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Abstract Numerous studies of relationship between epigenomic features have focused on their

strong correlation across the genome, likely because such relationship can be easily identified by

many established methods for correlation analysis. However, two features with little correlation

may still colocalize at many genomic sites to implement important functions. There is no bioinfor-

matic tool for researchers to specifically identify such feature pairs. Here, we develop a method to

identify feature pairs in which two features have maximal colocalization minimal correlation

(MACMIC) across the genome. By MACMIC analysis of 3306 feature pairs in 16 human cell types,

we reveal a dual role of CCCTC-binding factor (CTCF) in epigenetic regulation of cell identity

genes. Although super-enhancers are associated with activation of target genes, only a subset of
tion and
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super-enhancers colocalized with CTCF regulate cell identity genes. At super-enhancers colocalized

with CTCF, CTCF is required for the active marker H3K27ac in cell types requiring the activation,

and also required for the repressive marker H3K27me3 in other cell types requiring repression. Our

work demonstrates the biological utility of the MACMIC analysis and reveals a key role for CTCF

in epigenetic regulation of cell identity. The code for MACMIC is available at https://github.com/

bxia888/MACMIC.
Introduction

As DNA sequencing data expand at an unprecedented speed,
genomic (including epigenomic) data such as RNA-seq,
ChIP-seq, and genome sequencing data can be conveniently

collected from public databases. Each set of sequencing data
is typically collected to investigate a genomic (including epige-
nomic) feature across the genome, e.g., RNA-seq dataset to

investigate the expression profile of all genes in a genome,
and ChIP-seq dataset to investigate a histone modification or
the binding of a transcription factor at individual sites across

the genome. It is commonly recognized that the function of
a genome cannot be fully understood by studying a single
genomic feature. Many studies have shown that analysis of

correlation between two genomic features has a strong poten-
tial to identify their regulatory relationship in an important
biological process [1,2]. For instance, a strong positive correla-
tion between the binding intensity of a protein near individual

genes and the expression level of these genes might help define
the protein to be an activator of transcription [3]. By focusing
on the correlation between the RNA expression and a histone

modification, the roles of individual histone modifications in
the activation or repression of transcription have also been rec-
ognized [4–6].

However, in many aspects of informatics, the representa-
tion of knowledge can be more efficient by using a combina-
tion of uncorrelated features [7]. In other words, highly
correlated features often contain redundant information [8].

For example, whereas the dozens of pluripotent factors such
as Oct4, Sox2, Klf4, and c-Myc, are all useful to predict genes
expressed in stem cells [9–11], combining some pluripotent fac-

tors with endothelial lineage factors such as Lmo2 and Erg
would add power to also predict genes expressed in endothelial
cells; therefore, it can be more powerful using combined infor-

mation from transcription factors with distinct functions, as
opposed to an analysis using the transcription factors with
similar effects on a shared set of target genes. More impor-

tantly, colocalization of low-correlation chromatin features
may still happen in a biologically meaningful manner to imple-
ment important functions. For instance, the histone modifica-
tions H3K27me3 and H3K4me3 are known to be associated

with repression and activation of transcription in differentiated
cells, respectively [12]. As a result, they show negative correla-
tion and often occur at different genes in somatic cell types

[13]. However, these two markers lose the negative correlation
and colocalize at a large set of genes in embryonic stem cells
(ESCs) [14–16]. It is well known now that the colocalization

of H3K27me3 and H3K4me3 in ESCs defines bivalent chro-
matin domains, which are functionally distinct from both the
repressive domains associated with H3K27me3 and the active

domains associated with H3K4me3. These bivalent chromatin
domains play a unique role in ESCs to maintain a bivalent -
status of the lineage factors for individual somatic cell types
[17–19]. Therefore, analyzing colocalization of two chromatin

features with globally low correlation in a cell has the potential
to reveal novel biological mechanisms. However, little is
known yet about the biological implications of such colocaliza-
tion for the other chromatin features beyond H3K4me3 and

H3K27me3. Therefore, the community is in need of a robust
method to identify and understand the biologically important
colocalizations of uncorrelated chromatin features in a cell.

In this study, we utilized mutual information [20–22] as an
indication for general correlation (relevance) between a pair of
genomic features, and mathematically integrated it with the

number of colocalizations between the features to define a
score for maximal colocalization minimal correlation (MAC-
MIC). The MACMIC score allows us to quantitatively prior-

itize the feature combinations that have large number of
colocalizations but low correlation. We next performed a sys-
tematic analysis of MACMIC scores between chromatin fea-
tures using 1522 datasets for histone modifications or the

binding of chromatin proteins from ESCs as well as somatic
cell types. Our analysis successfully recaptured the previously
discovered bivalent domain in ESCs, and further revealed a

key role for CCCTC-binding factor (CTCF) in the epigenetic
regulation of cell identity genes.

Method

Data collection

The RNA-seq data and ChIP-seq data for transcription factors
and histone modifications from human primary somatic cells,

human ESCs (hESCs), and mouse ESCs (mESCs) were down-
loaded from Gene Expression Omnibus (GEO) database and
Encyclopedia of DNA Elements (ENCODE) project website

(https://www.encodeproject.org/) [23]. Processed annotated
topologically associating domains and loops from human
umbilical vein endothelial cells (HUVECs) were downloaded

from GEO. Detailed information of datasets reanalyzed in this
study is listed in Tables S1 and S2.

