Reducing microglial Beclin-1 levels 
significantly impaired phagocytosis, and 
phagocytosis was “rescued” by recover-

ing Beclin-1 levels with a lentivirus 
encoding mouse Beclin-1 

Reduced Beclin-1 disrupted 
retromer-mediated recycling 

of phagocytic receptors 
CD36 and TREM2 

 [139] 

Microglia 
Incubation of DJ-1 deficient 

microglia with α-syn. 

DJ-1 deficiency impaired autophagy and 
reduced uptake and clearance of α-syn in 

the phagocytosis in microglia 
-  [144] 

In vivo studies 

Microglia 
Injecting fibrillar Aβ into the 
frontal cortex of Beclin-1+/- 

mice 

Reduced microglial Beclin-1 impaired 
Aβ phagocytosis 

-  [139] 

Epithelial 
hyp7 cell 

Apoptotic C. elegans apoptotic 
Q cells degraded by epithelial 

an hyp7 cell 

Autophagy proteins LC3, ATG-18, 
EPG-5 act within the phagocyte to pro-

mote apoptotic cell degradation 

ATG18 and EPG-5loss 
showed delayed recruitment 

of RAB-5, RAB-7, and 
lysosomal markers onto the 

apoptotic Q cell corpse 

 [143] 

Abbreviations: Mtb: Mycobacterium tuberculosis; BCG: M. tuberculosis var. bovisBCG;MSR1: Macrophage scavenger receptor 1; MARCO: macrophage receptor with collagenous 
structure; BMDCs: Bone marrow-derived dendritic cells; Hrh2: histamine H2 receptor gene; MRSA: Methicillin-resistant Staphylococcus aureus; TORC1: Target of Rapamycin 
Complex 1; TREM2: Triggering receptor expressed on myeloid cells 2; mTOR: mammalian target of rapamycin; CLP: cecal ligation and puncture; LPS:lipopolysaccharide; Aβ: -
amyloid; TLR4: Toll-like receptor 4;α-syn: α -synuclein. 

 
recovery of neuroinflammation in a murine model of MS 
[123]. Recently, Green DR et al. identified a related but dis-
tinct process of LC3-associated endocytosis (LANDO), 
which plays a protective role in the endocytosis of Aβ in-
volved in AD [124]. It has been found that even in non-
phagocytic cells, this process is required for the recycling of 
several internalized surface receptors to the plasma mem-
brane. LANDO in microglia was shown to facilitate Aβ 
clearance and mitigate neurodegeneration in a murine model 
of AD [125]. 

In summary, LAP is a unique pathway that links signal-
ing during phagocytosis with recruitment of some members 
of the autophagy machinery. However, the impact of LC3 
recruitment to microglial phagocytosis remains to be tested. 

4.2. Contribution of Autophagy to Phagocytic Efficiency 

 In addition to LAP, autophagy and phagocytosis may al-
so be intimately reciprocally regulated in macrophages and 
microglia through other mechanisms. However, how autoph-
agy modulates the efficiency of phagocytosis, such as pro-
moting or inhibiting phagocytosis, is still unclear. Contrary 
results have been observed in different studies.  

4.2.1. Autophagy is Negatively Correlated with Phagocyto-
sis 

Some studies showed that activation of autophagy sup-
pressed phagocytosis [126], while inhibition or loss of au-
tophagy could enhance phagocytosis [2, 127]. Lima et al. 
found that autophagy induction inhibited classical phagocy-
tosis in murine macrophages via a mechanism that does not 
interfere with particle-receptor interaction [126]. Induction 
of autophagy did not affect the capacity of macrophages to 
recognize and bind to particles, even though particle internal-
ization was suppressed [126]. Bonilla et al. demonstrated 
that the lack of ATG7 in peripheral macrophages increased 
phagocytic uptake of bacteria, possibly through enhanced 
expression of class A scavenger receptors MARCO and 

