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Tet inactivation disrupts YY1 binding and
long-range chromatin interactions during
embryonic heart development
Shaohai Fang1,11, Jia Li1,11, Yang Xiao2,3, Minjung Lee1, Lei Guo1, Wei Han1, Tingting Li1, Matthew C. Hill 4,

Tingting Hong1, William Mo1, Rang Xu5, Ping Zhang5, Fen Wang6, Jiang Chang6, Yubin Zhou 6,7,

Deqiang Sun 1, James F. Martin2,3,4,8 & Yun Huang 1,9,10

Tet-mediated DNA demethylation plays an important role in shaping the epigenetic land-

scape and chromatin accessibility to control gene expression. While several studies

demonstrated pivotal roles of Tet in regulating embryonic development, little is known about

their functions in heart development. Here we analyze DNA methylation and hydro-

xymethylation dynamics during early cardiac development in both human and mice. We find

that cardiac-specific deletion of Tet2 and Tet3 in mice (Tet2/3-DKO) leads to ventricular

non-compaction cardiomyopathy (NCC) with embryonic lethality. Single-cell RNA-seq ana-

lyses reveal a reduction in cardiomyocyte numbers and transcriptional reprogramming in

cardiac tissues upon Tet2/3 depletion. Impaired DNA demethylation and reduced chromatin

accessibility in Tet2/3-DKO mice further compromised Ying-yang1 (YY1) binding to its

genomic targets, and perturbed high-order chromatin organization at key genes involved in

heart development. Our studies provide evidence of the physiological role of Tet in regulating

DNA methylation dynamics and chromatin organization during early heart development.
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The Ten-Eleven Translocation (TET) protein-mediated DNA
modification pathway plays an important role in regulating
DNA methylation and demethylation homeostasis during

development1–3. Deletion of all three TET genes (TET1-3) impairs
differentiation of both human and mouse embryonic stem cells
(ESCs)4,5. Furthermore, Tet-triple deficient mice exhibits devel-
opmental defects at the gastrulation stage2, indicating an indis-
pensable role of Tet enzymes in early embryonic development.
TET belongs to the Fe2+ and 2-oxoglutarate-dependent dioxy-
genase family that successively oxidizes 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC)6–9. 5hmC is one of the most abundant
and relatively stable modifications among all these oxidized forms
of DNA methylation7,8. TET-catalyzed DNA hydroxymethylation
is enriched at enhancer and open chromatin regions during cel-
lular differentiation and embryonic development10–13, thereby
pointing to yet-to-be-clarified functions of Tet/5hmC in chro-
matin biology and gene regulation. Somatic mutations of TET2
are frequently detected in individuals with clonal hematopoiesis,
which are closely associated with high risk of cardiovascular dis-
ease14–16.

Cardiac differentiation during embryonic development is
tightly regulated through precise control over gene expression,
when cells receive a multitude of intracellular and extracellular
cues17. Epigenetic factors, such as DNA modifying enzymes
DNMTs, play indispensable roles in choreographing this exqui-
sitely coordinated process by directly participating in the pro-
gramming of cardiac transcriptional networks, thereby exerting
control over gene expression to orchestrate early heart develop-
ment18–20. Aberrant epigenetic modifications arising from genetic
alterations in these key enzymes and/or environmental risk fac-
tors, such as folate deficiency, may cause developmental defects in
the heart and potentially lead to embryonic lethality in mice, as
well as human cardiomyopathies21–23. A deeper understanding of
epigenetic regulatory mechanisms that modulate cardiac gene
expression is crucial for deciphering the molecular etiology of
congenital heart defects.

In this study, we systematically investigated the DNA methy-
lation and hydroxymethylation dynamics during early cardiac
development in both human and mice. We generated a cardiac-
specific Tet2 and Tet3 double deficient mouse model to investi-
gate the function of Tet-mediated DNA modifications during
early cardiac development. These mice developed non-
compaction cardiomyopathy (NCC) with severe developmental
defects in the ventricular wall. With this disease-relevant in vivo
model, we further unveiled previously-unrecognized roles of Tet-
mediated DNA hydroxymethylation in regulating chromatin
accessibility to facilitate the genomic recruitment of one key
transcription factor, Ying-Yang 1 (YY1). Excitingly, our study
uncovered a crucial role of Tet/5hmC in modulating long-range
chromatin interactions to coordinate higher-order chromatin
organization during embryonic heart development.

Results
Dynamic 5mC and 5hmC changes during heart development.
To evaluate DNA methylation dynamics during mammalian
heart development, we performed whole-genome bisulfite
sequencing (WGBS; for 5mC profiling) and CMS-IP-seq (for
5hmC profiling) in both human and mouse embryonic heart
tissues (Supplementary Table 1). For human heart tissues, we
analyzed DNA methylation and hydroxymethylation at the Car-
negie Stage (CS) 13 and 14, which are analogous to embryonic
day 9.5 (E9.5) to E10.5 of the murine heart developmental
stages24. For mouse hearts, we analyzed DNA methylation
dynamics using WGBS data available in ENCODE25 at different

embryonic developmental stages (E11.5, 12.5, 13.5, 14.5, 15.5,
16.5, P0). We also performed CMS-IP-seq using mouse
embryonic cardiac tissues to compare 5hmC levels at the
E12.5 stage.

We first comprehensively analyzed the DNA methylation
dynamics in mouse hearts since the ENCODE data covered most
of the key cardiac developmental stages. Although the global
DNA methylation levels remained stable during embryonic
development, ranging from 0.736 to 0.755 across all the stages
(Fig. 1a), we were still able to locate 21,467 differentially
methylated regions (DMRs, defined as >20% methylation change,
FDR ≤ 0.05) that covered 105,710 CpG sites from E11.5 to P0
(Fig. 1b, Supplementary Fig. 1A), revealing dynamic changes in
focal rather than global DNA methylation during cardiac
development. Notably, very few DMRs (1%) were commonly
shared among the analyzed developmental stages (Supplementary
Fig. 1B), and the majority of DMRs (~ 99%) were identified at
different genomic regions for each developmental stage. This
finding suggests that the observed focal DNA methylation
changes are stage-specific, rather than occurring at the same
genomic regions, during embryonic heart development. DNA
Genomic Regions Enrichment of Annotations Tool (GREAT)26

analysis on all the identified DMRs further revealed that these
regions are enriched at the cis-regulatory elements of genes
essential for embryonic development and cardiac function, such
as Bmp10 and Tnnt2 (Fig. 1c, d). Among all identified DMRs
between adjacent developmental stages, approximately 66%
(14,155 out of 21,476 DMRs) exhibited a reduction in DNA
methylation when progressing to the next developmental stage
(defined as hypoDMRs; Fig. 1b). Notably, more than 80% of
DMRs were classified as hypoDMRs during the E12.5-to-E13.5 or
E16.5-to-P0 transitions (Fig. 1b), suggesting a pronounced
reduction in local DNA methylation possibly through DNA
demethylation in these development stages.

Since Tet-mediated DNA methylation oxidation, particularly
DNA hydroxymethylation, is a key intermediate step for DNA
demethylation during development, we next measured the global
changes of 5hmC by a dot-blot assay27,28 in murine heart tissues
collected at different developmental stages (E12.5, 14.5, 16.5, 18.5
and P0; Fig. 1e)13,29. We observed a gradual increase of 5hmC
during heart development (Fig. 1e), suggesting that Tet-mediated
DNA hydroxymethylation regulates DNA methylation dynamics
during heart development. Real-time quantitative PCR (qPCR)
also unveiled dynamic changes in Tet expression in cardiac tissues
isolated at these developmental stages (Supplementary Fig. 1C).
Immunohistochemistry (IHC) staining in E12.5 heart tissues
revealed strong signals for 5mC, 5hmC, 5fC, and to a lesser
extent, for 5caC (Supplementary Fig. 1D). In parallel, IHC
analysis of Tet1 and Tet2 at the same developmental stage (E12.5)
confirmed strong Tet1 expression in myocardium; while Tet2
expression was abundantly detected in all three layers of heart
wall, including myocardium, epicardium and endocardium
(Supplementary Fig. 1E). Similarly, we observed strong 5hmC
signals in human embryonic heart tissues at CS12 and 14
(Supplementary Fig. 1F), as well as strong IHC signals for TET1
and TET2 staining across heart tissues (Supplementary Fig. 1G).
Real-time qPCR analysis revealed dynamic changes in the
expression of TET and DNMT family members in the early
stages of human heart development (CS11-14) (Supplementary
Fig. 1H). The lack of Tet3 IHC analysis is due to the unavailability
of a reliable Tet3 antibody tailored for IHC analysis.