Data processing and analysis

Human reference genome sequence (version hg19), mouse ref-
erence genome sequence (version mm9), and University of Cal-
ifornia Santa Cruz (UCSC) Known Genes were downloaded

from the UCSC Genome Browser website [24]. Transcripts
per kilobase million (TPMs) of RNA-seq from ENCODE were
directly downloaded from ENCODE project. For GEO data-

sets, RNA-seq raw reads were mapped to the human genome
(version hg19) using TopHat (version 2.1.1) with default
parameter values. The expression value for each gene was

determined by the Cuffdiff function in Cufflinks (version
2.2.1) with default parameter values.

https://github.com/bxia888/MACMIC
https://github.com/bxia888/MACMIC
https://www.encodeproject.org/
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For ChIP-seq data, reads were first mapped to reference
genome by Bowtie (version 1.1.0). Peak calling and generation
of .wig file were performed by Dynamic Analysis of Nucleo-

some and Protein Occupancy by Sequencing (DANPOS; ver-
sion 2.2.3). Bigwig was generated using the tool
WigToBigWig, which was downloaded from the ENCODE

project website (https://www.encodeproject.org/software/wig-
tobigwig/) [23]. Then bigwig file was submitted to the UCSC
Genome Browser (https://genome.ucsc.edu) to visualize the

ChIP-seq signal at each base pair [24,25]. The average density
plots of epigenetic marks in promoter region around transcrip-
tion start site (TSS) were plotted using the Profile function in
DANPOS (version 2.2.3). Heatmap was plotted using Mor-

pheus (https://software.broadinstitute.org/morpheus). P val-
ues of boxplots were calculated with a two-sided Wilcoxon
test. For the regulation network, we used CellNet method

[26] to define the network and downloaded the network nodes
(genes), edges, and value of closeness between nodes from Cell-
Net website (http://cellnet.hms.harvard.edu/). As the gene

number will affect the percentage and P value of overlap
between gene groups, we used the same number of top genes
from each group to avoid this effect. Because the genes associ-

ated with broad H3K4me3 was reported to be around 500 in
each cell type [27], we used this number of genes for each gene
group.

Integrated analysis of two chromatin features

For individual markers, the ranking of genes was based on the
width of individual markers on the gene promoter region (up-

stream 3 kb of TSS to downstream 10 kb of TSS). For the
ranking of genes based on the colocalization of two chromatin
features, the rank product of two individual markers was cal-

culated first. We defined rank product as RP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQn
i¼1r1;i � r2;i

p

, where the r1;i is the rank of width for the first marker, the r2;i
is the rank of width for the second marker. Then if no colocal-

ization of these two chromatin markers was detected in the
gene promoter region, the gene was being removed from the
ranking. A colocalization of two chromatin markers at a speci-
fic genomic locus was defined by requiring at least 1-bp over-

lap. To measure the colocalization level of two chromatin
markers, we calculated the total number of genomic loci that
display overlap of these two chromatin markers across whole

genome. Afterward, the genes associated with the colocaliza-
tion of these two chromatin features were ranked based on
the rank product of individual features. For a fair comparison,

each group defined by broad H3K4me3, broad H3K27ac,
broad H3K27me3, colocalization of broad H3K4me3 and
broad H3K27me3, or colocalization of broad H3K4me3 and

broad H3K27ac contained only the top 500 genes. GO term
pathway analysis was performed by the web portal (http://ge-
neontology.org/) [28].

CTCF-associated super-enhancers

CTCF ChIP-seq datasets were processed as previously
described. Peaks with height larger than upper quartile of peak

height values were defined as high-confidence CTCF peaks.
Super-enhancers were defined as previous defined [29], and
then super-enhancers were categorized into two categories

based on the existence of high-confidence CTCF peaks within
super-enhancers. Super-enhancers with high-confidence CTCF
peaks were named as CTCF-associated super-enhancers
(CSEs). Super-enhancers without high-confidence CTCF

peaks were named as other super-enhancers (OSEs).

Simulation of association between CTCF and enhancers

For each group of typical enhancers, each typical enhancer
was randomly matched to a super-enhancer, and then typical
enhancers were enlarged towards two directions until they

had the same size as super-enhancers. Associations of CTCF
with super-enhancers, typical enhancers, and enlarged typical
enhancers were calculated based on the overlapping events

between the two different epigenetic markers.

Mutual information of two genomic features

To calculate MACMIC score, we first calculated mutual infor-

mation that is a widely used measure of the mutual dependence
between two variables. A large mutual information value will
indicate strong correlation that can be either positive or nega-

tive, and either linear or nonlinear. The rationale to use mutual
information as an indication for correlation is that mutual
information is more general than other methods such as linear

correlation. Mathematically, mutual information is calculated
by following equation:

I X;Yð Þ ¼ H Xð Þ þH Yð Þ �HðX;YÞ
where X and Y represent the peak width from two different

chromatin features, and I(X;Y) is the mutual information of
X and Y. H(X) and H(Y) are the marginal entropies, and H
(X,Y) is the joint entropy of X and Y. Entropies are calculated
by the following equation:

