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Abstract
Recent increases in vegetation greenness over much of the world reflect increasing 
CO2 globally and warming in cold areas. However, the strength of the response to 
both CO2 and warming in those areas appears to be declining for unclear reasons, 
contributing to large uncertainties in predicting how vegetation will respond to future 
global changes. Here, we investigated the changes of satellite-observed peak season 
absorbed photosynthetically active radiation (Fmax) on the Tibetan Plateau between 
1982 and 2016. Although climate trends are similar across the Plateau, we identified 
robust divergent responses (a greening of 0.31 ± 0.14% year−1 in drier regions and a 
browning of 0.12 ± 0.08% year−1 in wetter regions). Using an eco-evolutionary op-
timality (EEO) concept of plant acclimation/adaptation, we propose a parsimonious 
modelling framework that quantitatively explains these changes in terms of water 
and energy limitations. Our model captured the variations in Fmax with a correlation 
coefficient (r) of .76 and a root mean squared error of .12 and predicted the divergent 
trends of greening (0.32 ± 0.19% year−1) and browning (0.07 ± 0.06% year−1). We also 
predicted the observed reduced sensitivities of Fmax to precipitation and temperature. 
The model allows us to explain these changes: Enhanced growing season cumulative 
radiation has opposite effects on water use and energy uptake. Increased precipita-
tion has an overwhelmingly positive effect in drier regions, whereas warming reduces 
Fmax in wetter regions by increasing the cost of building and maintaining leaf area. 
Rising CO2 stimulates vegetation growth by enhancing water-use efficiency, but its 
effect on photosynthesis saturates. The large decrease in the sensitivity of vegetation 
to climate reflects a shift from water to energy limitation. Our study demonstrates 
the potential of EEO approaches to reveal the mechanisms underlying recent trends 
in vegetation greenness and provides further insight into the response of alpine eco-
systems to ongoing climate change.
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1  |  INTRODUC TION

Vegetation modulates the exchange of water, energy and car-
bon fluxes between the land and the atmosphere (Alkama & 
Cescatti, 2016; Forzieri et al., 2020). Satellite data reveal a global in-
crease in vegetation cover in recent decades (Chen, Park, et al., 2019; 
Piao et al.,  2020; Zhu et al.,  2016) although this greening is not 
universal and some regions have experienced browning (Bonan & 
Doney,  2018; Myers-Smith et al.,  2020). The observed greening 
trend has contributed to an enhancement of the land carbon sink 
(Chen, Ju, et al.,  2019) and changes in biogeophysical properties, 
such as surface albedo and evapotranspiration (Forzieri et al., 2017), 
which together regulate surface temperature and reduce the rate of 
global warming (Alkama & Cescatti, 2016; Zeng et al., 2017).

Greening has been widely attributed to rising atmospheric CO2 
concentrations, climate change and other human activities (Chen, 
Park, et al., 2019; Piao et al., 2020; Zhu et al., 2016). Increases in 
atmospheric CO2 concentration lead to an increase in photosyn-
thetic uptake of CO2 by leaves, enhance vegetation water-use ef-
ficiency and have had a positive impact on primary production and 
vegetation cover globally (Donohue et al., 2013; Ukkola et al., 2015). 
It is thought that warming has eased climatic constraints in colder 
regions, explaining the marked greening trend observed in high 
northern latitudes (Berner et al., 2020; Huang et al., 2017; Keenan 
& Riley,  2018). However, there is accumulating evidence that the 
thermal response of vegetation growth and carbon uptake has 
weakened in the past four decades (Keenan & Riley,  2018; Piao 
et al., 2014, 2017) for reasons that are still unclear, imposing large 
uncertainties on vegetation responses to future warming and veg-
etation feedbacks to the carbon cycle. Moreover, a browning trend 
has also been observed, particularly in some Arctic areas (Berner & 
Goetz, 2022; Myers-Smith et al., 2020; Phoenix & Bjerke, 2016). This 
further complicates understanding the response of vegetation cover 
to warming in cold regions.

The Tibetan Plateau, known as the ‘third pole’, has experi-
enced rapid warming recently, with an increase of 0.35°C decade−1 
since 1970 (Kuang & Jiao, 2016; Yang et al., 2014; Yao et al., 2019). 
This warming is markedly higher than the global mean warming, 
and comparable to that seen in the Arctic (Yao et al.,  2019). The 
Tibetan Plateau is considered one of the most climatically sensi-
tive and ecologically fragile regions of the world (Yao et al., 2012) 
and provides an opportunity to examine whether the response of 
vegetation to warming in cold regions is consistent between high 
and low latitudes. Despite the reports of a general greening across 
the Tibetan Plateau from remote sensing observations (Shen, Piao, 
Jeong, et al.,  2015; Teng et al.,  2021; Wang et al.,  2019), site and 
subregional scale studies show a weakening of this trend and even 
browning responses to warming (Sun et al., 2016; Wang et al., 2022; 
Zhao et al., 2019)—challenging the idea that warming has a predom-
inantly positive effect through extension of the growing season and 
enhancement of photosynthesis (Fu et al., 2014; Shen et al., 2016; 
Shen, Piao, Dorji, et al.,  2015). Alternative hypotheses have been 
proposed to explain the responses of vegetation cover to warming 

in the Tibetan Plateau (Liu et al., 2018; Yan et al., 2021). Changes 
in water availability, for example, may also be important in driv-
ing changes in vegetation productivity and phenology given the 
relatively arid climate of much of the region (Li et al.,  2020; Shen 
et al., 2022; Wang et al., 2022). However, a unified and quantitative 
framework is still missing, and inevitably introduces uncertainties in 
the prediction of future vegetation changes and mitigation strate-
gies in this fragile region.