To directly investigate 5hmC distribution, we performed CMS-
IP-seq for genome-wide 5hmC profiling on isolated E12.5 mouse
embryonic hearts. We observed strong 5hmC enrichment at
identified DMRs (Fig. 1b) during heart development, with higher
enrichment of 5hmC at hypoDMRs than at hyperDMRs
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(hyperDMR defined as DMRs with significant increase of 5mC
signal when transitioning into the next developmental stage;
Fig. 1f). We further analyzed DNA methylation and 5hmC
enrichment in human embryonic heart tissues at CS13 and 14.
We noticed a pronounced increase of 5hmC during the CS13-to-
CS14 transition (Fig. 1g, Supplementary Fig. 2A), coinciding with
the strong induction of TET2 and TET3 expression at CS14
(Supplementary Fig. 1F). GREAT analysis implied that the
genomic regions displaying significant differential DNA

hydroxymethylation (designated DHMRs for differential hydro-
xymethylated regions) between the CS13 and CS14 stages are
closely associated with human embryonic and cardiac develop-
ment (Supplementary Fig. 2B). For example, we observed an
increase of 5hmC at proximal regions to NOTCH and NKX2.5,
two genes that are essential for normal heart development
(Supplementary Fig. 2C). Consistent with murine DNA methyla-
tion analysis, we did not detect significant global DNA
methylation changes between the CS13 to CS14 developmental
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stages of human heart (Supplementary Fig. 2D). We detected 324
and 182 hypo- and hyper-DMRs, respectively, in the CS13-to-
CS14 transition (Supplementary Fig. 2E), suggesting focal DNA
methylation dynamics during human heart development.
Furthermore, most genomic regions displaying increased DNA
hydroxymethylation (hyperDHMRs) exhibited reduction in DNA
methylation (Supplementary Fig. 2F), suggesting 5hmC-mediated
focal DNA demethylation during the CS13-to-CS14 transition.
Taken together, our epigenomic analyses validated that focal 5mC
changes, arising from altered DNA hydroxymethylation, are
closely associated with murine and human heart development.

Cardiac Tet2/3 loss causes non-compaction cardiomyopathy.
To elucidate the function of Tet-mediated DNA methylation
oxidation during heart development, we generated a cardiac
tissue-specific Tet-deficient mouse model. Earlier studies have
shown that Tet1 and Tet2 individual knockout mice display no
overt cardiac phenotypes30–34. Meanwhile, germline knockout of
Tet3 resulted in embryonic lethality, preventing systematic studies
on cardiac development3. To circumvent these limitations, we
first crossed mice bearing a conditional Tet3flox/flox allele1 with
the cardiomyocyte (CM) progenitor driver line, Nkx2.5-Cre35, to
yield cardiac-specific deletion of Tet3. Next, we crossed Tet3flox/
flox;Nkx2.5-Cre mice with Tet2KO mice to disrupt both Tet2 and
Tet3 genes in CM progenitors (abbreviated as Tet2/3-DKO;
Supplementary Fig. 3A, B). While the heterozygous mice are
viable and showed no obvious cardiac phenotypes, homozygous
mice were embryonically lethal (Fig. 2a). We collected embryos at
developmental stages starting from E12.5 for further analyses. No
appreciable morphological abnormalities were observed in Tet2/
3-DKO embryos at E12.5 and E15.5, although some Tet2/3-DKO
embryos had evidence of hemorrhage (Supplementary Fig. 3C).
After histological analysis on embryonic hearts collected at E12.5,
13.5, 14.5 and 15.5, we found that Tet2/3-DKO embryos dis-
played severe cardiac developmental defects, including ventricular
septal defect (VSD) and double outlet right ventricle (DORV)
(Supplementary Fig. 3D). Tet2/3-DKO hearts showed abnormal
ventricular chamber development starting from E13.5 (Fig. 2b).
Specifically, Tet2/3-DKO hearts had ventricular non-compaction
cardiomyopathy (NCC) phenotype, as evidenced by significantly
reduced ventricular wall thickness and increased trabecular areas
compared to controls (Fig. 2b, Supplementary Fig. 3D, E).

Next, we performed real-time qPCR to examine the expression
of Nppa and Hey2, previously known to be implicated in
ventricular NCC, in Tet2/3-DKO hearts (Fig. 2c). We detected a
significant decrease of Nppa and Hey2 expression in Tet2/3-DKO,
thus validating the NCC phenotype at the molecular level.
Because ventricular NCC has been shown to arise from defects in
CM proliferation and/or increased cellular apoptosis36, we further
performed immunofluorescent (IF) staining with cellular pro-
liferation and apoptotic markers in WT and Tet2/3-DKO E12.5

hearts. We observed a significant reduction in the staining signals
for the cellular proliferation marker Ki67 (Fig. 2d). With regard to
cleaved caspase-3 as apoptotic marker, we failed to detect
meaningful signals in E12.5 control and Tet2/3-DKO heart tissue
(Supplementary Fig. 3G). Together, these results clearly estab-
lished the physiological roles of Tet2 and Tet3 in mediating
ventricular chamber development.

Tet2/3 regulate cardiac-specific transcription. We next per-
formed transcriptomic profiling, with RNA-seq, in cardiac tissues
collected from E12.5 and E15.5 embryos (Supplementary Table 1,
Supplementary Fig. 4A). We identified a total of 2,101 differen-
tially expressed genes (DEGs), with 1,268 down-regulated and
833 up-regulated, respectively, in Tet2/3 DKO samples collected
at E12.5 embryos compared with controls (Fig. 3a). In parallel, we
identified 374 up-regulated and 440 down-regulated genes in
E15.5 embryonic hearts (Fig. 3a). Gene ontology (GO) analysis on
these DEGs revealed the involvement of key signaling pathways
(e.g., Notch and Bmp related signaling) that are known to be
crucial for ventricular chamber development (Fig. 3b, Supple-
mentary Fig. 4B-D)37,38. Furthermore, key genes involved in CM
development (such as Nppa, Tnnt2, and Myh6) showed altered
expression in the Tet2/3-DKO group (Supplementary Fig. 4B–D).
These unbiased transcriptomic and bioinformatic analysis data
provided further evidence to support a critical role of Tet2/3 in
embryonic heart development.

To further examine the function of these Tet2/3-regulated
DEGs identified from RNA-seq analysis, we sorted DEGs
implicated in cardiac development based on GO analysis (Fig. 3c,
left). Then we analyzed the expression levels of these genes using
ENCODE RNA-seq data collected from mouse embryonic hearts
at different developmental stages (E10.5 to P0; Fig. 3c, right).
Interestingly, we found that the expression levels of these genes
underwent gradual changes during heart development, suggesting
that these Tet2/3-regulated genes are tightly and temporally
controlled at different embryonic stages. For example, the
expression levels of Myl2, Tnnt2 and Nppa gradually increased
during normal heart development based on ENCODE RNA-seq
data; however, the expression of these genes were significantly
decreased in Tet2/3-DKO heart tissue (Supplementary Fig. 4E),
suggesting that deletion of Tet proteins disrupts the precise
transcriptional regulation of these key genes to impair cardiac
development.

scRNA-seq analysis in cardiac-specific Tet2/3 deficient mice.
The above RNA-seq analyses were performed in bulk embryonic
heart tissues collected at E12.5 and E15.5 that contain multiple
cell types, including myocardium, epicardium, endocardium,
fibroblasts and other non-heart tissue cells (e.g., hematopoietic
cells). To avoid potentially biased results due to changes in cell
types upon Tet2/3 knockout, we carried out single-cell RNA-seq

Fig. 1 Dynamic changes of DNA methylation and hydroxymethylation during embryonic heart development in mouse and human. a Quantification of global
average DNA methylation levels (quantified as mean (mCG+ hmCG)/CG) during mouse heart development (E11.5 to P0) based on WGBS data from
ENCODE. b Numbers of differentially methylated regions (DMRs) that show increased (defined as hyperDMRs) or reduced DNA methylation (hypoDMRs)
when mouse embryonic hearts progress into the next developmental stage. c GREAT analysis on hyperDMRs and hypoDMRs shown in Fig. 1b revealed
representative terms associated with embryonic development and cardiac functions. Corrected binomial raw p-value were calculated. d Representative
genome browser views illustrating the focal DNA methylation (WGBS; blue) and H3K27ac (red) dynamics at genomic regions surrounding Bmp10 and
Tnnt2 during cardiac development in mouse embryos (E10.5 to P0). e (Left) Global 5hmC levels in mouse heart tissues collected at five embryonic stages
(E12.5, 14.5, 16.5, 18.5, and P0) measured by the dot-blot assay. Methylene blue was used as loading control for the total DNA input. (Right) Quantification
of dot-blot assay. Data were shown as mean ± S.D; n= 3 independent experiments. *p < 0.05, compared with E12.5 (two-tailed Student’s t-test were used).
f 5hmC enrichment signals of control E12.5 heart tissues within hypoDMRs (two repeated samples; red and pink) and hyperDMRs (two repeated samples;
blue and cyan) identified from Fig. 1b. Random genomic regions (gray) were used as control. g The Volcano plot of differentially enriched 5hmC regions
(DHMRs; CS13 vs CS14) in human embryonic hearts
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(scRNA-seq) on control and Tet2/3-DKO E12.5 and E15.5 hearts
(Supplementary Table 1 and 3). Consistent with our histological
analysis data (Fig. 2c), we observed minor differences in the cell
types in E12.5 hearts between control and Tet2/3-DKO embryos.
However, we noticed a massive reduction of the CMs (from
32.9% to 6.8%) in the Tet2/3-DKO group at E15.5 (Fig. 3d,
Supplementary Fig. 4F-G). Furthermore, consistent with our real-
time qPCR analysis and bulk RNA-seq data described above
(Figs 2d and 3a), key genes involved in ventricular compaction,

such as Nppa and Hey2, were significantly down-regulated in
E15.5 Tet2/3-DKO CMs when compared to controls (Fig. 3e).
Furthermore, genes essential for cardiac development, such as
Tbx20, Ttn and Gja1, were significantly down-regulated in Tet2/
3-DKO E15.5 CMs (Fig. 3e).