H Xð Þ ¼ �
Xn

i¼1

P xið ÞlogPðxiÞ

where n is the total gene number, and P(xi) is the probability

by which the total signal of a given genomic marker is xi in
the promoter region of gene i. To calculate H(X), we focused
on the promoter region from 3 kb upstream to 10 kb down-
stream of TSS. For a promoter that has multiple ChIP-seq

peaks, we calculated the total signal that is the sum of signals
in these peaks. The Selector function in DANPOS was used to
map peaks to promoters. And we used Poisson distribution to

calculate the probability of the observed ChIP-seq signal in a
given promoter region [27]. To calculate the joint entropy of
two genomic features, we used the following equation:

H X;Yð Þ ¼ �
Xn

i¼1

P xi; yið ÞlogP xi; yið Þ

where n is the total gene number, and P(xi,yi) is the joint prob-
ability that the total signals of the first and second markers are

xi and yi, respectively, in the promoter region of gene i.

Regression model of genomic feature pairs

Theoretically, two features that have a small mutual informa-
tion value tend to have no or a small number of colocaliza-
tions, whereas a large number of colocalizations are often

associated with a large mutual information value. However,

https://www.encodeproject.org/software/wigtobigwig/
https://www.encodeproject.org/software/wigtobigwig/
https://genome.ucsc.edu
https://software.broadinstitute.org/morpheus
http://cellnet.hms.harvard.edu/
http://geneontology.org/
http://geneontology.org/
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it is still unknown whether the colocalization of two histone
modifications could identify genes that were not effectively
identified by each of the two modifications. We first built a lin-

ear regression model to quantitively analyze the relationship
between the mutual information value and the number of colo-
calizations. We used the least square method to estimate the

parameters of the linear regression model. The data of the
mutual information value and the number of colocalizations
were calculated from 225 feature pairs which are derived from

6 chromatin features in 15 human primary somatic cell types
(Table S1).

Calculation of MACMIC score

We developed MACMIC to prioritize feature pairs that have
minimal correlation but a maximal number of colocalizations.
A flowchart of MACMIC is presented in Figure 1A. Consider-

ing the penalty of high-correlation feature pairs, MACMIC
score is calculated by the following equation:
Figure 1 The MACMIC method to define mutual information redund

A. The workflow to calculate the MACMIC score. B. Scatter plot to sho

each of 225 feature pairs derived from 6 features that form 15 combin

types. C. Scatter plot to show MACMIC score and mutual informatio

form 15 combinations with each other in each of 15 human primary som

between each pair of features. D. Scatter plot to show MACMIC sco

feature pairs derived from 80 features in H1-hESC were plotted. Color

features. MACMIC, maximal colocalization but minimal correlation;

binding factor; KDM4A, Lysine-specific Demethylase 4A; RBBP5, R
MACMIC ¼ Cobserved � Cexpected

Cexpected

where C represents the number of colocalizations of two chro-

matin features which is counted by the number of overlapping
events. The P value for each term tests the null hypothesis that
the residual is equal to zero. A low P value (< 0.05) indicates

that for a specific value of mutual information, the feature
combinations have a significant higher colocalization than
the estimated colocalization on the genome.

Results

Calculation of colocalization of globally low-correlation chromatin

features

We first tested whether the colocalization of two histone mod-
ifications could identify genes that were not effectively identi-
fied by each of the two modifications. We performed the
ancy of colocalizations between genomic features

w mutual information value and the number of colocalizations for

ations with each other in each of 15 human primary somatic cell

n value for each of 225 feature pairs derived from 6 features that

atic cell types. Color scale indicates the number of colocalizations

re and mutual information value for each pair of features. 3081

scale indicates the number of colocalizations between each pair of

H1-hESC, human embryonic stem cell line H1; CTCF, CCCTC-

B Binding Protein 5.
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analysis for H3K4me3 and H3K27ac that had strong correla-
tion across the genome (Figure S1A) and compared it to the
analysis for H3K4me3 and H3K27me3 that had little correla-

tion across the genome (Figure S1B) in hESC line H1 (H1-
hESC). We recently revealed that the top 500 genes associated
with broad H3K4me3 were enriched with tumor suppressor

genes [27]. For a fair comparison, we retrieved the top 500
genes associated with broad H3K27ac and the top 500 genes
associated with broad H3K27me3. There were 288 (57.6%)

genes associated with both broad H3K4me3 and broad
H3K27ac (Figure S1C). In contrast, there was no gene associ-
ated with both broad H3K4me3 and broad H3K27me3 (Fig-
ure S1D). To further explore the potential colocalization

between H3K4me3 and H3K27me3, we defined the top 500
genes by the rank product of H3K4me3 width and
H3K27me3 width (colocalization of broad H3K4me3 and

broad H3K27me3) (Figure S1E). We also defined the top
500 genes by the rank product of H3K4me3 width and
H3K27ac width (colocalization of broad H3K4me3 and broad

H3K27ac) (Figure S1E). For the genes associated with colocal-
ization of broad H3K4me3 and broad H3K27ac, only 7 genes
were not captured by broad H3K4me3 or broad H3K27ac

(Figure S1C). However, for the genes associated with colocal-
ization of broad H3K4me3 and broad H3K27me3, 421
(84.2%) genes were not captured by broad H3K4me3 or broad
H3K27me3 (Figure S1D). Further, for the 2168 pathways sig-

nificantly enriched in genes associated with colocalization of
broad H3K4me3 and broad H3K27me3, 1404 pathways
showed no significant enrichment in genes associated with

broad H3K4me3 or broad H3K27me3 (Figure S1F). These
pathways were mainly related to somatic cell lineage specifica-
tion (Figure S1G), which agreed with the reported role of biva-

lent domains. These results suggested that colocalization of
globally low-correlation features in a cell could be associated
with unique biological implications that were not associated

with each of these features.