Process-based global vegetation models predict vegetation 
cover as the result of plant carbon assimilation, respiration, allo-
cation to leaves and turnover processes (Walker et al., 2014), and 
have been extensively used as a tool to attribute the changes in 
vegetation cover to diverse climate factors (Piao et al., 2020; Zhu 
et al., 2016). However, the complex model structures make it chal-
lenging to interpret the modelling results for an understanding of 
the underlying mechanisms. Moreover, these models generally over-
estimate vegetation cover for cold-limited ecosystems and report a 
stronger positive trend than observed over recent decades (Anav 
et al., 2013; Murray-Tortarolo et al., 2013). They also differ in the 
magnitude and sign of the projected change of vegetation greenness 
in response to elevated CO2 concentration and warming (De Kauwe 
et al., 2014; Mahowald et al., 2016). These differing predictions arise 
because the way the modelled processes are parameterized and im-
plemented for different plant functional types varies between mod-
els (Prentice et al.,  2015). Intermodel differences reflect a lack of 
understanding of the control of these basic processes (De Kauwe 
et al.,  2014). Recent work shows that eco-evolutionary optimality 
(EEO) approaches (Franklin et al.,  2020; Harrison et al.,  2021) can 
generate parsimonious predictions of key vegetation processes 
through the consideration of the necessary trade-offs that plants 
have to make in a given environment. EEO relies on natural selec-
tion eliminating uncompetitive plant strategies, assuming that plants 
acclimate or adapt to their environment on both shorter (days to 
months) eco-physiological timescales and on longer demographic 
and evolutionary timescales. An EEO approach to predicting veg-
etation cover, based on the idea of mass balance and maximum 
carbon profit, has been successfully applied to both natural vegeta-
tion (Yang et al., 2018) and crops (Qiao et al., 2020, 2021). A similar 
EEO approach can be used to explore the impacts of recent climate 
change on vegetation cover in a simple and transparent way.

In this study, we have used remotely sensed data to derive 
changes in peak vegetation cover between 1982 and 2016 and 
compare the observed trends to changes in climate and envi-
ronmental factors. We developed a simple model that simulates 
primary production using an EEO-based approach to account for 
carbon allocation to leaves subject to constraints by water avail-
ability. We used this model to quantify the individual contributions 
of changes in precipitation, CO2 concentration, radiation, vapour 
pressure deficit (VPD) and temperature to the observed trends 
in vegetation growth across the Tibetan Plateau and to examine 
the cause of the observed decline in the sensitivity of vegetation 
growth to climate change in recent decades. We show that both 
the observed vegetation changes on the Tibetan Plateau and the 
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observed changes in sensitivity to climate change can be explained 
by this simple model.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Gridded climate data

We obtained daily climate data for the period 1982–2016 from the 
China Meteorological Forcing Dataset (CMFD) at a 0.1° spatial reso-
lution (He et al.,  2020). The meteorological variables from CMFD 
used in this study were specific humidity (q, kg/kg), air pressure 
(PRES, Pa), air temperature (TEMP, °C), precipitation (PREC, mm) and 
downward shortwave radiation (Srad, W m−2).

From the CMFD data, we calculated VPD (Pa) as the difference 
between saturated vapour pressure (es, Pa) and actual vapour pres-
sure (ea, Pa):

Following Meek et al. (1984), we derived photosynthetic photon flux 
density (PPFD, mol m−2 day−1) from solar radiation (Srad, W m−2):

Precipitation was accumulated over the whole year. PPFD was ac-
cumulated over the growing season, while air temperature and VPD 
were averaged over the growing season. The thermal growing sea-
son was defined as the period when daily air temperature was con-
tinuously above 0°C. This definition of the thermal growing season 
is widely used in the literature (e.g. Dong et al., 2012; Xu et al., 2021) 
and has a physiological basis in the temperature requirement for plant 
growth after the cold season (Harrison et al., 2010). Nevertheless, 
the length of the growing season on the Tibetan Plateau defined in 
this way is longer than that derived from remote sensing products 
(e.g. Cheng et al., 2018; Ding et al., 2013; Wang et al.,  2019). We 
therefore tested this definition using breakpoint regression, using 
the Strucchange package in R, of in situ measurements of gross pri-
mary production (GPP) at two grassland sites (CN-HaM, CN-Dan) 
and one shrubland site (CN-Ha2) from the Tibetan Plateau. This 
analysis (Figure  S1) confirms that the shift from zero to positive 
GPP occurs at 0.32 ± 0.24°C, consistent with our choice of 0°C for 
the delineation of the thermal growing season. Given that mois-
ture availability might influence the length of the growing season 
(Shen et al., 2022), we also tested whether including a soil moisture 
threshold improved the definition of the growing season at these 
sites using a soil moisture threshold equivalent to half the multiyear 
maximum soil water content. Including a soil moisture threshold had 
no impact at the CN-HaM and CN-Ha2 sites, and only produced a 
marginal improvement at the CN-Dan site (Figure S2). Furthermore, 

the temporal variability and trends were similar whether the growing 
season definition was based only on a thermal threshold or on both 
a thermal and moisture availability threshold (Figure  S3). For sim-
plicity, we therefore focus on the results based on using the thermal 
threshold only.

The annual time series of atmospheric CO2 concentrations be-
tween 1982 and 2016 was obtained from the National Oceanic and 
Atmospheric Administration Earth System Research Laboratory 
(NOAA: https://www.esrl.noaa.gov/gmd/ccgg/trend​s/). We used 
ordinary least squares regression to calculate the trends of long-
term annual total precipitation (PREC), growing season mean VPD, 
summer warmth index (SWI0, yearly sum of monthly mean air tem-
peratures above 0°C), growing season accumulated photosynthesis 
photon flux density (PPFD) and atmospheric CO2 concentration 
(CO2).