Since the CMs is mostly affected at the E15.5 stage, we then
performed cluster analysis in E12.5 and E15.5 heart tissues from
both control and Tet2/3-DKO mice using the MAGIC algo-
rithm39. In the CMs marked by Ttn, we found that Tet2/3
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depletion led to substantial changes in the distribution patterns of
principal components at E15.5 (Fig. 3f), but not at E12.5
(Supplementary Fig. 4H). Tet2/3-DKO CMs are clustered at
Ttn-low expressed cells compared with control in E15.5 stage
(Fig. 3f). Next, we performed further analyses on CMs based on
the expression levels of two well-known cardiac chamber
development-related genes Tbx20 and Hey2, and found a positive
correlation between the expression levels of these two genes in
normal E15.5 CMs (Fig. 3g), implying that the abundancy of the
expression of Tbx20/Hey2 might be correlated with the matura-
tion status of CMs. By contrast, E15.5 CMs collected from Tet2/3-
DKO embryos were all clustered into a prominent Tbx20lo-
wHey2lowTtnlow population (Fig. 3g), suggesting that cardiac-
specific Tet2/3 deletion might block CMs maturation during
embryonic development. Together, these data indicated that Tet2
and Tet3 are essential for regulating the expression of genes that
are critical for ventricular maturation.

Global decrease of 5hmC in Tet2/3-deficient embryonic heart.
We next monitored the global changes of 5hmC in E12.5 Tet2/3-
DKO heart tissues by immunofluorescent (IF) staining and the
dot-blot assay (Fig. 4a, b). Both methods confirmed a substantial
decrease of 5hmC in Tet2/3-DKO heart tissues when compared
to the control group. The residual 5hmC signals could be ascribed
to the existence of Tet1 or cell types other than CMs. To further
delineate the function of 5hmC in regulating cardiac-specific gene
expression, we performed CMS-IP-seq40,41 to profile genome-
wide 5hmC levels in E12.5 heart tissues (Supplementary Table 1,
Supplementary Fig. 5A-B). Consistent with the IF and dot-blot
results, we observed a global decrease of 5hmC in Tet2/3-DKO
samples (Fig. 4c, Supplementary Fig. 5B). Among 9,559 identified
DHMRs between the control and Tet2/3-DKO groups, we
detected 8,846 genomic regions with reduced hydroxymethylation
(defined as hypoDHMRs) and only 713 regions with increased
DNA hydroxymethylation (designated hyperDHMRs) in Tet2/3-
KO heart tissues (Fig. 4c). GREAT analysis revealed that
hypoDHMRs were primarily enriched at distal regulatory regions
of genes, many of which are known to be important for heart
development (e.g., genes involved in Notch pathways) (Fig. 4d).
Next, to assess the potential biological functions correlated with
DHMRs, we further analyzed histone enrichment and DNA
methylation levels within the identified DHMRs using the
ENCODE data from E12.5 murine heart tissues. We found that
DNA methylation levels at these Tet2/3-regulated hypoDHMRs
were relatively low (with median DNA methylation level at 0.30)
(Supplementary Fig. 5C). Furthermore, these regions were highly
enriched with H3K4me1 and H3K27Ac, which are usually
marked at enhancers (Fig. 4e, Supplementary Fig. 5D). By con-
trast, the average DNA methylation of hyperDHMRs were rela-
tively high with a median level at 0.88 (Supplementary Fig. 5C),
accompanied by moderate enrichment of H3K36me3 but no

other histone marks (Fig. 4e, Supplementary Fig. 5D). Notably,
DNA methylation levels at hypoDHMRs were found to undergo
larger fluctuations than hyperDMRs (Supplementary Fig. 5E)
during cardiac development. In summary, our unbiased epige-
nomic analyses suggested that Tet2/3-mediated DNA hydro-
xymethylation reshapes the epigenetic status of genomic regions
that are important for transcriptional regulation during heart
development.

Next, we aimed to address whether Tet/5hmC loss alters the
DNA methylation during cardiac development. We measured
DNA methylation in Tet2/3-DKO heart tissues collected at E12.5
using whole genome-wide bisulfite sequencing (WGBS) analysis
(~30× coverage of CpGs). In parallel, we compared our own Tet2/
3-KO WGBS data with ENCODE WGBS data collected with
E12.5 WT heart tissues. We noted a slight increase of the average
DNA methylation level (mCG+ hmC/CG) in the DKO group
(Fig. 4f, Supplementary Fig. 5F). We next compared the DNA
methylation levels at each CpG sites between the control and
Tet2/3-DKO groups. We identified 13,377 and 27,880 hyper- or
hypo-differentially methylated regions (DMRs) in the Tet2/3-
DKO group (Supplementary Fig. 5G). GREAT analysis showed
that hyper-DMRs are enriched at genes closely associated with
heart function (Fig. 4g). We further analyzed DNA methylation
within identified hypoDHMRs and observed that the majority of
hypoDHMRs displayed increased DNA methylation (Fig. 4h,
Supplementary Fig. 5H), suggesting that Tet-mediated DNA
hydroxymethylation indeed mediates DNA demethylation during
cardiac development. In addition, we observed a number of hypo-
DMRs in Tet2/3-DKO heart tissue (Supplementary Fig. 5G)
which might be due to the cross-talk between Tet proteins and
Dnmt families42. Unlike hyper-DMRs, the function of these
hypo-DMRs are not clear: they are not associated with genes
involved in regulating cardiac function (Supplementary Fig. 5I)
and are not co-enriched with histone modifications (Supplemen-
tary Fig. 5J). Further studies are needed to clarify the regulation
and function of hypo-DMRs in the Tet2/3-DKO group.

In addition, we compared the alterations in DNA methylation
or hydroxymethylation with changes in gene expression between
WT and Tet2/3-DKO heart tissues collected from E12.5 embryos.
A significant fraction of DEGs displayed increased DNA
methylation (43.1%) and decreased hydroxymethylation (39.8%)
in the Tet2/3-DKO group, respectively (Supplementary Fig. 5K).
These results suggest that DNA methylation and hydroxymethy-
lation at least partially contributed to transcriptional regulation
during early heart development.

5hmC loss perturbs YY1 binding and chromatin accessibility.
Tet-mediated DNA hydroxymethylation has been correlated with
chromatin accessibility10–12. This prompted us to examine the
genome-wide changes of chromatin accessibility by using ATAC-
seq (Supplementary Table 1, Supplementary Fig. 6A, B) in Tet2/
3-DKO embryonic heart. Upon Tet2/3 deletion, a total of 2816

Fig. 2 Cardiac-specific deletion of Tet2 and Tet3 resulted in developmental defects in the ventricular chamber. a Genotyping analysis from Tet2−/−Tet3flox/
flox and Tet2+/−Tet3flox/flox;Nkx2.5-Cre interbreedings. *p < 0.05, **p < 0.01 (chi-squared test were used). b (Top) Representative H&E staining images of
embryonic heart tissues (×4) collected at E12.5, 13.5, 14.5, and 15.5 stages from control and Tet2/3-DKO mice. (Bottom) Quantifications were performed
by using the Image J software. Data were shown as mean ± S.D; n= 36 sections from 3 independent experiments. **p < 0.01 compared to control (two-
tailed Student’s t-test were used). Scale bar: 300 µm. c Real-time qPCR to quantify the expression of Nppa and Hey2 in control and Tet2/3-DKO embryonic
heart tissues collected at E12.5. Data were shown as mean ± S.D; n= 3 independent experiments. **p < 0.01 (two-tailed Student’s t-test were used).
d (Left) Representative fluorescent imaging of embryonic heart tissues collected from E12.5 of control (top) or Tet2/3-DKO mice (bottom). DAPI (blue)
was used for nuclear staining; Ki67 (red) was used as a proliferation marker; and cTnT (yellow) was used as the staining marker for cardiomyocytes. Cells
demarcated within the white dashed lines are blood cells. (Right) Quantifications of the percentage of cardiomyocytes with positive Ki67 staining. Data
were shown as mean ± S.D; n= 4 independent experiments (a total of 525 and 568 cardiomyocytes were quantified from control and Tet2/3-DKO
embryos, respectively). *p < 0.05 compared to control (two-tailed Student’s t-test were used). Scale bar: 50 µm
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and 960 genomic regions displayed reduced and increased
chromatin accessibility, respectively (Fig. 5a). Interestingly, we
observed a strong positive correlation between 5hmC and chro-
matin accessible regions in both control and Tet2/3-DKO heart
tissues (Pearson correlation coefficient of 0.85; Fig. 5b). More
than 61% of ATAC-seq peaks overlapped with 5hmC-enriched

regions (Supplementary Fig. 6C). Subsequently, we selected
genomic regions displaying altered 5hmC levels or chromatin
accessibility in the Tet2/3-DKO group and found that 68.4% of
selected regions showed simultaneous reduction in 5hmC and
chromatin accessibility (Fig. 5c, Supplementary Fig. 6D). GREAT
analysis revealed that these overlapping regions were mostly
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enriched at distal regulatory regions of genes important for heart
development (e.g., Mly2, Tnnt2, and Ttn; Supplementary Fig. 6E).
Motif analysis further identified the enrichment of transcription
factors (TFs) binding motifs for key cardiac development genes,
such as Mef2C, Gata4 and Nkx2.5 (Supplementary Fig. 6F),
within these genomic regions. We next examined the effects of
decreased 5hmC and ATAC on transcription level and observed
positive correlation between gene expression and 5hmC/ATAC-
seq signals. For instance, we observed a strong association
between reduced expression of cardiac development genes (e.g.,
Nppa, Tnni2, and Bmp10) and reduced 5hmC/ATAC-seq signals
within 2 kb of transcription start sites (TSS) at corresponding
genes (Fig. 5d, e, Supplementary Fig. 6G). Taken together, these
data suggest that cardiac specific deletion of Tet proteins induced
5hmC loss and caused a reduction in chromatin accessibility to
alter cardiac gene expression.