MACMIC as a new method to identify association between

chromatin features

We next developed the MACMIC algorithm to detect feature
pairs in which the two associated features have large number
of colocalizations but low global correlation across the genome

(see Method). We performed MACMIC analysis of 6 features,
which formed 15 pairs with each other in each cell type and
thus formed 225 feature pairs in 15 human primary somatic

cell types (Table S3). Most feature pairs displayed a positive
correlation between the mutual information value and the
number of colocalizations (Spearman correlation coefficient
0.46) (Figure 1B). Similar results were observed by replacing

mutual information with absolute value of correlation coeffi-
cient or principal component analysis (PCA) value (Figure S2A
and B). However, there were a few feature pairs that displayed

a large number of colocalizations but a small mutual informa-
tion value (Figure 1B). We calculated the MACMIC scores for
the 225 individual feature pairs and found that the large MAC-

MIC scores effectively prioritized feature pairs that possessed
large number of colocalizations but weak correlations across
the genome (Figure 1C). We observed the similar results by

replacing mutual information with absolute value of correla-
tion coefficient or PCA value as well (Figure S2C and D).
We further tested our MACMIC analysis method on 3081 fea-
ture pairs derived from 80 chromatin features in H1-hESC.
Our results again indicated that MACMIC successfully prior-

itized the feature pairs with minimal mutual information but
substantial colocalizations (Figure 1D).

MACMIC identifies a unique association of CTCF with super-

enhancers

To further test whether MACMIC scores could effectively

recapture feature pairs with biological implications, we ana-
lyzed MACMIC scores between H3K4me3 and H3K27me3
in 15 human primary somatic cell types as well as in H1-

hESC. In agreement with the reported large number of biva-
lent domains marked by both H3K4me3 and H3K27me3 in
ESCs [30], we observed a large MACMIC score (2.8) in H1-
hESC. On the other hand, in agreement with the reported res-

olution of bivalent domains to form either repressive domains
marked by H3K27me3 or active domains marked by
H3K4me3 [30], the MACMIC scores between H3K4me3 and

H3K27me3 were low in all the 15 primary somatic cell types
(from �0.76 to 0.67) (Figure 2A). Therefore, MACMIC anal-
ysis successfully recaptured bivalent domains that were known

to play a key role in ESCs.
We next tested whether MACMIC analysis could success-

fully identify new feature pairs that possess a large number of
functionally important colocalizations but low correlation.

We ranked a set of 79 chromatin features in H1-hESC by
the MACMIC scores between the enhancer feature
H3K27ac and each of these features (Figure 2B). The top fea-

tures with the large MACMIC scores in the rank included the
suppressive histone modification H3K27me3, consistent with
the implication that H3K27ac and H3K27me3 might co-

exist in bivalent domains [30]. Interestingly, master regulators
of three-dimensional chromatin interaction, the CTCF [31]
and its binding partner RAD21 [32], topped in the rank list

(Figure 2B). We further performed analysis in 15 human
somatic cell types that each had ChIP-seq datasets for a set
of 6 chromatin features from the ENCODE project [23]
(Table S1). The results showed that the MACMIC score

between H3K27ac and the binding of CTCF was significantly
larger than MACMIC scores between H3K27ac and the
other 4 features including H3K27me3, H3K4me3,

H3K9me3, and H3K79me2 (Figure 2C). Moreover, colocal-
ization analysis for CTCF and H3K27ac found that CTCF-
binding sites had the largest number of colocalizations with

the broadest H3K27ac peaks (super-enhancers) (Figure 2D).
To test whether this higher frequency of colocalization was
simply due to the longer DNA sequences of super-
enhancers, we performed a normalization by lengthening typ-

ical enhancers at the two ends of each enhancer, so that the
DNA sequences assigned to typical enhancers had equivalent
sizes to those of super-enhancers. The result showed that the

frequency of colocalization with CTCF-binding sites still
tended to be higher for super-enhancers when compared to
other enhancers (Figure 2D).

A unique enrichment of CSEs in cell identity genes

Since super-enhancers were reported to regulate cell identity

genes [29], we determined to investigate the role of CTCF in



Figure 2 MACMIC reveals minimal information redundancy of frequent colocalizations between CTCF-binding sites and super-enhancers

A. Bar plot to show MACMIC scores between H3K4me3 and H3K27me3 in individual human primary somatic cell types as well as in H1-

hESC. B. MACMIC scores between H3K27ac and individual other chromatin features in H1-hESC. Number in parentheses indicates the

rank of the feature. C. MACMIC scores between H3K27ac and individual other chromatin features in 15 human primary somatic cell

types. Error bars indicate the standard deviation of MACMIC scores across cell types. D. Percentage of enhancers that coincided with