MSR1 in phagocyte cell surface [2]. Furthermore, an in-
crease in scavenger receptors was observed with increased 
activity of the nuclear factor E2-related factor 2(Nrf2) result-
ing from the accumulation of sequestosome 1 (SQSTM1) in 
ATG7-/- macrophages [2]. In addition, the authors found that 
ATG3-/-, ATG5-/-, and ATG7-/- Mouse embryonic fibroblasts 
(MEFs) all had increased surface expression of MARCO and 
MSR1 and increased ability to internalize M. tuberculosis 
var. bovis BCG (BCG), suggesting that the observed changes 
in scavenger receptor expression and phagocytosis in ATG7-

/- cells were autophagy dependent and not due to an autopha-
gy-independent role of ATG7 [2]. A similar study recently 
found that lack of ATG5 in dendritic cells increased the 
phagocytic uptake of apoptotic tumor cells, possibly through 
the enhancement of CD36 expression [6]. It has been report-
ed that the absence of phagocytic receptor Draper in glia can 
lead to a pronounced accumulation of apoptotic neurons in 
the brain of Drosophila melanogaster. Inactivating autophagy 
through Target of Rapamycin Complex 1(TORC1) activation 
or ATG1 inhibition in glia was sufficient to rescue apoptotic 
cells accumulation as well as neurodegeneration by regulat-
ing phagosome maturation [128]. Furthermore, increased 
Beclin-1 and ATG12 expression was accompanied by de-
creased MSR1 expression and MSR1 surface abundance in 
macrophages [11]. 

Recent studies showed that certain mediators are in-
volved in the cross-talk between autophagy and phagocyto-
sis. Among these factors, TREMs have been linked to the 
autophagy pathway [129]. One study showed that increased 
autophagy was detected in TREM2-deficient microglia and 
in AD patients carrying TREM2 variants, reflecting a nega-
tive correlation between phagocytic receptor TREM2 and 
autophagy [130]. Additionally, several recent studies indi-
cate that the inflammasome NLRP3 and high-mobility group 
box protein 1 (HMGB1) may act as cross-talk mediators 
between autophagy and phagocytosis.After knockout of 
NLRP3 in peritoneal cells (primarily neutrophils), decreased 
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autophagy, augmented phagocytosis and enhanced scavenger 
receptor MARCO and mannose binding leptin (MBL) ex-
pression was observed in a polymicrobial sepsis mice model 
[131]. Likewise, HMGB1 could inhibit microglia phagocyto-
sis of Aβ in AD [132, 133]. HMGB1 regulates autophagy 
through interacting with autophagy related protein Beclin-
1.The underlying mechanism might be that binding of 
HMGB1 in the cytoplasm with Beclin-1 promotes dissocia-
tion of Beclin-1 from the apoptosis inhibitor bcl-2, and fa-
cilitates binding of Beclin-1 and class III inositol 3 kinase 
(PI3K ClassIII)/ Vsp34 that activates autophagy [134-136]. 
However, no study to date has simultaneously evaluated the 
change in autophagy and phagocytosis under the action of 
HMGB1. 

In summary, the papers discussed above indicate the in-
hibitory effect of autophagy on phagocytosis, and the mech-
anisms might be associated with the negative regulation of 
autophagy on the expression of scavenger receptors or matu-
ration of phagosomes. Recently, some researchers proposed 
a new possible mechanism to explain the negative correla-
tion effect. They think that since the formation of both phag-
olysosomes and autolysosomes requires involvement of 
membrane material from the plasma membrane, competitive-
ly to use the limited cellular membrane resources may be the 
reason for negative regulation between autophagy and phag-
ocytosis [11]. 