Based on the data described above, we hypothesized that Tet
deletion reduces 5hmC and chromatin accessibility, and subse-
quently affects key TF binding to their genomic targets in
embryonic hearts. GREAT analysis on ATAC-seq data from
control and Tet2/3-DKO heart tissues pointed to YY1 as the top
candidate, which showed strong enrichment in genomic regions
displaying reduced chromatin accessibility in the Tet2/3-DKO
group (Fig. 5f). YY1, a member of the Gli-Kruppel family of zinc
finger protein, is an important transcription factor regulating
early heart development43. To test this hypothesis, we generated
Tet triple knockout mouse embryonic stem cells (Tet-TKO
mESC) by using the CRISPR/Cas9-based genome editing tool as
previously reported44 (Supplementary Fig. 7A–C). Since Tet-
TKO mESC has an undetectable 5hmC level (Supplementary
Fig. 7B), it provides a clean system to elucidate the impact of
5hmC on TF binding to chromatin. Next, we measured the
chromatin association of YY1 in WT and Tet-TKO mESCs. We
observed a significant decrease in chromatin associated YY1 in
Tet-TKO mESCs compared with parental WT mESCs (Fig. 6a,
Supplementary Fig. 8A).

To further examine the correlation between 5hmC and YY1,
we applied the CUT&RUN (C&R) method45 to enrich YY1
genomic binding regions in WT and Tet-TKO mESCs. We first
compared YY1 enriched regions obtained from the C&R method
with published YY1 ChIP-seq data in mESCs46 and observed a
similar pattern between these two datasets (Supplementary
Table 1, Supplementary Fig. 8B, C), revealing the robustness of
the YY1 C&R data. Then we examined the correlation between
YY1 and 5hmC in parental WT mESCs. We observed a strong
5hmC enrichment with concomitant depletion of 5mC signals at
YY1 enriched regions (Fig. 6b). About 16% of YY1-enriched
peaks (n= 10,450) overlapped with 5hmC enriched regions
(Fig. 6c). To further examine the impact of Tet/5hmC loss on

YY1 genomic distribution, we compared YY1 enriched regions
between the WT and Tet-TKO groups and noted that 73% of YY1
peaks showed less enrichment in Tet-TKO mESCs (Fig. 6d, e,
Supplementary Fig. 8D-E), particularly at genomic regions that
displayed 5hmC reduction upon Tet deletion (Supplementary
Fig. 8F). We also observed increased DNA methylation within
YY1 binding regions in Tet-TKO mESCs (Fig. 6f). To further
validate this in a physiologically-relevant context, we performed
YY1 C&R in heart tissues collected from E12.5 control and Tet2/
3-DKO mice. Due to the limited cell numbers in the tissue, we
identified slightly lower numbers (n= 11,469) of high-confident
YY1-enriched regions when compared with the YY1 peak
numbers in mESCs (n= 15,055). Using these high confident
YY1 enriched peaks, we found a strong reduction of YY1
enrichment in Tet2/3-DKO heart tissues (Fig. 6g, Supplementary
Fig. 8G), which is consistent with results made from the mESC
study (Fig. 6d, e). Likewise, we observed increased DNA
methylation and reduced 5hmC enrichment within YY1-
enriched regions in the Tet2/3-DKO group (Supplementary
Fig. 8H, I). To further examine the impact of chromatin
accessibility on YY1 binding, we compared YY1 enriched regions
with ATAC-seq signals in both the control and Tet2/3-DKO
groups. We noted a strong reduction of YY1 enrichment at
genomic regions with reduced chromatin accessibility measured
by ATAC-seq (Fig. 6h). These data further confirmed that Tet
and 5hmC regulate chromatin accessibility to facilitate the
binding of proper TFs, such as YY1, to their targets.

5hmC loss disrupts higher-order chromatin structures. YY1 is
known to regulate chromatin higher-order structures by con-
trolling promoter-enhancer looping47. In addition, together with
others, we have reported that 5hmC is enriched at euchroma-
tin11–13. Chromatin is known to be spatially categorized into two
types of large compartments, A and B, that exhibit either open
chromatin domain (A) or closed chromatin domain (B)48. To
examine whether Tet mediated DNA hydroxymethylation is
associated with the organization of chromatin higher-order
structures, we performed HiChIP experiment in control and
Tet2/3-DKO E12.5 heart tissues using an anti-smc1 antibody49

(Supplementary Table 1, Supplementary Fig. 9A, B). Interestingly,
we observed a strong enrichment of 5hmC in compartment A,
but not in compartment B (Fig. 7a, Supplementary Fig. 9C),
suggesting that 5hmC tends to mark transcription active regions.
Then we compared three-dimensional chromatin interaction
patterns between control and Tet2/3-DKO heart tissues. In gen-
eral, the compartment organization between control and Tet2/3-
DKO hearts showed very similar patterns (R= 0.93; Fig. 7b).
However, we observed 1424 bins (50 kb resolution) switching

Fig. 3 Transcriptomic analyses on control and Tet2/3-DKO embryonic heart tissues. a Scatter plot of the RNA-seq expression data to identify differentially
expressed genes (DEGs) in embryonic heart tissues between the control and Tet2/3-DKO groups at the E12.5 (left) or E15.5 (right) developmental stages.
DEGs were defined as q-value <= 0.05. Red and blue dots stand for up- and down-regulated genes, respectively, in the Tet2/3-DKO group when
compared to control. b GSEA analysis of DEGs identified between control and Tet2/3-DKO embryonic heart tissues collected at E12.5 (top) and E15.5
(bottom). Benjamini–Hochberg corrected hypergeometric p-value were used. c (Left) Heatmap presentation of the cardiac development-associated DEGs
in control and Tet2/3-DKO heart tissue collected at E12.5. (Right) Heatmap presentation of expression data for the same group of cardiac development-
associated DEGs in embryonic heart tissues collected at different developmental stages (E10.5 to P0). RNA-seq data were obtained from ENCODE.
d Percentages of cell types in E12.5 and E15.5 heart tissues collected from control and Tet2/3-DKO mice using single-cell RNA-seq (scRNA-seq) analysis.
Numbers listed above each bar represent the total analyzed cell numbers. e Violin plot showing the distribution of normalized expression levels of selected
DEGs at E12.5 and E15.5 heart tissues collected from the control and Tet2/3-DKO groups. CMs were selected based on the expression of cTnT in each cell.
Each dot represents the expression levels of corresponding genes in single cells. f The 3D PCA plots (top) and Ttn expression levels (bottom) of individual
cardiomyocytes based on scRNA-seq data in the E15.5 control (red) and Tet2/3-DKO (blue) groups. g Selected Ttn-expressing CMs from E15.5 control
(red) and Tet2/3-DKO (blue) were displayed based on the expression levels of Hey2 and Tbx20 (left). The expression of Ttn in the corresponding cells
were shown in the right panel
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from compartment A to B upon Tet2/3 depletion in heart tissues
(Fig. 7b). Next, we evaluated the expression levels of genes that
fell into the A-to-B compartment switch category. We identified
250 down-regulated genes, with many of them known to be
important for heart development, such as Ttn, Cav1, Bmp5, and
Actc1 (Fig. 7c); Go Ontology (GO) analysis showed that these
genes are important for maintaining normal heart function or are
closely implicated in cardiomyopathies (Fig. 7d).

Next, we calculated unique paired-ended tags (PETs) using the
Fit-HiC pipeline50 to identify the long-distance contacts in E12.5
heart tissues. We identified 475,630 and 347,816 confident

contacts in control and Tet2/3-DKO heart tissues, respectively
(Fig. 7e). We also observed strong positive association among
PETs, 5hmC enriched regions and chromatin accessible regions
(Supplementary Fig. 9D). We further moved on to examine the
potential impact of altered contacts on gene transcription by
counting PETs at DEGs identified between the control and Tet2/
3-DKO groups. We noticed that 60% (n= 979) of DEGs with
mapped PETs exhibited reduced long distance contacts in the
Tet2/3-DKO group (Fig. 7f). For example, at the Tbx20 and Hey2
loci, two genes which displayed significant downregulation upon
Tet deletion in scRNA-seq analysis, we detected a pronounced
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Fig. 4 Tet2/3 deletion in embryonic heart resulted impaired 5hmC but not 5mC. a (Left) Representative IF staining images for control and Tet2/3-DKO
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raw p-value were calculated. h Scatterplot of the average DNA methylation levels within hypoDHMRs in E12.5 control and Tet2/3-DKO heart tissues
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decrease of promoter-enhancer interactions in the Tet2/3-DKO
group compared to the control group (Fig. 7f, g). In parallel, we
noted a concomitant reduction in 5hmC and ATAC-seq signal
enrichment in the Tet2/3-DKO group within these two loci
(Fig. 7g, Supplementary Fig. 9E). To further evaluate the impact
of Tet/5hmC in regulating YY1 binding during the long-distance
interaction, we compared Hi-ChIP signals between WT and Tet-
TKO mESCs (Supplementary Fig. 9F, G). We observed a strong
reduction of PETs at YY1 enriched regions in Tet-TKO mESCs
compared to the parental WT ESCs (Supplementary Fig. 9G). In
parallel, we carried out a functional rescue experiment by
expressing the catalytic domain of Tet1 (Tet1CD) in WT or
Tet-TKO mESCs. The expression of Tet1CD and subsequent
increase of 5hmC in the Tet-TKO mESCs were confirmed by
Western blotting (Supplementary Fig. 9H) and the 5hmC dot-
blot assay (Supplementary Fig. 9I). Next, YY1 ChIP-qPCR and
4C-seq were performed at selected genomic regions to examine

YY1 binding and the chromatin looping status before and after
Tet1CD re-expression (Fig. 8a, b). We selected the Mpdu1 locus
because it was among the top ranked genomic regions with
decreased YY1 binding and chromatin looping upon Tet
depletion. We found that Tet1CD expression in Tet-TKO mESCs
significantly restored YY1 binding (Fig. 8a) and chromatin
looping (Fig. 8b) at the Mpdu1 locus, suggesting the involvement
of Tet/5hmC in regulating YY1-associated long-range chromatin
interactions in the genome. Together, these findings establish that
Tet proteins modulate the formation of YY1-associated promote-
enhancer looping and use this mechanism to regulate gene
transcription.