CTCF-binding sites in 15 human primary somatic cell types as well as in H1-hESC. Enhancers were divided into individual groups on the

base of their H3K27ac width. Each group contains 500 enhancers, i.e., rank 1 contains the widest 500 enhancers, and rank 2 contains the

501st–1000th widest enhancers. NHLF, normal human lung fibroblast; HSMM, human skeletal muscle myoblast; HMEC, human

mammary epithelial cell; HUVEC, human umbilical vein endothelial cell.
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this regulation. We divided super-enhancers into two cate-

gories, i.e., CSEs and OSEs. To study the function of genes
marked by CSEs and OSEs, we defined the genes of which
the gene body overlapped with CSEs or OSEs for at least
1 bp as the CSE or OSE genes. Intriguingly, only the genes

marked by CSEs were significantly enriched in the pathways
associated with cell lineage specifications, e.g., the endothelial
cell differentiation pathway (GO:0045601) for CSE genes in

HUVECs (Figure 3A) and the neuron differentiation pathway
(GO:0045664) for CSE genes in neural cells (Figure 3B). Man-
ual inspection of individual known cell lineage factors in these

cell types further confirmed the colocalization of ChIP-seq sig-
nals of H3K27ac and CTCF, e.g., at the gene Nuclear Receptor
Subfamily 2 Group F Member 2 (NR2F2) [33] in HUVECs and

the gene Forkhead Box G1 (FOXG1) [34] in neural cells
(Figure 3C and D). In contrast, some other genes, although
also displaying broad enrichment of H3K27ac, were depleted

of CTCF-binding sites, e.g., the gene ADP Ribosylation Factor
1 (ARF1) in HUVECs and the gene Paraoxonase 1 (PON1) in
neural cells (Figure 3C and D). Intriguingly, there were typi-
cally multiple CTCF-binding sites located within the active

region of each CSE. This colocalization pattern was different
from the well-known function of CTCF-binding sites as insu-
lators, which often happened between active and repressive

domains (Table S4). Besides, a significant portion of the CSE
genes encoded transcription factors, whereas we did not
observe this phenomenon for the OSE genes (Figure 3E). Fur-

ther, the CSE genes were connected to a significantly large
number of edges in the gene regulatory networks, whereas
the numbers of connected network edges were similar for

OSE genes and random control genes (Figure 3F). The differ-
ences between CSEs and OSEs in their association with genes



Figure 3 CSEs mark cell identity genes

A. and B. Individual pathways enriched in CSE or OSE genes in HUVECs (A) or neural cells (B). C. and D. ChIP-seq signals for H3K27ac

and CTCF at CSE gene NR2F2 and OSE gene ARF1 in HUVECs (C) and CSE gene FOXG1 and OSE gene PON1 in neural cells (D). E.

and F. The number of transcription factors within each gene group (E) and the number of network edges within each gene group (F) in 15

human primary somatic cell types. Error bars indicate the standard deviation across cell types. Each gene group was defined to have the

same number of genes. P values were determined by Wilcoxon test in comparison to the control group consisting of randomly selected

genes. G. Heatmap to show �Log10 enriched P value of cell type related pathways (rows) in CSE genes (top panel) or OSE genes (bottom

panel) defined in each cell type (columns). CSE, CTCF-associated super-enhancer; OSE, other super-enhancer; NR2F2, Nuclear Receptor

Subfamily 2 Group F Member 2; ARF1, ADP Ribosylation Factor 1; FOXG1, Forkhead Box G1; PON1, Paraoxonase 1; TF, transcription

factor.
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in cell lineage pathways were highly reproducible in the 15 cell
types that we have analyzed (Figure 3G). It was reported that
the establishment of cell type specific chromatin loops was

important during cell differentiation [35]. Consistently, we
found that CSEs were enriched near chromatin loops
(Figure S3A) and the boundaries of topologically associating

domains (TADs) (Figure S3B), whereas no significant differ-
ence in the sizes of the associated TADs was observed between
CSEs and OSEs (Figure S3C).

CSE and OSE genes have similar expression levels and cell type

specificities

To understand how CTCF regulates enhancer activity and in
turn regulates cell identity, we first compared the expression
levels of genes marked by CSEs and OSEs. Intriguingly, simi-
lar expression levels were observed between CSE and OSE

genes, and this result was highly reproducible in HUVECs
(Figure 4A, left panel) and neural cells (Figure 4A, right
panel). Further, CSE and OSE genes of HUVECs were both

significantly up-regulated in HUVECs compared to
H1-hESCs and neural cells (Figure 4B, left panels).
Consistently, CSE and OSE genes of neural cells were both

significantly up-regulated in neural cells compared to
H1-hESCs and HUVECs (Figure 4B, right panels). These
results suggested that CSE and OSE genes of the same cell type
have similar expression levels and cell type specificities.