4.2.2. Autophagy is Positively Correlated with Phagocytosis 

On the other hand, some other research studies show a 
positive correlation effect of autophagy on the process of 
phagocytosis. It has been reported that inhibition of autopha-
gy with autophagy inhibitor 3-MA led to reduced phagocytic 
efficiency in activated macrophages [137, 138]. Inhibiting 
Beclin-1disrupted phagocytic efficiency by impaired recy-
cling of phagocytic receptor such as CD36 and TREM2 in 
AD model [139]. In addition, Beclin-1coordinated actin dy-
namics and membrane phospholipid synthesis to promote 
efficient apoptotic cell engulfment [140]. The C. elegans Q 
neuroblasts (Q cells) provide an appealing in vivo model 
system to understand the roles of autophagy genes in phago-
cytes for apoptotic cell removal, both apoptotic Q cells and 
the neighboring phagocyte hyp7 cell can be individually 
identified using cell type-specific promoters [141, 142]. Au-
tophagy proteins LC3, ATG18 and Ectopic P-Granules Au-
tophagy Protein 5 (EPG-5) acted within the phagocyte to 
promote apoptotic Q cells degradation, and the engulfment 
activity was decreased after the loss of autophagy genes 
ATG18 or EPG-5 [143]. As for the mechanism, ATG18 and 
EPG-5 loss showed delayed recruitment of lysosomal mark-
ers to the internalized apoptotic Q cell corpse. In addition, 
the recruitment of small guanosine triphosphatases RAB-7 
and RAB-5 onto the phagosome was also delayed with 
ATG18 and EPG-5 loss, which affected phagolysosome 
formation [143]. 

In addition, some studies showed positive correlation be-
tween autophagy and phagocytosis. For example, TLR4 acti-
vation by lipopolysaccharide (LPS) in microglia could sup-
press autophagy and impair phagocytic capacity of microglia 
via inhibiting the activation of transcription factor Forkhead 
box O3 (FOXO3) [121]. Likewise, DJ-1 deficiency impaired 
autophagy and reduced uptake and clearance of α -syn in the 

phagocytosis by microglia, while the molecular mechanism 
remains unclear [144]. 

These studies indicate that autophagy may have a cyto-
protective effect on phagocytosis. It should be noted that 
both 3-MA and Beclin-1 or LC3 reduction can also inhibit 
LAP. Of note, many of the pharmacological and gene ap-
proaches used in autophagy research may also affect LAP, 
which could complicate data interpretation [1] and should 
be taken into consideration when interpreting findings from 
the studies. Further research is essential to explore whether 
LAP plays a role in the phagocytosis process of macrophages 
and microglia. 

CONCLUSION AND FUTURE DIRECTIONS 

In this review, we focused on the emerging evidence and 
the roles of autophagy on phagocytosis. Published literature 
indicates that there are interactions between these two pro-
cesses. The studies mostly showed that autophagy machinery 
can regulate engulfment activity of phagocytes through 
modulating the expression of the scavenger receptors. In this 
review we highlighted how autophagy can influence phago-
cytosis. Conversely, phagocytosis machinery might also af-
fect autophagy. The activation of Class A scavenger receptor 
inhibited endoplasmic reticulum stress-induced autophagy in 
macrophage [145]. The phagocytic receptor TREM2 pro-
moted the degradation oftype I transmembrane protein 
TMEM59, whose expression could facilitate autophagic flux 
through its carboxyl-terminus [146]. However, based on cur-
rent studies it is unclear whether autophagy is positively or 
negatively correlated with phagocytosis. Contradictory re-
sults from different studies may be due to inconsistent spatial 
and temporal assessment of inflammation, phagocytic activi-
ty and outcomes in various models. In addition, the studies 
summarized in this review focused on diverse phagocytic 
cell types, which might also account for the discrepant re-
sults. More research is essential to determine whether au-
tophagy can also regulate internalization process, phagosome 
maturation, fusion with lysosome and recycling of the phag-
ocytic receptors. In addition, most of the studies to date were 
preliminary observations on how autophagy influences 
phagocytosis, while little is known about the molecular 
mechanisms that mediate the effects. Another challenge in 
the field has been the difficulty in detecting the in vivo phag-
ocytosis process directly in different models. Although some 
new imaging techniques such as 3D electron microscopy 
reconstruction and live imaging with 2-photon microscopy 
have been proposed to observe the engulfment process, the 
cost effectiveness of these techniques needs may be limiting.  

A better understanding of the role of autophagy in phag-
ocytosis is critical, as promoting the phagocytic clearance of 
brain-derived cargo such as apoptotic cells, Aβ, myelin de-
bris, and hematoma in the brain could be a beneficial thera-
peutic strategy for many neurological disorders. However, 
there are currently limited studies published on the interac-
tions between autophagy and phagocytosis in the brain. Fu-
ture research efforts are needed to study the cross-talk be-
tween autophagy and phagocytosis which may provide novel 
therapeutic avenues.  
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