Discussion
Abnormal DNA methylation has been reported in multiple
congenital heart diseases, suggesting that dynamic DNA
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methylation is one of the important epigenetic events controlling
heart development and cardiac functions19–21. In the current
study, we have systematically analyzed DNA methylation and
hydroxymethylation dynamics during embryonic heart develop-
ment in both human and rodents. Our integrative studies have
unveiled dynamic focal DNA methylation changes, driven by

TET-mediated DNA hydroxymethylation, at genes essential for
cardiac development.

The TET protein family is one of the major regulators con-
trolling DNA methylation oxidation. The current study is pri-
marily focused on studying Tet2 and Tet3 given their relatively
higher expression in embryonic cardiac tissues. Cardiac specific
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(E12.5). d Representative GSEA analysis of genes located in genomic regions that showed A-to-B compartment switch in Tet2/3-DKO embryonic heart
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deletion of Tet2 and Tet3 using Nkx2.5-Cre resulted in ven-
tricular non-compaction cardiomyopathy in mice, clearly attest-
ing to the indispensable roles of these two epigenetic modifiers in
normal heart development. At the molecular level, deletion of
Tet2/3 prominently impaired DNA methylation/hydro-
xymethylation in heart tissues and altered the transcription of
cardiac development associated pathways, such as Notch signal-
ing. Mechanistically, we propose that changes in chromatin
accessibility, attributed to compromised DNA hydroxymethyla-
tion, sabotage the binding of key cardiac development-associated
TFs, as exemplified by YY1 (Fig. 8c), to their targets across the
genome. YY1 is a key mediator of embryonic heart development
by facilitating GATA4 mediated transcriptional activation and
promoting cardiac progenitor cell commitment43,51. Interestingly,
cardiac-specific YY1 knockout mice (YY1f/f-Nkx2.5Cre) dis-
played very similar phenotypes as Tet2/3-DKO mice generated in
the current study, with both in vivo models showing reduced
embryo survival at E13.5 and decreased proliferation of CMs
(with similar non-compaction cardiomyopathy manifestations)52.
These findings strongly suggest that Tet proteins and YY1 might
converge to regulate the similar transcription regulatory pathways
during embryonic cardiac development. Although we presented
evidence to support the notion that Tet deletion results in

reduced chromatin binding of YY1 because of altered chromatin
accessibility, we cannot rule out the possibility that the binding of
YY1 to the genome is directly dependent on Tet and /or DNA
hydroxymethylation modifications. Further follow-on studies are
needed to clarify this point.

Although we observed a positive correlation between YY1
binding and Tet-mediated DNA hydroxymethylation, a sub-
stantial number of 5hmC- or YY1-enriched regions do not
overlap with each other, indicating that 5hmC might not be the
only factor to regulate YY1 genomic binding. YY1 has been
reported to interact with several other epigenetic regulators,
such as HDACs, p300 and INO80, to enhance or repress gene
transcription53. In parallel, Tet and 5hmC might further be
implicated in other transcriptional regulatory pathways during
embryonic development. For example, Tet-mediated DNA
demethylation has been reported to control the lefty-nodal
signaling during mouse gastrulation2 and enhancer activities
in the vertebrate phylotypic period11. Moreover, Tet1 and
Tet3 deficiency has been shown to promote transcription
variations during embryogenesis1. Tet1 further regulates the
activity of JMJD8 to suppress epiblast target genes in post-
implantation mouse embryos54. A complete picture of the
context-dependent YY1/TET/5hmC genomic distribution and
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Fig. 8 Re-expressing Tet1CD partially restores the YY1 mediated enhancer-promoter interactions. a ChIP-qPCR analysis of YY1 binding at the Mpdu1 locus
in TKO mESCs and TKO mESCs after expression of Tet1CD. Data were shown as mean ± S.D; n= 2 independent experiments. **p < 0.005 (two-tailed
Student’s t-test were used). b Representative 4C-seq signals in WT (black), TKO (red) and TKO+ Tet1CD (blue) mESCs at the Mpdu1 locus. The line
indicates the normalized 4C-seq signals (calculated by Basic4C-seq R package using two biological replicates) and the shaded areas represent the 95%
confidence interval. The quantification of 4 C signals at red highlighted regions were shown in the right panel. Blue: relative fold-change of 4 C enrichment
between TKO andWT (TKO/WT); Red: relative fold-change of 4C enrichment between TKO+ Tet1CD andWT (TKO+ Tet1CD/WT). All the experiments
were performed with biological duplicates. Kolmogorov–Smirnov test were used to calculate p-value. c Tet protein mediated DNA hydroxymethylation
regulates chromatin accessibility and subsequently safeguards the binding of key cardiac development-associated transcription factors, such as YY1, to
their target regions in the genome to maintain proper long distance interactions (enhancer-promoter looping). Deletion of Tet protein, with consequent
5hmC loss, could reduce chromatin accessibility to compromise YY1 binding to its genomic targets, thereby affecting long distance interactions to perturb
the transcriptional networks underlying normal cardiac development
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transcriptional regulation during early embryogenesis is yet to
be fully established.

In summary, our integrative genomic and epigenomic analyses
have yielded a complete atlas of DNA methylomes and hydro-
xymethylomes representative of key developmental stages of
embryonic hearts in both humans and rodents. The epigenetic
landscapes depicted in our study can serve as a useful blueprint
and starting point towards the full comprehension of cardiac
epigenetics during early embryogenesis. Our study has uncovered
previously unrecognized roles of Tet and 5hmC in gene
regulation by modulating transcription factor binding and long-
distance interactions at cardiac-specific genomic loci. In addition
to Tet2 and Tet3, we also observed dynamic changes of Tet1
expression during heart development in both human and rodents.
We cannot rule out the possibility that Tet1 is also an important
contributor to embryonic heart development. Nonetheless, no
heart-related phenotypes have thus far been reported upon Tet1
deletion in transgenic mice, probably due to the redundant
functions of Tet homologs (Tet2 and Tet3). Further studies on a
cardiac-specific Tet triple knockout mouse model might address
the additional function of Tet1 during embryonic heart devel-
opment. Although the current study exclusively focused on dis-
secting cell-autonomous mechanisms on how Tet protein might
regulate the transcription of key genes involved in early cardio-
myocytes development, we cannot rule out the possibility of cell
non-autonomous mechanisms (such as how Tet deficiency in
epicardium affect cardiomyocytes development) underlying this
phenotype, which will be pursued in the follow-on studies.

Methods
Animal models. Animal studies were approved by the Institutional Animal Care
Use Committee (IACUC) of the Institute of Biosciences and Technology, Texas
A&M University. Most mouse strains bear a C57BL/6 genetic background unless
otherwise noted. Tet2[−/−33, Tet3f/f1 and Nkx2.5-Cre (The Jackson Laboratory
024637)55 mouse strains were reported previously. Timed pregnancies were applied
and the day on which a plug was found was defined as E0.5. Mice tails were cut and
boiled in 50 mM NaOH for 1 h and then neutralized in 10 mM Tris–HCL at pH7.4.
PCR was carried out using the EmeraldAmp GT PCR Master Mix (TaKaRa)
according to the manual. Genotyping primers are listed in Supplementary Table 2.
The uncropped and unprocessed scans of the blots are available in source data file.

Antibodies. For IHC: Tet1 antibody was kindly provided by Dr. Leonhardt
Heinrich56 (1:100). Anti-Tet2 (Abcam ab124297, 1:100), anti-5mC (Millipore
MABE146, 1:1000), anti-5hmC (Active Motif 39769, 1: 40,000), anti-5fC (Active
Motif 61223, 1:2000), and anti-5caC (Active Motif 61225, 1:1000) were purchased
from commercial sources.

For IF: anti-Ki67 (Abcam ab16667, 1:100), anti-cleaved caspase-3 (Cell
Signaling Technologies 9661 s, 1:50); Alexa Fluor 568 goat anti-rabbit (Thermo
Fisher Scientific A-11011, 1:1000), Alexa Fluor 647 goat anti-mouse (Thermo
Fisher Scientific A-21235, 1:1,000)

For CUT&RUN experiments: anti-YY1 (Santa Cruz sc-7341, 1:100), anti-
H3K27ac (Abcam ab4729, 1:100), Rabbit anti-mouse (Abcam ab6728, 1:100), anti-
cTNT (Thermal Fisher Scientific 13-11, 1:100) were purchased.