We next compared the H3K27ac levels between CSE and
OSE genes, as H3K27ac is a marker for enhancer activation.
The result indicated that the H3K27ac levels were similar at

CSE and OSE genes within HUVECs (Figure 4C, left panel).
Similarly, the H3K27ac levels were similar at CSE and OSE
genes within neural cells (Figure 4C, right panel). Further,

the H3K27ac levels at HUVEC-specific CSE and OSE genes
were higher in HUVECs when compared to the same regions
in H1-hESCs and neural cells. Similarly, the H3K27ac levels

at neuron-specific CSE and OSE genes were higher in neural
cells compared to the same regions in HUVECs and
H1-hESCs (Figure 4D). Therefore, in agreement with result
from the expression analysis, CSE and OSE genes of the same

cell type had similar epigenetic states and specificities.
Of the top 500 HUVEC CSE genes, 405 (81%) lost

H3K27ac in both neural cells and H1-hESCs (Figure 4E, top

left). In contrast, the binding of CTCF in 483 (97%) HUVEC
CSE genes were retained in both neural cells and H1-hESCs
(Figure 4E, bottom left). Similar results were observed for

the neural cell CSE genes. Of the top 500 neural cell CSE
genes, 388 (78%) lost H3K27ac in both HUVECs and
H1-hESCs (Figure 4E, top right), while the binding of CTCF
in 462 (92%) neural cell CSE genes were retained in both

HUVECs and H1-hESCs (Figure 4E, bottom right). To fur-
ther understand the role of CTCF in CSE genes, we next ana-
lyzed an RNA-seq dataset from HeLa cells with CTCF

knocked down or not. The CSE genes of HeLa cells were
significantly enriched in the genes down-regulated but not in
the genes up-regulated in response to CTCF knockdown

(Figure 4F). In contrast, the OSE genes showed little
enrichment in the down- or up-regulated genes induced by
knockdown of CTCF (Figure 4F).

Of the top 500 HUVEC OSE genes, 331 (66%) lost
H3K27ac in both neural cells and H1-hESCs (Figure S4, top
left). In contrast, the binding of CTCF in 492 (98%) HUVEC
OSE genes were retained in both neural cells and H1-hESCs
(Figure S4, bottom left). Similar results were observed for

the neural cell OSE genes. Of the top 500 neural cell OSE
genes, 347 (69%) lost H3K27ac in both HUVECs and
H1-hESCs (Figure S4, top right), while the binding of CTCF

in 476 (96%) neural cell OSE genes were retained in both
HUVECs and H1-hESCs (Figure S4, bottom right). These
results indicated that although the loss of the activation state

of CSEs may not require the loss of CTCF binding, the bind-
ing of CTCF was required for the activation of CSEs and their
associated genes.

CSE genes of a given cell type display increased repressive mod-

ification H3K27me3 in other cell types

A cell identity gene has two key attributes: 1) it is associated

with active chromatin modifications and thus activated to play
an important role in the cell type that requires its activation;
and 2) it is silenced in most other cell types with repressive

chromatin modifications. Since our results demonstrated that
the CSE genes of one cell type lost H3K27ac but retained
the binding of CTCF in other cell types, we hypothesized that

the binding of CTCF might be also important for the repres-
sion of these CSE genes in the other cell types.

We first defined a set of CSE genes, a set of OSE genes, and
a set of random control genes in HUVECs, and analyzed the

pattern of the repressive histone modification H3K27me3 on
these three gene sets in each of three cell types including
H1-hESCs, neural cells, and also HUVECs. We found that

the H3K27me3 signals in HUVECs showed a similar pattern
at the HUVEC CSE genes as at the HUVEC OSE genes,
and are substantially weaker than the H3K27me3 signals of

the random control genes (Figure 5A, top). Intriguingly, only
the CSE genes in HUVECs, not those OSE genes in HUVECs
or the random control genes, were marked by strong

H3K27me3 signals in H1-hESCs (Figure 5A, middle). These
trends observed for H3K27me3 in H1-hESCs were the same
for H3K27me3 in neural cells (Figure 5A, bottom). Similar
results were observed when we defined a set of CSE genes, a

set of OSE genes, and a set of random control genes in neural
cells to analyze the pattern of H3K27me3 on these three gene
sets in HUVECs, H1-hESCs, and neural cells. The H3K27me3

signals in neural cells showed a similar pattern at the neural
CSE genes as at the neural OSE genes, but are substantially
weaker at the random control genes (Figure 5B, bottom).

However, only the CSE genes of neural cells, not the OSE
genes of neural cells or the random control genes, possessed
strong H3K27me3 signals in H1-hESCs (Figure 5B, middle).
These trends observed for H3K27me3 in H1-hESCs were the

same for H3K27me3 in HUVECs (Figure 5B, top).
We next further included another 13 sets of biosamples that

each had ChIP-seq data for CTCF, H3K27ac, and

H3K27me3. Consistent with the results from HUVECs and
neural cells, CSE and OSE genes showed similar enrichment
of H3K27ac (Figure S5A) and similar depletion of

H3K27me3 (Figure S5B) in cell types that defined these CSE
and OSE genes. Next, we analyzed these CSE and OSE genes
in H3K27ac ChIP-Seq datasets from 84 biosamples and

H3K27me3 ChIP-seq datasets from 125 biosamples from the
ENCODE database. CSE and OSE genes both showed



Figure 4 CTCF is linked to the activation of enhancers

A. Box plot to show RNA expression levels of CSE and OSE genes of HUVEC (left panel) and neural cell (right panel) in cell types that

defined them. B. Box plot to show RNA expression levels of CSE genes (top panels) and OSE genes (bottom panels) in neural cell,

HUVEC, and H1-hESC. CSE and OSE genes were defined in HUVEC (left panels) or neural cell (right panels) C.H3K27ac signals at CSE

gene, OSE genes, and control genes of HUVEC (left panel) and neural cell (right panel) in the cell type that defined these gene groups. D.