The CMFD was designed to provide a good representation of 
climate across China, but it is of interest to compare this with global 
data sets to see how well they reproduce the climate of the Tibetan 
Plateau. We therefore obtained daily climate data from the Climatic 
Research Unit-National Centers for Environmental Prediction (CRU-
NCEP) data set, the data set used as climate forcing in the Trends 
in Net Land Carbon Exchange (TRENDY) Inter-model Comparison 
Project. The CRU-NCEP data set provides air temperature, precip-
itation, solar radiation, specific humidity and air pressure, with a 
spatial resolution of 0.5° (Viovy, 2018). We then compared the geo-
graphic patterns and temporal trends of climate variables derived 
from CRU-NCEP with those obtained using CMFD.

2.1.2  |  Satellite data

In our primary analyses, we used the GIMMS third-generation 
fraction of absorbed photosynthetically active radiation fAPAR 
(fAPAR3g) data set (Zhu et al., 2013) as an index of vegetation cover. 
We use fAPAR in preference to other vegetation indices because it is 
the main driver of vegetation productivity (Myneni & Williams, 1994; 
Ryu et al., 2019) and has been widely employed to track the envi-
ronmental limitations on vegetation (Forkel et al., 2015; Keenan & 
Riley, 2018). The extended version of the fAPAR3g data set covers 
the interval of 1982–2016, with a spatial resolution of 1/12° and 
a temporal resolution of 2 weeks and was resampled to 0.1° using 
bilinear interpolation to match the spatial resolution of the climate 
data.

We determined the annual maximum fAPAR (Fmax) as the peak 
greenness, a proxy for the capacity of ecosystem primary produc-
tion (Huang et al., 2018), at each 0.1° grid cell from the biweekly 
composites. The Fmax at each geographic grid was then binned in 
climate space determined by the corresponding annual total pre-
cipitation and summer warmth index (SWI0, an indicator of total 
annual heat load). The bin width was arbitrarily set to 50 mm for 
precipitation and 5°C month for SWI0. By selecting Fmax in the 
upper 90–95th percentile in each climate bin, we identified the 
grid cells with maximum fAPAR attainable for a given amount of 

(1)VPD = es − ea = 611.0 ⋅ e

(

17.27TEMP

TEMP+237.3

)

−
PRES q

0.378q + 0.622
.

(2)PPFD = 60 × 60 × 24 × 2.04 × 10−6
× Srad.

https://www.esrl.noaa.gov/gmd/ccgg/trends/
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precipitation and temperature and the corresponding environmen-
tal variables for these grid cells. This binning procedure is designed 
to disentangle the respective effects of water and heat supply in 
limiting peak growth of vegetation and minimize the impact of 
nonclimatic influences on greenness on the analyses. Similar anal-
yses were made in the climate space determined by annual total 
precipitation and potential gross primary production (A0) with a 
bin width of 50 mm for precipitation and 100 g C m−2 year−1 for A0. 
Climate bins with <5 grid cells were not included in the analysis. 
Vegetation dynamics on the Tibetan Plateau were examined with 
Fmax data in both geographic and climate space using ordinary least 
squares linear regression.

Changes in vegetation cover have been previously investigated 
using several different vegetation indices, derived from different sat-
ellite sensor systems and covering different periods of time. These 
studies also differ in whether they focus on changes in mean grow-
ing season or peak vegetation cover. To assess the robustness of our 
results, and to facilitate comparisons with other analyses of vegeta-
tion change on the Tibetan Plateau, we performed several additional 
analyses. Firstly, we analysed the impact of using mean growing 
season fAPAR (Fmean) rather than Fmax on the trends. Secondly, we 
examined the strength of the trends in Fmax and Fmean over differ-
ent time periods, specifically focusing on changes before and after 
2000 CE since some concerns have been raised about the reliabil-
ity of GIMMS3g data before 2000 CE (Zhu et al., 2021). Finally, we 
conducted analyses of changes in alpine vegetation cover using 12 
different remote sensing products (Table S1), including fAPAR, nor-
malized difference vegetation index (NDVI), leaf area index (LAI), 
solar-induced fluorescence (SIF), enhanced vegetation index (EVI) 
and near-infrared reflectance vegetation index (NIRv) data from var-
ious data sources.

2.1.3  |  Model validation data

We used in situ measurements of aboveground biomass as an ad-
ditional validation of the model performance. Aboveground biomass 
measurements from 1689 sites on the Tibetan Plateau, compiled 
by Xia et al. (2018), were obtained from https://iopsc​ience.iop.org/
artic​le/10.1088/1748-9326/aa999​7/data. The measurements were 
all taken in July and early August, at the peak of vegetation growth 
on the Plateau, and are thus comparable to Fmax. For comparability 
with the modelled Fmax, which is driven by gridded climate data at 
0.1° resolution, we averaged the aboveground biomass observations 
from individual sites within each 0.1° grid.

We also compared the simulated Fmax with GPP from the PML-
V2 model (Zhang et al., 2019), which uses MODIS LAI, albedo and 
emissivity products and climate data from the Global Land Data 
Assimilation System (GLDAS) as model inputs (Zhang et al., 2019). 
We computed the maximum annual GPP over the interval from 
2003 to 2016 and converted these data to a spatial resolution of 
0.1° using bilinear interpolation to match the spatial resolution of 
the simulated Fmax.

2.2  |  Log-sum-exp regression analysis

We applied log-sum-exp regression (Peng et al., 2021), which fits a 
continuous approximation to the minimum function, to explore the 
spatial dependence of vegetation cover on precipitation and SWI0. 
A mixed-effect model in the ‘nlmefit’ function of MATLAB was used 
to perform this nonlinear regression with the ‘year’ as the random 
effect using the formula:

where maximum fAPAR (Fmax) is the response variable; precipitation 
(PREC, mm) and summer warmth index (SWI0, °C month) are the pre-
dictor variables; and K, kp, kt and fmax are parameters. The greater the 
value K, the closer this function is to the minimum function. Here, as 
recommended by Peng et al. (2021), K was set as a constant (10) while 
kp and kt fitted to observations are expressed as the change in Fmax for 
a unit increase of precipitation and temperature, that is, the sensitivity 
of Fmax to the precipitation and temperature in units of % mm−1 and % 
°C month−1 respectively. fmax, set as a constant (.95), represents the 
maximum possible fraction of PAR that can be absorbed by a vegeta-
tion canopy (Turner et al., 2009; Yang et al., 2015).