For HiChIP: anti-Smc1 (A300-055A, Bethyl Laboratories, Inc. 2 µg/reaction)
was used.

For Western Blotting: anti-YY1 (Santa Cruz sc-7341, 1:1000), and anti-H3
(abcam ab1791, 1:2000) antibodies were used.

Human Samples. Human embryos collecting protocol was approved by the Ethical
Internal Review Board of the Xinhua Hospital, Shanghai, China. Human embryos
were collected from pregnant mothers who performed clinical drug abortion at the
Department of Obstetrics and Gynecology in Xinhua Hospital. Consent forms were
signed. The embryonic stages of the embryos were measured by using a standard
protocol reported previously 57.

Histological analyses. All mouse embryos were dissected in phosphates buffered
saline (PBS). Embryos pictures were taken using a Nikon SMZ800N dissecting
microscopy. For histological characterization, all embryos were fixed overnight in
4% PFA, then dehydrated with graded ethanol and embedded in paraffin. Sections
were cut at the thickness of 7 µm. Slides were dried at 37 °C overnight and then
stained with hematoxylin-eosin (H&E), as previously described58,59. Stained sec-
tions were imaged using a Nikon Eclipse Ci microscopy.

ImageJ was used for the measurement and quantification of histological data.
The quantification method was described previously38. Briefly, the ventricle was
divided into the apex and the basal regions and several measurements of the
compact myocardium thickness were taken for each region. The average thickness
was calculated. The trabecular area was measured by dividing the surface occupied
by the trabeculae in the ventricle. The ratio of the trabecular area and compact
myocardium thickness was used as an indicator for the size of the trabecular mesh.

IHC and IF staining. Immunohistochemistry (IHC) and immunofluorescence (IF)
staining were performed, as previously described58,59. Briefly, tissue sections were
dewaxed in xylene twice for 5 min each and rehydrated in a graded series of ethanol
(100 to 70%). The antigens were retrieved by boiling sections in 10 mM citrate
buffer (Vector Laboratories) for 20 min. For DNA modifications staining, sections
were treated with 2 N HCl for 30 min to expose the epitopes and then neutralized
in 100 mM Tris–HCl (pH 8.5) for 10 min. IHC was using the ImmPRES HRP
Reagent Kit (Vector Laboratories) to perform the blocking and antibody incuba-
tion, and then developed by using the DAB peroxidase substrate kit (Vector
Laboratories). IHC stained sections were imaged by a Nikon Eclipse Ci microscopy.
For IF, 10% normal goat serum (Thermo Fisher Scientific) was used to block the
unspecific antigens. After primary and 2nd antibodies incubation, 0.5 µg/ml DAPI
(Thermo Fischer Scientific, D1306) was used to co-stain the nuclei. IF stained
sections were imaged using a Nikon A1 confocal microscope.

mESC culture and the generation Tet-TKO mESCs. mESCs (E14) were cultured
on MEFs in Knock-out Dulbecco’s Modified Eagle’s Medium (Gibco), supple-
mented with 15% fetal bovine serum (Omega), 0.5% penicillin-streptomycin
(Gibco), 0.1 mM non-essential amino acids (Gibco), 0.1 mM 2-mercaptoetanol
(Sigma), and 103 U/mL of leukemia inhibitory factor (Millipore). Tet1/2/3 triple
knock-out mESCs were generated by the CRISPR/Cas9 technology as described
previously44 with slight modifications. Tet1/2/3 sgRNAs were cloned into PX458
(Addgene 48138). Three sgRNAs were transfected simultaneously into mESCs
using the iMfectin DNA transfection reagent (Gendepot). mESCs transfected with
the vector PX458 without sgRNA were used as control. GFP positive cells were
sorted into 96-well plates by flow cytometry and individual colonies were geno-
typed after 7-day culture.

RFLP analysis and amplicon sequencing. RFLP analysis was performed as
described previously44. sgRNAs (Supplementary Table 2) targeted to regions of
Tet1/2/3 were amplified by PCR and 10 µl of products were digested with SacI,
EcoRV or Xhol, respectively. Digested DNA was separated on 2% SYBR Safe
(Gendepot) stained agarose gel. For amplicon sequencing, PCR products were
purified using MinElute PCR purification kit (Qiagen) and libraries generated
using Nextera XT DNA library prep kit (Illumina) according to their manuals.
Libraries were sequenced on Illumina NextSeq 500 system using the NextSeq 500
High Output v2 Kit (Illumina, San Diego, CA) with a customized single end, single
indexing (80/8-bp) format.

Nuclear fractionation and western blot. Nuclear fractionation in mESCs was
performed as described previously60. Briefly, 10 million cells were washed by PBS
and pelleted at 200 g for 2 min. 200 µl buffer A (10 mM HEPES, pH 7.9, 10 mM
KCl, 1.5 mM MgCl2, 0.34M Sucrose, 10% Glycerol, 0.1% Triton X-100, 1 mM
DTT, and protease inhibitor cocktail) was added to the cell pellets and incubated
on ice for 8 min to remove the cytoplasm. After centrifugation at 1300 g, 4 °C, for 5
min, 100 µl Buffer N (15 mM Tris-HCl [pH 7.5], 200 mM NaCl, 60 mM KCl, 5 mM
MgCl2, 1 mM CaCl2, 0.3% NP-40, and protease inhibitor cocktail) was added to the
nuclear pellets and incubated on ice for 30 min to lyse. After centrifugation at 1700
g, 4 °C, for 5 min, the supernatant was collected and labeled as soluble fraction, and
100 µl sample loading buffer was added to the chromatin pellets for denaturing.
Denatured proteins were loaded to the 4–12% gradient SDS-PAGE (GenScript).
Nitrocellulose membranes (Millipore) were used for transferring after gel running.
After blocking in 5% non-fat milk, the membranes were probed with the corre-
sponding primary antibodies overnight at 4 °C, followed by incubation with a
secondary antibody at room temperature for 1 h. After adding the West-Q Pico
Dura ECL Solution (Gendeport), the antigen–antibody complexes were detected by
the ChemiDoc Imaging system (Bio-Rad). The intensity of protein bands was
measured by the Image Lab software package (Bio-Rad). The uncropped and
unprocessed scans of the blots are available in source data file.

Expression of FLAG-tagged Tet1CD. FLAG-tagged Tet1 catalytic domain (FLAG-
Tet1CD) was amplified from Fuw-dCas9-Tet1CD (Addgene #84475) using the
primers listed in Supplementary Table 2, and then inserted into a lentiviral vector,
213-PRRL-CAG-NLS-sfGFP (a gift from Dr. Courtney Hodge at Baylor College of
Medicine) between the restriction sites NheI (NEB R0131s) and EcoRV (NEB
R0195S). The lentiviral vector encoding FLAG-Tet1CD plasmid was transfected
into HEK 293 T cells, along with standard virus packaging vectors psPAX2
(Addgene #12260) and Pmd2.G (Addgene #12259). The virus-containing super-
natants were collected 2 days after transfection followed by brief centrifugation
(750 g at 4 °C for 10 min). The supernatant with packaged viruses were added into
Tet TKO mESCs followed by centrifugation (750 g at 37 °C for 90 min). Tet1CD
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expression and subsequent DNA hydroxymethylation was confirmed by Western
blotting and a 5hmC dot blot assay, respectively, 2 days after lentivirus
transduction.

Nucleic acid isolation. Total genomic DNA and RNA samples were isolated using
the AllPrep DNA/RNA Mini Kit (Qiagen) according to the manufacturer’s
instructions. In brief, 600 µl of buffer RLT plus was added to the embryonic heart
tissues or cell pellets. In total 26 G needles (BD) were used to disrupt samples.
Lysate was transferred to an AllPrep DNA spin column and centrifuged at
10,000 × g for 30 s. The genomic DNA was captured by the column and 100 µl
elution buffer was added to elute genomic DNA. Total RNA was in the flow-
through and precipitated by one volume of 70% ethanol. Then the mixture was
transferred to a RNeasy spin column. Purified total RNA was eventually eluted by
30 µl RNase-free water. DNA and RNA concentrations were measured by the
Qubit fluorometer (Thermo Fisher Scientific).

Dot-blot assay. Purified genomic DNA was denatured in 0.4 M NaOH, 10 mM
EDTA at 95 °C for 10 min, then neutralized with ice-cold 2M ammonium acetate
(pH 7.0). Two-fold serial dilutions of the denatured DNA samples were generated
and spotted on a nitrocellulose membrane by using an assembled Bio-Dot appa-
ratus (Bio-Rad) according to the manufacturer’s instructions. A synthetic oligo-
nucleotide with a known amount of 5hmC was used as standard1. The membrane
was washed with 2xSSC buffer briefly, air-dried and vacuum-baked at 80 °C for 2 h.
DNA hybridized membrane was blocked with 5% non-fat milk for 1 h at room
temperature and incubated with an anti-5hmC antibody (1:3000, Active Motif)
overnight at 4 °C. Next day, the membrane was incubated with a horseradish
peroxidase-conjugated anti-rabbit IgG secondary antibody (1:10,000; Sigma) for 1
h at room temperature. The membrane was visualized by West-Q Pico Dura ECL
Solution (GenDEPOT). The membrane was washed with 1× TBST briefly and then
stained with 0.02% methylene blue in 0.3 M sodium acetate (pH 5.2) to confirm the
total amounts of loaded DNA samples. The uncropped and unprocessed scans of
the blots are available in source data file.