H3K27ac signals at CSE genes (top panels) and OSE genes (bottom panels) in HUVEC, H1-hESC, and neural cells. CSE and OSE genes

were defined in HUVEC (left panels) or neural cells (right panels). E. Pie charts to show H3K27ac status at HUVEC CSE genes in neural

cell and H1-hESC (top left), H3K27ac status at neural cell CSE genes in HUVEC and H1-hESC (top right), binding status of CTCF at

HUVEC CSE genes in neural cell and H1-hESC (bottom left), and binding status of CTCF at neural cell CSE genes in HUVEC and

H1-hESC (bottom right). F. Barplot to show �Log10 enriched P value of CSE genes or OSE genes in the genes up- or down-regulated by

shCTCF in HeLa cells. P values were determined by Wilcoxon test in (A), (B), and (F). FPKM, fragments per kilobase million; TSS,

transcription start site; KD, knockdown.
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Figure 5 CTCF regulates cell identity by facilitating the suppressive marker H3K27me3

A. and B. H3K27me3 signals in H1-hESC, neural cell, and HUVEC at CSE genes, OSE genes, and control genes defined in HUVEC (A)

and neural cell (B). C. ChIP-seq signals for CTCF and H3K27me3 in mESC at the HUVEC CSE gene NR2F2 (top) and the neural cell

CSE gene FOXG1 (bottom). D.–F. Box plot to show the heights of CTCF ChIP-seq enrichment peaks, the widths of H3K27me3

enrichment domains, and the RNA expression levels of CSE genes of mouse heart (D), fibroblast cell (E), and bone marrow macrophage

cell (F) under different conditions in mESCs. P values were determined by Wilcoxon test. mESC, mouse embryonic stem cell; AID, auxin-

inducible degradation.
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attenuated enrichment of H3K27ac when the H3K27ac

was analyzed in cell types different from the cell types
that defined the CSE and OSE genes (Figure S5C). How-
ever, the CSE genes were associated with significant

enrichment of H3K27me3, whereas the OSE genes showed
little enrichment of H3K27me3, when the H3K27me3 was
analyzed in cell types different from the cell types that
defined these CSE and OSE genes (Figure S5D). These

analyses indicated that the CSE genes, but not the OSE
genes, were under stringent epigenetic repression by
H3K27me3 in cell types different from the cell types that

defined the CSE and OSE genes. Interestingly, CTCF and
H3K27me3 are also among the top feature pairs ranked
by MACMIC score in H1-hESC (Figure S6).
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CTCF in a given cell type is required for the repression of CSE

genes defined in other cell types

Due to limited availability of public datasets for human, we
analyzed the mouse homologs of CSE and OSE genes defined

in HUVECs and human neural cells in mESCs
with CTCF ChIP-seq and H3K27me3 ChIP-seq data under
normal and auxin-inducible degradation (AID) conditions.
Importantly, auxin-induced degradation of CTCF in mESCs

led to the loss of CTCF binding and H3K27me3 signals in
mESCs at the mouse homologs of CSE genes defined in
HUVECs and human neural cells. For example, signals of

CTCF binding and H3K27me3 in mESCs at known identity
genes of somatic cell types, the NR2F2 [33] of endothelial cells
(Figure 5C, top) and the FOXG1 [34] of neural cells (Figure 5C,

bottom), were substantially attenuated after auxin-induced
degradation of CTCF, and recovered after auxin was washed
off (Figure 5C). The CTCF-binding sites in mESCs at these

CSE genes were located within the broad H3K27me3 modifica-
tions. To further validate our results, we used ChIP-seq data
for CTCF and H3K27ac in three mouse primary samples
including heart, fibroblast cell, and bone marrow

macrophage to define CSE and OSE genes, and ana-
lyzed CTCF and H3K27me3 at these genes in mESCs. The
results showed that the colocalization of CTCF-binding sites

and broad H3K27me3 in mESCs was similar to the colocaliza-
tion observed for CTCF-binding sites and super-enhancers in
mouse heart, fibroblast cell, and bone marrow macrophage.

Our further analysis indicated that in parallel with the loss
of CTCF binding in mESCs at the CSE genes of mouse heart,
fibroblast cell, and bone marrow macrophage, the H3K27me3
signals in mESCs were reduced dramatically and the expres-

sion levels in mESCs were significantly up-regulated
(Figure 5D–F). Taken together, these results suggested that
the CTCF in a given cell type was required for the repression

of CSE genes defined in a different cell type.

Discussion

Conventional analysis of relationship between chromatin fea-
tures tends to focus on strongly positive or negative correlation
to identify the associated components within a specific biolog-

ical process [1]. However, genomic features with weak correla-
tion across the genome may still colocalize at many genomic
sites in a biologically important manner. It is hard to capture

the significance of such colocalizations on the basis of conven-
tional correlation analysis. In this study, we provide a new
method to identify MACMIC, which effectively prioritizes

the feature pairs with low genome-wide correlation but sub-
stantial colocalizations. Using the MACMIC, we successfully
recapture the reported bivalent domains in ESCs, which is

composed of both activating histone modifications, e.g.,
H3K4me3, and the repressive histone modifications, e.g.,
H3K27me3. Activating histone modification and the repressive
histone modification possess low genome-wide correlation in

the ESCs, but the colocalizations of them at bivalent domains
mark important lineage specific regulators.