2.3  |  Modelling of maximum vegetation cover

We propose a theory to investigate the patterns of vegetation cover 
in space and time, by coupling the EEO and hydro-climatological rate 
limitation framework with a universal primary production model (P 
model: Stocker et al., 2020). The basic hypothesis is that peak veg-
etation cover is limited either by energy supply (in which case, al-
location to leaves maximizes net energy profit) or by water supply 
(Figure 1).

2.3.1  |  Prediction of gross primary production

The P model is a universal and extensively tested light use efficiency 
(LUE) model for GPP (Cai & Prentice,  2020; Stocker et al.,  2020; 
Wang, Prentice, Davis, et al.,  2017). It is based on the Farquhar–
von Caemmerer–Berry (FvCB) model for biochemical processes 
(Farquhar et al.,  1980) combined with EEO hypotheses (the least-
cost and coordination hypotheses) to represent the adaptation of 
stomatal behaviour and photosynthetic capacities to environmental 
conditions (Prentice et al.,  2014; Wang, Prentice, Keenan, 
et al., 2017). The least-cost hypothesis states that plants minimize 
the summed costs of maintaining carboxylation and transpiration 
capacity by regulating their leaf-internal CO2 concentration 
(Prentice et al.,  2014). The coordination hypothesis states that 
the carboxylation-limited rate (Ac) and electron transport-limited 
rate (AJ) of photosynthesis, the lesser of which determines the 
instantaneous photosynthetic rate, tend to equality (Wang, Prentice, 
Keenan, et al., 2017). Comparisons between predicted GPP and eddy 

(3)Fmax = −
1

K
ln
(

e−K kp PREC + e−K ktSWI0 + e−K fmax
)

,

https://iopscience.iop.org/article/10.1088/1748-9326/aa9997/data
https://iopscience.iop.org/article/10.1088/1748-9326/aa9997/data
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covariance data show the P model performs as well as more complex 
models (Mengoli et al., 2021; Stocker et al., 2020).

Based on the P model, GPP (A) can be expressed as a product of 
fAPAR and potential gross primary production (A0):

where A0 is calculated as the product of LUE and PPFD:

In Equation (5):

where φ0 is the intrinsic quantum yield of photosynthesis (mol CO2 
mol−1 photon). m reflects the impact of leaf-internal CO2 on carbon 
assimilation, determined by the leaf-internal CO2 partial pressure (ci, 
Pa) and the CO2 partial pressure compensation point (Γ*, Pa); χ is the 
ratio of the leaf-internal to ambient CO2 partial pressure (ca, Pa); VPD 
(Pa); η* the viscosity of water relative to its value at 25°C (dimension-
less); K is the effective Michaelis–Menten coefficient of Rubisco (Pa) 
at a given temperature and atmospheric pressure. Two dimensionless 
constants (c* = .41 and β = 146) are globally estimated from indepen-
dent data.

2.3.2  |  The EEO-based energy limitation

We propose that plants maximize net energy profit after the costs 
of constructing and supporting leaves are accounted for. fAPAR is 

(4)A = fAPAR A0,

(5)A0 = PPFD LUE.

(6)LUE = �0m

√

1 −

(

c∗

m

)
2

3

,

(7)m =

(

ci − Γ∗
)

(

ci + 2Γ∗
) ,

(8)

� =
ci

ca
=

Γ∗

ca
+

�

1 −
Γ∗

ca

�

�
�

� +
√

VPD
� ,

(9)� =

√

�(K + Γ∗)

1.6�∗
,

F I G U R E  1  Flowchart of the prediction of the maximum fraction of absorbed photosynthetically active radiation (Fmax). The model is 
based on the principle that the carbon allocation to leaves results from the maximization of net profit, subject to the constraint that water 
is available to allow optimal function of the leaves. Inputs of the model are growing season mean air pressure, growing season mean vapour 
pressure deficit (VPD), atmospheric carbon dioxide concentration (CO2), growing season cumulative photosynthetic photon flux density 
(PPFD), growing season mean air temperature (TEMP) and annual total precipitation (precipitation). The output of the model is the annual 
maximum fAPAR. A0, χ and Gs are the potential gross primary productivity; the ratio of leaf internal- to ambient-CO2 concentration; and the 
stomatal conductance at canopy level respectively. A0, χ and Gs are all predicted by the P model. f0 is defined as the ratio of precipitation 
to transpiration and set at .41. zcost represents the unit cost of constructing and maintaining leaves and is estimated as a function of air 
temperature and VPD.
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estimated from LAI (projected leaf area per unit ground area) by 
Beer's law (Monsi, 1953):

where k = 0.5 is the extinction coefficient for photosynthetically active 
radiation. LAI (m2 m−2) is later solved as the optimal value that max-
imizes net carbon profit (Pn), which is assumed to be the difference 
between the carbon gain through assimilation (GPP) and the cost of 
constructing and maintaining leaves.

Net energy profit (Pn) is assumed to be equal to the difference 
between the energy gain through assimilation (GPP) and the cost of 
constructing and maintaining leaves:

where zcost (mol C m−2 year−1) is the unit cost of constructing and 
maintaining leaves and depends on climate. It should be larger 
when the photosynthetic characteristics of the vegetation are 
affected by warming or increased aridity at relatively higher tem-
perature, lower soil moisture, and/or higher VPD since more car-
bon needs to be allocated to root construction (Liu et al.,  2018; 
Xu et al.,  2012; Yan et al.,  2021). Note that although both GPP 
and LAI have a large spatial variation, zcost expresses the unit car-
bon cost requirements for the leaf, which varies much less across 
the Tibetan Plateau where grassland is the dominant vegetation 
coverage. Therefore, zcost was assumed to be constant across the 
Tibetan Plateau each year.