Real-time quantitative PCR (qPCR). Purified total RNA (10 pg to 5 µg) was
reverse transcribed into cDNA with the amfiRivert cDNA Synthesis Platinum
Master Mix (Gendepot). Real-time quantitative PCR was performed with a
LightCycle 96 (Roche) instrument using amfiSure qGreen Q-PCR Master Mix
(Gendepot). Three-step cycling program was used with 3 min 95 °C initial dena-
turation and 40 cycles of 10 s 95 °C denaturation, 20 s 60 °C annealing and 30 s 72 °
C extension. All the primers were synthesized from Integrated DNA Technologies
and listed in Supplementary Table 2.

RNA-seq library construction and data analysis. Poly-A tailed messenger RNA
was enriched with a Poly(A)Purist™ MAG Kit (Thermo Fisher Scientific). Enriched
mRNA was used for RNA-seq library preparation by using a NEBNext® Ultra™
Directional RNA Library Prep Kit (NEB) according to the manufacturer’s
instructions. The quality of libraries was checked by an Agilent High Sensitivity
DNA kit (Agilent Technologies). The library was sequenced using an Illumina
NextSeq 500 instrument (150 cycle, paired-end; Supplementary Table 1).

RNA-seq data were mapped to mm10 genome assembly using tophat-2.1.1 with
default parameters. Cufflinks and cuffdiff were used to call significantly
differentially expressed genes (DEGs) (q-value <= 0.05) between WT and Tet2/3-
DKO groups at E12.5 and E15.5 developmental stages. In-house R scripts were
used to plot the scatter plot for DEGs. DEGs functional enrichment was performed
using GSEA61. RNA-seq data of mouse embryo hearts ranging from E10.5 to P0
were downloaded from ENCODE (https://www.encodeproject.org/). R package
gplots was used to plot heatmaps for DEGs.

scRNA-seq library preparation and data analysis. Embryonic hearts were har-
vested and digested into single cells using 1 mg/ml collagenase I (Worthington).
Single-cell RNA-seq libraries were generated using the Chromium Single-Cell 3′
Reagent V2 Kit (10× Genomics) according to the manufacturer’s protocol. Briefly,
single cell GEM was generated and barcoded in a Chromium Controller (10×
Genomics). Then RNA transcripts from single cells were reverse transcribed,
amplified and fragmented. Library generation was finished by incorporating the
adapter and sample indices into the fragmented cDNA. Agilent Bioanalyzer 2100
(Agilent) was used to profile the sizes of the pre-amplified cDNA and the libraries.
Libraries were subjected to highthroughput sequencing on a Illumina NextSeq
500 system using the NextSeq 500 High Output v2 Kit (Illumina) with a custo-
mized paired end, dual indexing (26/8/0/58-bp) format as recommended by 10 ×
Genomics.

Cellranger (10XGenomics) was used to generate fastq files and count reads on
each gene for each cell. Cellranger count output files were taken as input for R
package seruat to perform single cell analysis. We first used illumina bcl2fastq
v2.20.0.422 to demultiplex the raw sequencing data. Cellranger v2.1.1 (https://
support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-
is-cell-ranger) was used to align raw fastq files to mm10 and perform barcode
counting and UMI counting. The count matrix (column as cell; row as genes) from
Cellranger count were taken as input for R package seruat v2.3 to perform single cell

analysis. Reads with the same UMI were combined and then annotated to ensemble
genes (GRCm38/mm10). We filtered out the cells with <100 genes expressed and keep
the cells with <15% mitochondria reads rate. The default setting of Seurat v2.362 was
used to perform PCA. We used the first 20 principle components to perform cell
cluster and t-SNE (resolution= 0.6). Markov Affinity-based Graph Imputation of
Cells (MAGIC)39 was used to perform the PCA and gene interaction analysis as
guided by https://github.com/KrishnaswamyLab/MAGIC.

WGBS library construction and data analysis. Purified genomic DNA (with 5%
of unmethylated lambda DNA spike-in, Promega) was sheared to till reaching a
fragment size of 200–500 bp using Bioruptor UCD300 (Diagenode) according to
manufacturer’s instructions. Sheared DNA was ligated with methylated adaptors
(NEBNext® Multiplex Oligos for Illumina®, NEB) by using a NEBNext® Ultra™
II DNA Library Prep Kit (NEB). Methylated adaptor-ligated DNA fragment was
used for bisulfited conversion reaction with EZ DNA Methylation-Lightning Kit
(Zymo Research), then bisulfite converted DNA was amplified using KAPA HiFi
HotStart Uracil+ ReadyMix PCR Kit (Kapa Biosystems) with 8 cycles of PCR.
Amplified DNA was purified by AMPureXP beads and examined by Agilent
High Sensitivity DNA kit (Agilent Technologies) for quality check. Library
concentration was determined by a Qubit 4 fluorometer (Thermo Fisher Sci-
entific). Prepared libraries were sequenced using an Illumina NextSeq 500
instrument (150-cycle, paired-end).

Raw fastq files for WGBS (from E10.5-P0 stage) were downloaded from
ENCODE. Raw fastq files were mapped to the hg19/mm10 genome assembly using
bsmap-2.89 software with “-v 6 -n 1 -q 3 -r 1” parameters. The bisulfite conversion
ratios were estimated using unmethylated lambda DNA. Mcall modual in
MOABS63 was used to call the mCG/CG ratios for each CpG site. Mcomp modual
was used to call DMRs with parameter “–minNominalDif= 0.2–minDmcsInDmr
3–maxDistConsDmcs 500”. The CpGs with coverage >= 5 was used for
downstream analysis. The function prediction of DMRs was used for GREAT
analysis26. UCSC genome browser tracks were generated by using the Mmint ucsc.
py function.

CMS-IP-seq library construction and data analysis. CMS-IP-seq were per-
formed as described previously with some modification40,41. Purified genomic
DNA was sheared to yield 200–500 bp fragments using Bioruptor UCD300
(Diagenode) according to manufacturer’s instructions. Bisulfite conversion was
performed using the fragmented DNA with an EZ DNA Methylation-Lightning Kit
(Zymo Research) to convert 5hmC to cytosine methyl sulfonate (CMS). CMS-
containing DNA fragments were enriched using anti-CMS antibody and protein A/
G dynabeads (Thermo Fisher Scientific). Enriched DNA fragments were then
purified using the well-established phenol-chloroform-isoamyl alcohol extraction
method. Purified DNA was then processed with a Pico Methyl-Seq Library Prep Kit
(Zymo Research) to generate sequencing libraries. The quality of DNA libraries
was checked by an Agilent High Sensitivity DNA kit (Agilent Technologies), and
then subjected to highthroughput sequencing on an Illumina NextSeq 500
instrument (75-cycle, single-end) (Supplementary Table 1).

Raw fastq data was mapped to the mm10/hg19 genome assembly using bsmap-
2.89 with default parameters. After duplication removal, CMS peaks were called by
using macs2 with default parameters. Bedtools merge was used to generate merged
peaks for all samples. Reads numbers in each peak were counted if there is >1 bp
overlap between reads location and peak region. The raw counts file with row as
each peak, column as samples was used as input to DEGseq2 and differentially
significantly CMS peaks (q value <= 0.05) between WT and Tet2/3-DKO were
called. Volcano plots were plotted using R package ggplot2. The functions of
decrease/increased CMS peaks between WT and DKO were predicted by using
GREAT analysis26. Histone peaks regions and fold change over control bigwig files
were downloaded from ENCODE (mm10 version). The average fold change of
histone modifications signals over control on HypoDHMRs/HyperDHMRs
and the average signal of CMS-IP-seq along metagenes were used with Mmint
(https://github.com/lijiacd985/Mmint).

ATAC-seq library construction and data analysis. ATAC-seq library prepara-
tion was performed, as described previously64. Briefly, 50,000 cells were collected in
ice-cold PBS. Nuclei were isolated in Cold Lysis Buffer (10 mM Tris–HCl, pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL). The transposition reaction was per-
formed by using a Nextera DNA Library Preparation Kit (Illumina) with modified
tagmentation condition (37 °C for 30 min). Tagmented DNA was purified by E.Z.
N.A.® MicroElute Cycle Pure Kit (Omega BIO-TEK), then amplified with the
KAPA real-time library amplification kit (Kapa Biosystems) followed by library
purification using AmpuXP beads. The quality of purified DNA libraries was
checked by Agilent High Sensitivity DNA kit (Agilent Technologies). The library
was sequenced using an Illumina NextSeq 500 instrument (150 cycle, paired-end)
(Supplementary Table 1).

Bowtie2 with ‘-very-sensitive’ option was used to map the high-quality reads to
mm10 version of human genome. The uniquely properly paired mapped reads
were extracted for downstream analysis. MACS2 with the ‘-nomodel’ and ‘-extsize
147′ was used to call ATAC peaks. Bedtools intersect (at least 1 bp overlap) was
used to identify overlapped 5hmC peaks and ATAC peaks. We first cut the genome
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to 10 kb equal size bins and use bigwigOverbed to calculate each bin’s 5hmC and
ATAC signals. R package geneplotter was used to plot the density scatterplots. The
findMotifsGenome.pl in HOMER software was used for the motif enrichment with
default setting. Randomly selected sequences from the genome with matched GC%
content were used as background.