As proof of principle, we present a novel relationship iden-

tified by MACMIC between the binding of CTCF and the
enhancer marker H3K27ac. Our analysis demonstrated that
their colocalization is key to both the activation and repression
of cell identity genes. Numerous efforts have been made to
understand cell identity regulation [26]. Somatic cells, such as
fibroblasts [36], keratinocytes [37], peripheral blood cells [38],

and neural progenitor cells [39], have been sucessfully repro-
grammed to induced pluripotent stem cells. Many transcrip-
tion factors and epigenetic regulators have been proposed to

play important roles in these dynamic processes. We and sev-
eral other groups recently discovered that cell identity genes
manifested unique chromatin epigenetic signatures associated

with their distinct transcriptional regulation mechanisms
[29,40–42]. CTCF is well known for its function as an insulator
that binds regions between active and repressive domains on
chromatin [43], as a mediator for promoter–enhancer interac-

tion [44], and as a partner of cohesin in regulating chromatin
3D structure [45,46]. It further has been proven to be an essen-
tial factor for cell differentiation and development of T cell

[47], neuron [48], heart [49], and limb [50]. However, how these
functions of CTCF are connected to the regulation of cell iden-
tity genes is not known.

In this study, we separate CSEs from OSEs based on the
colocalization of CTCF-binding sites with H3K27ac signals
in CSEs. Our results suggest that CTCF contributes to the acti-

vation of CSE genes in cell types that require the activation to
define their specific lineage. These same CSE genes are
repressed in other cell types, whose repression also requires
CTCF colocalizing with H3K27me3 signals. Interestingly, only

CSE genes (but not OSE genes) showed significantly higher
H3K27me3 signals in the cell types that required their repres-
sion. This observation is consistent with the notion that cell

identity genes of a different lineage must be epigenetically
repressed in other somatic cell types (Figure 5). In response
to the loss of CTCF function in ESCs, H3K27me3 signals in

ESCs at the CSE genes of somatic cell types were dramatically
reduced but restored after recovery of CTCF function
(Figure 5). Intriguingly, the CTCF-binding sites in ESCs at

somatic cell identity genes were located within their repressive
domains in ESCs. This colocalization was similar to the colo-
calization of CTCF-binding sites with super-enhancers
observed in somatic cell types. These unique CTCF-

associated epigenetic profiles suggested a novel function of
CTCF in epigenetic regulation of transcription.

Recently, many epigenetic regulators have been proven to

interact with CTCF in different biological processes. For
instance, Bromodomain Containing 2 (BRD2) has been
reported to directly interact with CTCF during Th17 cell dif-

ferentiation [51]. This report suggested that CTCF might be
able to regulate enhancer signals by facilitating the binding
of enhancer mediators on the chromatin [52]. Interestingly,
our result indicates that CTCF plays an important role for

the repressive histone modification, H3K27me3. A recent
study has reported that depletion of CTCF does not affect
the spreading of H3K27me3 [53], indicating that CTCF might

affect H3K27me3 modification by a process other than the
spreading. Considering that CTCF has been reported to regu-
late Insulin-like growth factor II (Igf2) expression by direct

interaction with SUZ12 Polycomb Repressive Complex 2 Sub-
unit (Suz12), an important component of Polycomb repressive
complexe 2 (PRC2) [54], it is possible that CTCF may serve as

a landmark to facilitate the localization of epigenetic
regulators.

Interestingly, among the top-ranked feature pairs in H1-
hESC, there are many pairs that are formed by a factor asso-
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ciated with chromatin structure and a factor associated with
histone modification for transcription activation or repression.
For example, we observed the combination of RB Binding

Protein 5 (RBBP5) [55] and RAD21 [32] and the combination
of Lysine-specific Demethylase 4A (KDM4A) [32] and
RAD21. RBBP5 and KDM4A are important regulators of

H3K4me3, and RAD21 is a component of the cohesion com-
plex that regulates chromatin looping. In addition, we further
observed additional combinations that each includes a factor

associated with transcription activation and a factor associated
with transcription repression, such as C-terminal Binding Pro-
tein 2 (CTBP2) [56] and H3K27ac. This kind of combination is
consistent with the concept of bivalent domains in stem cells.

Last but not the least, we found high-score combinations that
each includes a factor of the cohesion complex and a factor
associated with transcription repression, such as the combina-

tion of CTCF and H3K27me3, which we found later is also
very important for the cell identity regulation.

Taken together, through MACMIC analysis, we find that

CTCF plays an important role in the epigenetic regulation of
cell identity. Further analysis suggests that CTCF is important
for the regulation of both enhancer signals and repressive sig-

nals at the CSE genes in a cell-type specific manner. Although
our analysis focused on the colocalization of enhancer signal
with the other chromatin feature, MACMIC analysis has great
potential to identify many other novel biologically significant

colocalizations between chromatin features that have low glo-
bal correlation across the genome. With the increased usage of
sequencing technologies, more potential feature pairs can be

identified. This will provide opportunities in the future to fur-
ther understand the function of chromatin in transcription,
replication, DNA repair, and many other biological processes.
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