Substituting Equation (4) into Equation (10), net profit can be ex-
pressed as:

When the first derivative of Equation (12) is equal to zero, the turning 
point is a maximum, as the second derivative is always positive:

Based on Equation (13), the optimal LAI can then be solved as:

Substituting Equation  (10) into Equation  (14) yields energy-limited 
fAPAR (fAPARenergy):

The formula shows that in energy-limited conditions, peak vegetation 
cover should only be controlled by energy supply. The greater the A0, 
the larger the fAPAR.

2.3.3  |  The mass balance-based water limitation

The mass balance-based water limitation requires that transpira-
tion (accompanied by carbon assimilation) should be matched by the 
water supply from precipitation (Qiao et al., 2020, 2021). We assume 
that vegetation makes use of a certain fraction (f0) of precipitation to 
maintain its capacity for photosynthesis.

where T is the total transpiration in the growing season (mm year−1), 
PREC is annual total precipitation (mm year−1) and f0 is the ratio 
of precipitation to transpiration (dimensionless), which depends 
on the partitioning of evapotranspiration (ET) and precipitation. 
To simplify the model, f0 is set as a constant across the Tibetan 
Plateau.

The water demand of the vegetation can be estimated by Fick's 
Law (Tan et al., 2021):

where Gs is canopy conductance to CO2.
Carbon assimilation, accompanied by transpiration, can be ex-

pressed as a function of canopy conductance (Gs), ambient CO2 con-
centration (ca) and the ratio of leaf-internal CO2 (ci) to ca (χ) using 
Fick's law:

Substituting Equation (18) into Equation (17), T can be calculated as:

Derived from Equations  (16) and (19), based on the mass balance, 
water-limited vegetation cover (fAPARwater) can be calculated as:

2.3.4  |  Parameter estimation

This framework posits that peak vegetation cover should be de-
termined by the lesser of the water and energy-limited vegetation 
cover (Qiao et al., 2021). Fmax can then be expressed as:

Here, fmax is set as a constant (.95) (Turner et al., 2009; Yang et al., 2015). 
It represents the maximum achievable fAPAR and is independent of 
other parameters. f0 and zcost are fitted by the observed fAPAR and 
climate data using log-sum-exp regression:

(10)fAPAR = 1 − e−k LAI,
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We assume that zcost can vary temporally but is spatially constant across 
the Tibetan Plateau. This simplification reflects the fact that the uneven 
distribution of samples along environmental gradients precludes an analy-
sis of the spatial variability in zcost. The fitted f0 is quite conservative through 
time (f0 = 0.41 ± 0.07). However, the fitted zcost shows a positive interannual 
trend (Figure S4), which is significantly related to temperature and VPD.

Maximum LAI is estimated from Fmax based on Beer's law:

2.4  |  Diagnosing the contribution of 
environmental factors

We applied our model to diagnose the driving forces of greening and 
browning of the Tibetan Plateau. Six simulations with different in-
puts were used to assess the ability of the model to predict response 
patterns of vegetation cover to climate change and environmen-
tal factors. In the first experiment (PRE), all input variables varied 
over time. In the other five experiments (PREC, CO2, PPFD, VPD, 
TEMP), the named input variable was held constant at its median 
value over the 35 years and the other variables were allowed to vary 
realistically. The difference between the PRE and each of the indi-
vidual variable simulations provides a measure of the effect of single 
drivers. Similar analyses were used to diagnose the contribution of 
individual environmental factors to the trends in precipitation and 
temperature sensitivity.

3  |  RESULTS

3.1  |  Empirical analysis of the trends in vegetation 
greenness

The climate of the Tibetan Plateau changed significantly between 
1982 and 2016. Annual total precipitation increased from 492 to 
596 mm, implying an average increase of 3.1 mm year−1 (Figure S5a). 
The largest increases in the absolute amount of precipitation oc-
curred in the driest areas, whereas the relatively small areas of 
the plateau with high precipitation experienced a slight decrease 
(Figures S6a, S7a and S8). Summer temperature, as measured by the 
accumulated temperature of the growing season (SWI0), increased at 
a rate of 0.31°C month year−1 (Figure S5b). The thermal growing sea-
son became longer by 0.66 day year−1 (Figures S3 and S5c). As a result 
of the extended growing season, incident solar radiation as meas-
ured by accumulated PPFD during the growing season increased by 
20.3 mol m−1 year−1 (Figure S5d). Although precipitation increased, 
atmospheric water demand as measured by VPD also increased by 
0.0018 kPa year−1 (Figure S5e). The trends in SWI0, PPFD and VPD 
are not spatially uniform, but they changed in the same direction 
across the whole of the region (Figures S6 and S7). Atmospheric CO2 
concentration, which is the principal driver of the changes in climate 

but has additional effects on plant physiology and growth, increased 
from 341 ppm in 1982 to 404 ppm in 2016 (Figure S5f).

Although climate, radiation and CO2 have changed in the same 
direction, the change in Fmax across the Tibetan Plateau has not 
been uniform (Figure 2a). About half (53%) of the area has experi-
enced greening and about half (47%) browning between 1982 and 
2016. The greening trend is most pronounced in the northeast and 
northern part of the vegetated area, with a significant increase over 
19% of the Plateau. Browning is more pronounced in the central 
and south-eastern parts of the Plateau and is significant over 15% 
of the area. These divergent trends in peak vegetation greenness 
are also seen in the GLASS product (Figure S9). In the climate space 
defined by annual total precipitation and SWI0, we found that the 
rapid increase in peak vegetation occurred in areas with low annual 
precipitation (<500 mm) while browning occurred in areas with high 
precipitation (>500 mm) (Figure 2b).