Cleavage under targets and release using nuclease (Cut&Run). Cut&Run was
performed according to published protocol65. Briefly, single cells were attached to
the concanavalin A-coated magnetic beads (Bangs Laboratories) followed by the
in situ binding of the antibody and pA-MN specifically to the target protein.
Cleaved fragments were released after exposure to calcium. DNA was extracted
from the supernatant containing released chromatin fragments. Libraries were
prepared using the ThruPLEX DNA-seq Kit from Rubicon Genomics (R400406)
according to the manufacture’s instruction with slightly modification of changing
extension time of library amplification steps to 20 s. Libraries were sequenced using
the NextSeq 500 High Output v2 Kit (Illumina, San Diego, CA) with a customized
paired end, dual indexing (40/8/0/40-bp) format (Supplementary Table 1).

We analyzed CUT&RUN data using the script on github (https://github.com/
Henikoff/Cut-and-Run). Briefly, we first mapped paired end raw fastq files to
mm10 use bowtie 2.2.5 with parameters “–local–very-sensitive-local–no-unal–no-
mixed–no-discordant–phred33 -I 10 -X 700”. Then we used picard to remove
duplication reads; bamToBed was used to transform bam file to bed file. Next, we
used spike_in_calibration.csh script to perform spike in normalization.
BedGraphtobigwig was used to transform the bedGraph file to bigwig file, which
was used to perform the visualization.

HiChIP library construction and data analysis. HiChIP library preparation was
performed as described previously49. Briefly, 1 million crosslinked cardiac cells
from mouse embryos or 2 million mouse embryonic stem cells were lysed with Hi-
C Lysis Buffer (10 mM Tris–HCl pH 8.0, 10 mM NaCl, 0.2% NP-40 with 1×
protease inhibitor cocktail), followed by digestion with 150 U of MboI restriction
enzyme (NEB) for 2 h at 37 °C. Fill-in master mix containing biotin-dATP
(Thermo Fisher Scientific) was added to digest nuclei to generate enzyme-digested
overhang and mark the DNA ends with biotin. Subsequently, T4 DNA ligase
(NEB) was added to the reaction and incubated for 4 h at room temperature to
achieve proximity ligation. After that, nuclei were resuspended with Nuclear Lysis
Buffer (50 mM Tris–HCl pH7.5, 10 mM EDTA, 1% SDS with 1× protease inhibitor
cocktail) and transferred to Covaris millitube for fragmentation. Fragmented
samples were precleared by adding protein A/G beads (Thermo Fischer Scientific)
for 1 h at 4 °C, and 2 µg Smc1a antibody was added with an overnight incubation.
On day 2, protein A beads (Thermo Fisher Scientific) were added to the reaction
for 2 h to capture the beads. After bead capturing, the samples were washed three
times each with low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20
mM Tris–HCl pH 7.5, 150 mM NaCl), high salt wash buffer (0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 20 mM Tris–HCl pH 7.5, 500 mM NaCl), and LiCl wash
buffer (10 mM Tris–HCl pH 7.5, 250 mM LiCl, 1% NP-40, 1% sodium deox-
ycholate, 1 mM EDTA) at room temperature. After these steps, ChIP samples were
resuspended in a DNA elution buffer (50 mM sodium bicarbonate pH8.0, 1% SDS)
and incubated for 10 min at room temperature, followed by shaking for 3 min at
37 °C. DNA eluted from the beads were collected twice, followed by reverse
crosslinking. Reverse crosslinked DNA were then purified by using an E.Z.N.A.®
MicroElute Cycle Pure Kit (Omega BIO-TEK). Purified samples were used for
biotin pull-down. Resuspended Streptavidin C-1 (Thermo Fisher Scientific) with
2× Biotin binding buffer (10 mM Tris–HCl pH7.5, 1 mM EDTA, 2M NaCl) was
added to the samples and proceed biotin capturing procedure by incubating 15 min
at room temperature, followed by washes with Tween wash buffer (5 mM Tris–HCl
pH7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20) and 1× TD buffer (10 mM
Tris-HCl pH7.5, 5 mM magnesium chloride, 10% demethylformamide), respec-
tively. After wash, on-bead tagmentation by using Tn5 transposase (Illumina) was
performed for 10 min at 55 °C with interval shaking, followed by several washes
with 50 mM EDTA, Tween-20 wash buffer, and 10 mM Tris–HCl respectively.
After wash, the reaction beads were resuspended in a PCR master mix (Q5® High-
Fidelity 2× Master Mix, NEB, with Nextera Ad1.1 (Universal) and Ad2.X (bar-
coded) primers) for library amplification. Amplified on-bead DNA were eluted
using a magnet and purified with an E.Z.N.A.® MicroElute Cycle Pure Kit (Omega
BIO-TEK). The quality of libraries was checked by Agilent High Sensitivity DNA
kit (Agilent Technologies). The library was sequenced on an Illumina NextSeq 500
instrument (150 cycle, paired-end) (Supplementary Table 1).

A total of 1 million cells from each condition were used to perform HiCHIP
experiments. To improve the statistic power, we merged the two biological
replicates to increase sequencing depth. HiC-Pro66 was used to map the raw
paired-end fastq files to mm10 genome assembly and identify the uniquely
validated paired reads. build_raw_maps.sh and ice_norm.sh embeded in HiC-Pro
pipeline were used to generate the raw contact map and normalized contact map.
Fit-Hi-C50 was used to identify the significant Paired End Tags (PETs) between any
two bins (5 kb) with a p value <0.05. We linked the PETs with the whole genic
regions. The PETs linked to specific genes were counted and normalized, as shown
in a previous study49. The RNA-seq, CMS-IP, ATAC-seq, ChIP-seq data and
pairwise files containing PETs information were uploaded to WashU Epigenome
Browser67 (http://epigenomegateway.wustl.edu).

Prediction of AB compartment. The output file *_allValidPairs.hic from HiC-Pro
pipeline was used as input file for juicer_tools.1.7.5_linux_x64_jcuda.0.8.jar
eigenvector function68. The *_allValidPairs.hic file stores all the raw interaction
paired reads between any two genomic bins from the same chromosome. The
eigenvector for each chromosome with KR normalization at 50 kb resolution were
calculated. For each chromosome, we manually checked the overlap between the
compartment assignment and the accessible regions from our ATAC-seq data to
decide if the compartment assignment need to be flipped.

Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR). ChIP was
performed according to a previously described protocol with slight modifications69.
Briefly, 20 million mESCs were fixed with 1% formaldehyde for 15 min at room
temperature followed by quenching with 125 mM glycine for 5 min. Cells were
washed using ice cold PBS twice and then resuspended in a sonication buffer (10
mM Tris pH 8.0, 0.25% SDS, 2 mM EDTA and protease inhibitor cocktail). The
M220 Focused-ultrasonicator (Covaris) was used to sonicate the chromatin into
200–700 bp range. Pre-washed 25 µl protein G Dynabeads, 10 µg YY1 antibody and
sheared chromatin were incubated overnight. The enrichment mixture was washed
twice with each of the following buffers: RIPA-low salt (10 mM Tris HCl pH 8.0,
140 mM NaCl, 1 mM EDTA pH 8.0, 0.1% SDS, 0.1% Na-Deoxycholate, 1% Triton
X-100 and protease inhibitor cocktail), RIPA-high salt (10 mM Tris HCl pH 8.0,
500 mM NaCl, 1 mM EDTA pH 8.0, 0.1% SDS, 0.1% Na-Deoxycholate, 1% Triton
X-100 and protease inhibitor cocktail), RIPA-LiCl (10 mM Tris HCl pH 8.0,
250 mM LiCl, 1 mM EDTA pH 8.0, 0.1% SDS, 0.1% Na-Deoxycholate, 0.5% NP-40
and protease inhibitor cocktail) and TE buffer (10 mM Tris HCl pH8.0, 1 mM
EDTA pH 8.0 and protease inhibitor cocktail). After). IP fragments were incubated
at 55 °C for 1 h in elution buffer (10 mM Tris HCl pH8.0, 5 mM EDTA pH 8.0,
300 mM NaCl, 0.4% SDS). The elution were reverse crosslinked at 65 °C overnight
with 2 µl 20 mg/ml proteinase K. DNA fragments were purified using MicroElute
Cycle-Pure Kit (OMEGA). qPCR was performed following the protocol
described above.

4C-seq library construction and data analysis. 4C-seq was performed as pre-
viously described47. In total 10 million mESCs were crosslinked with 1% for-
maldehyde in PBS contains 10% FBS for 10 min. Glycine was added to a final
concentration of 125 mM to quench the reaction. Cells were then washed twice
using ice cold PBS followed by snap freezing with liquid nitrogen and stored at
−80 °C. Ice cold Hi–C lysis buffer (10 mM Tris–HCl pH8.0, 10 mM NaCl, 0.2%
Igepal and protease inhibitor cocktail) was used to isolate the nuclei. For the
Mpdu1 loci, DpnII (NEB R0543) was used for the primary digestion and BfaI (NEB
R0568S) was used for the secondary digestion. PCR was performed using the Roche
Expand Long Template polymerase (Roche 11759060001). Libraries were gener-
ated using the the NEB Next Ultra II DNA Library Prep Kit prior to sequencing
(NEB #E7103). All the oligonucleotides are listed in Supplementary Table 2.
Basic4Cseq R package was used to calculate normalized 4 C signals and plot 4C
signals nearby the targeted regions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The WGBS, CMS-IP, ATAC-seq, CUT&RUN, and RNA-seq (bulk and single-cell) data
from this study have been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE121671. All relevant
data supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. The source data underlying Figs 1e, 2b–d, 4a, 6a, 7h and Supplementary Figs 3f
and 8a are provided as a Source Data file. A reporting summary for this Article is
available as a Supplementary Information file.
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