The spatial patterns of greening and browning are largely robust 
to the use of Fmean instead of Fmax. However, the trends in Fmean are 
weaker in both greening and browning regions (Figure S10) reflect-
ing the fact that this measure is affected by changes in the length 
of the growing season whereas Fmax is a more direct measure of the 
amount of carbon allocated to foliage to support vegetation growth. 
The greening and browning trends, as measured by Fmax, are stronger 
during the interval 2001–2016 than during the interval from 1982 to 
2000 (Figure S10). Fmean shows only limited evidence of browning 
during the earlier interval, when the general trends are weaker, al-
though it does show significant greening in the south-western part 
of the plateau consistent with the results shown by Fmax. The green-
ing and browning trends during the recent interval (2001–2016) are 
consistent with trends shown by other vegetation indices, including 
GIMMS-derived maximum NDVI, SIF and MODIS-derived EVI and 
NIRv (Figure 2c). The consistency with SIF and NIRv is encouraging 
since these products are thought to be a good reflection of pho-
tosynthetic activity in non-forest and open vegetation (Badgley 
et al., 2017; Porcar-Castell et al., 2014). However, MODIS fAPAR and 
NDVI show a more extensive areas of greening and do not show the 
marked browning in the southern part of the plateau that is clearly 
identified in our analyses and the SIF products (Figure S8).

To confirm the robustness of the identified greening regions, 
we also applied the methodology proposed by Cortés et al. (2021) 
to account for temporal autocorrelation and the issue of multiple 
hypothesis testing, whereby we calculated the temporal autocor-
relation at lag-1 for each grid cell (Figure  S11) and then used a 
permutation test to detect greening regions across the Tibetan 
Plateau. This method is more conservative and so the area of sig-
nificant greening and browning was reduced from 19% to 15% and 
from 11% to 9% respectively. Nevertheless, this reduction does 
not impact the identification of a greening trend in the north-
western part of the Plateau and a browning trend in the southeast 
(Figure  S12). Cortés et al.  (2021) also proposed the application 
of spatial clustering to reduce false-positive rates. However, as 
they recognized, this procedure makes it difficult to identify co-
herent trends in areas of complex topography, and thus, we did 
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not apply it here. Other indices for vegetation cover, including the 
mean and peak values of fAPAR during the growing season, LAI 
and NDVI, show similar spatial patterns to those identified using 
Fmax, thus providing further confirmation that these trends are 
robust (Figure  2c). These divergent trends detected by multiple 
remote sensing-based products resulted in no significant change 
in the mean peak vegetation greenness across the Tibetan Plateau 
(Figure S12). In the climate space defined by annual total precipita-
tion and SWI0, we found that the rapid increase in peak vegetation 
occurred in areas with low annual precipitation (<500 mm) while 
browning occurred in areas with high precipitation (>500 mm) 
(Figure 2b).

Fmax shows a strong relationship with both precipitation and 
temperature, with low values in drier and colder areas and high 
values in wetter and warmer areas. These two climate factors to-
gether explained 67% of the spatial variation in Fmax (Figure 3a and 
Figure  S14a). Log-sum-exp regression shows that Fmax increased 

approximately linearly with precipitation and temperature when 
water and heat supply are insufficient (i.e. in low precipitation and 
temperature conditions). Fmax is even more closely related to pre-
cipitation and potential gross primary production (A0) as calculated 
by the P model, with low Fmax values in drier and low-energy sup-
ply areas and high values in wetter and high-energy supply areas 
(Figure 3b and Figure S14b). These two variables together account 
for around 75% of the spatial variation in Fmax, reflecting the fact 
that potential gross primary production integrates the effects of 
SWI0, PPFD and VPD on vegetation growth. The strong statisti-
cal relationship between climate and vegetation greenness is also 
seen in analyses using the GLASS product (Figure  S15). This em-
pirical analysis suggests that plant growth on the Tibetan Plateau 
may be limited by either water availability or energy availability, 
where water-limited areas are mainly located in the northwest of 
the Plateau and energy-limited areas in the centre and southeast 
(Figure S16).

F I G U R E  2  Divergent responses of alpine peak vegetation cover to environmental change. (a) Spatial distribution of the temporal trend of 
maximum fAPAR (Fmax) over 1982–2016. (b) Trend of GIMMS Fmax in the climate space of summer warmth index (SWI0, a metric of growing 
season heat accumulation that is calculated as the sum of monthly temperatures above 0°C) and annual total precipitation (precipitation, 
a metric of water accumulation). The climate space is subdivided into different bins of equal intervals with bin widths arbitrarily set to 5°C 
month for SWI0 and 50 mm for precipitation. Trends for each bin are calculated by averaging the subset of all pixels falling within that bin. 
Bins containing less than 5 pixels are not included. (c) Spatial distribution of the trend in alpine peak vegetation cover from multi-satellite 
proxies over 2001–2016 (depicted for GIMMS fAPAR3g and NDVI3g, CSIF, GOSIF, MODIS fAPAR, NDVI, NIRv and EVI) Grid cells labelled 
black dots indicate that the trends are statistically significant (p < .05). 



134  |    ZHU et al.

3.2  |  Model validation

Our EEO-based model prediction of Fmax is consistent with satellite 
observations (Figure  4), with a correlation coefficient (r) between 
predicted and observed GIMMS3g Fmax of .76 and a root mean 
squared error (RMSE) of .12. Correlations of the spatial patterns 
for individual years ranged from .58 to .82 (Figure  S17). Similar 
model performance is also shown for predictions of and GLASS Fmax 
(r = .79 and RMSE = .11, Figure S18) and GIMMS3g LAImax (r = .75 
and RMSE  =  .69 m2  m−2, Figure  S19). (Note that the larger RMSE 
for LAImax reflects the different ranges for LAImax and Fmax.) The 
spatial comparison with MODIS-derived Fmax and LAImax also shows 
satisfactory agreement between observed and predicted values 
(r  =  .67 and RMSE  =  .12 m2  m−2, r  =  .71 and RMSE  =  .68 m2  m−2, 
Figure  S20) without any recalibration of the model parameters. 
Comparison of predicted Fmax with in situ measurements of 
aboveground biomass (Figures S21 and S22), resampled to the 0.1° 
resolution used for modelling, shows good agreement (R2  =  .44, 
p < .001). The model also shows good agreement (r =  .64) with the 
simulated GPP derived from PML-V2 (Figure  S23). Furthermore, 
the model correctly predicted the observed divergent trends in dry 
versus wet areas (Figure 5). The model predicted an increase in Fmax 

F I G U R E  3  Relationship between peak vegetation growth and climate. (a) Relationship between Fmax and total precipitation and summer 
warmth index (SWI0) in 1982. (b) Relationship between Fmax and total precipitation and potential gross primary production (A0) in 1982. Fmax 
selected in each 50 mm and 5°C month (50 mm and 100 g C m−2) bin represents the maximum attainable vegetation cover for given annual 
precipitation and SWI0 (A0). Climate bins containing less than five grid cells are not included in these plots. Coloured lines represent the 
fitted contour of Fmax, ranging from 0% to 80% with an interval of 10%. 

F I G U R E  4  Comparison of estimated peak vegetation cover 
against observations. Fmax data are collected in the climate space 
of annual total precipitation and summer warmth index (SWI0) 
over 1982–2016. The density of points is represented by different 
colours. The black dashed line is the 1:1 line. The insert panel 
represents the probability density of predicted and observed Fmax. 
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of 0.32 ± 0.19% year−1 in the water-limited areas, indistinguishable 
from the satellite-observed trend of 0.31 ± 0.14% year−1. In energy-
limited areas, the predicted Fmax decreased by 0.07 ± 0.06% year−1, 
close to (though somewhat smaller than) the observed decline of 
0.12 ± 0.08% year−1. The interannual variation in Fmax is also well 
predicted by the model in both regions, though better in water-
limited regions (r = .75) than energy-limited regions (r = .45).

3.3  |  Diagnosis of the response of Fmax to individual 
environmental variables

The factorial simulations show the relative contribution of differ-
ent environmental factors to the observed trends in Fmax (Figure 6). 
Increasing precipitation was the major driver of Fmax trends in water-
limited areas (0.30 ± 0.12% year−1) but was relatively unimportant in 
energy-limited areas (0.010 ± 0.004% year−1). Increasing CO2 had a 
positive effect on vegetation cover overall, but the effect was larger 
in water-limited areas (0.128 ± 0.006% year−1) than in energy-limited 
areas (0.077 ± 0.003% year−1). Radiation had opposite effects in the 
two areas: increased radiation reduced vegetation cover in water-
limited regions (−0.100 ± 0.035% year−1) but encouraged vegetation 
growth in energy-limited regions (0.104 ± 0.040% year−1). Increased 
VPD and warming had negative effects in both areas, but when 
compared with other environmental factors, the impact of VPD 
and warming was greater in energy-limited areas (−0.106 ± 0.043% 
year−1, −0.132 ± 0.031% year−1 respectively) than water-limited areas 
(−0.142 ± 0.064% year−1, −0.078 ± 0.026% year−1 respectively).

Our analyses show that the relationship between vegetation cover 
and climate has weakened over the past three decades (Figure 7). The 
model predictions indicate that the sensitivity of vegetation cover 

to precipitation decreased by 13.6 ± 3.9% over the period between 
1982 and 2016, while the sensitivity to temperature decreased by 
36.9 ± 15.6%. These declines in sensitivity are also seen in the satellite 
observations. The interannual variation in observed sensitivity is also 
captured by the model, though the performance of the model in pre-
dicting temperature sensitivity (r = .89) is better than predicting precip-
itation sensitivity (r = .64). Factorial simulations show that nearly half 
(49.9 ± 14.5%) of the decrease in temperature sensitivity results from 
increased temperature (Figure S24); the effect of increased tempera-
ture offsets the positive impacts of increased precipitation (7.6 ± 6.9%), 
elevated CO2 (3.6 ± 0.7%) and increased PPFD (21.6 ± 10.0%) on veg-
etation growth. These factorial simulations also show that recent 
increases in CO2 have a positive influence on the sensitivity of veg-
etation growth to precipitation. This somewhat counterintuitive re-
sult reflects the fact that although water-use efficiency increases 
with elevated CO2 (Cheng et al., 2017; Keenan et al., 2013), the CO2 

F I G U R E  6  Attribution of trends in peak vegetation cover to 
various factors. (a, b) Trends in Fmax derived from observation 
(OBS) and modelled trends driven by precipitation (PREC), rising 
CO2 (CO2), photosynthetic photon flux density (PPFD), vapour 
pressure deficit (VPD), temperature (TEMP) and all environmental 
factors (PRE) using the Mann–Kendall test in water-limited areas (a) 
and energy-limited areas (b). Error bars show the 95% confidence 
intervals of the regression. Statistically significant trends (p < .05) 
are marked with one asterisk. 

F I G U R E  5  Trends in observed and predicted peak vegetation 
cover on the Tibetan Plateau. (a, b) Annual time series of observed 
GIMMS Fmax (black line) and predicted Fmax (red line) in water-
limited areas (a) and energy-limited areas (b) over 1982–2016. Fmax 
data are collected in the climate space of total precipitation and 
SWI0. The solid lines show fitted linear regressions, with slope m 
(% year−1) and p values indicated (*p < .05; **p < .01; ***p < .001). 
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induced enhancement of growth places high demands on water avail-
ability. The positive effect of CO2 on the sensitivity of vegetation 
growth to increasing precipitation is offset by the negative influence 
of other variables. Specifically, the decreased sensitivity to precipita-
tion is influenced both by changes in VPD and by changes in precip-
itation itself (Liu et al., 2021; Maurer et al., 2020), which contribute 
7.8 ± 2.2% and 6.9 ± 2.9%, respectively, to the decline in sensitivity. In 
water-limited environments (Figure S24b), plants respond to increases 
in VPD through stomatal closure (Ding et al., 2018; Yuan et al., 2019) 
and there is thus less transpiration and lower overall water demand. 
Under these conditions, increased precipitation does not translate 
into increased Fmax because the water demand is already satisfied. The 
situation is different in energy-limited regions, where increased VPD 
inhibits photosynthesis and therefore directly reduces growth and 
the need for water. The declining sensitivity to precipitation reflects 
the fact that as precipitation increases, there is an overall shift from 
water limitation to energy limitation across the Tibetan Plateau, with 
water-limited areas shrinking and energy-limited areas expanding sig-
nificantly (Figure S25). These changes mean there is a reduction in the 
water constraint on vegetation growth, such that vegetation growth 
becomes less sensitive to further increases in precipitation.

4  |  DISCUSSION

We have developed an EEO-based approach to account for car-
bon allocation to leaves subject to constraints by water availability, 

which requires calibration of only two parameters (f0 and zcost). We 
have shown that this parsimonious modelling framework accounts 
for changes in vegetation cover both at individual sites and region-
ally. Model predictions of Fmax and LAImax are consistent with obser-
vations, derived both from the GIMMS3g data from which the values 
of f0 and zcost were derived but also with MODIS-derived Fmax and 
LAImax. Comparisons of simulated Fmax with in situ measurements 
of peak season above-ground biomass and GPP also show relatively 
good agreement; perfect agreement is not expected because these 
variables reflect not only variations in Fmax but also variations in bio-
mass per unit leaf area and its turnover rate, and vegetation light-use 
efficiency. Field measurements of Fmax or LAImax would be helpful for 
future model testing.

As a result of data constraints, specifically the risk of unevenly 
sampling environmental gradients, we have assumed that zcost is spa-
tially constant across the Tibetan Plateau but can vary through time. 
However, the fact that the temporal variability in zcost is dependent 
on climate shows this is an oversimplification. While the satisfactory 
model performance indicates that this simplification has not had a large 
impact on our results overall, it would be informative to investigate the 
spatial and temporal variations in zcost at a global scale. Given that this 
variability reflects changes in allocation to fine root construction and 
turnover (per unit leaf area), it should be possible to derive an EEO ap-
proach to predict zcost as a function of environmental conditions.

We have identified divergent responses of maximum seasonal 
vegetation cover to recent observed climate changes in water-limited 
and energy-limited areas of the Tibetan Plateau. Previous studies 
of vegetation change, based on various MODIS-derived vegeta-
tion indices, have identified much stronger greening trends across 
the Plateau (Chen et al., 2020; Li et al.,  2020; Shen, Piao, Jeong, 
et al., 2015; Wang et al., 2019) and not recognized this strong diver-
gence, although Wei et al.  (2022) have identified browning trends 
in the southern and eastern part of the Plateau between 1981 and 
2015. Our analyses indicate that the regional extent, strength and 
significance of trends in vegetation cover are sensitive to whether 
the focus is on mean or peak growing season values, the sensor and 
vegetation indices used and the time period considered. The trends 
show up more strongly in peak growth than in the mean over the 
growing season, which reflects the fact that mean values are also 
influenced by changes in growing season length. The divergent 
trends are also stronger during recent decades than before 2000 
CE, a finding consistent with that reported by Shen, Piao, Jeong, 
et al. (2015). While MODIS-derived fAPAR and LAI do not show the 
extent of browning shown by GIMMS3g-derived fAPAR and LAI, the 
divergent pattern is seen in the SIF and NIRv products from MODIS. 
Given that SIR and NIRv are considered to reflect vegetation struc-
ture and activity better than other indices (Bardgett et al.,  2021; 
Li & Xiao, 2019), this suggests that our finding of divergent trends 
across the Plateau is robust. Nevertheless, it would be useful to have 
long-term field measurements at the ecosystem level, not only for 
investigating the differences in vegetation trends shown by differ-
ent remote sensing products but also for monitoring the in situ veg-
etation changes (Piao et al., 2020).

F I G U R E  7  Weakened relationship between vegetation cover 
and climate. (a) Annual time series of observed (black line) and 
predicted (red line) sensitivity of vegetation cover to precipitation 
(kp) on the Tibetan Plateau over 1982–2016. (b) Annual time 
series of observed (black line) and predicted (red line) sensitivity 
of vegetation cover to temperature (kt) on the Tibetan Plateau 
over 1982–2016. Both the observed and predicted sensitivities of 
peak vegetation cover to climate are obtained from log-sum-exp 
regression in the climate space of precipitation and SWI0. The solid 
lines show fitted linear regressions, with slope m (a, % mm−1 year−1; 
b, % SWI0

−1 year−1) and p values indicated (*p < .05; **p < .01; 
***p < .001). 
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Annual peak vegetation cover has been used to track environ-
mental constraints on terrestrial ecosystem productivity in pre-
vious studies (Donohue et al., 2013; Huang et al., 2018; Keenan & 
Riley, 2018; Ukkola et al., 2015; Vicca, 2018). Most of these stud-
ies do not explicitly differentiate the responses in water-limited 
and energy-limited regions. However, Ukkola et al.  (2015) found 
divergent trends in peak vegetation across Australia, with greening 
in water-limited areas and no significant change in carbon-limited 
areas. The divergent effects in water-limited and energy-limited re-
gions of the Tibetan Plateau are a consequence of the fact that the 
long-term increase in growing season cumulative PPFD has opposite 
effects on water use and energy uptake (Figure 5 and Figure S26). In 
energy-limited areas, the observed lengthening of the growing sea-
son, and the consequent increase in cumulative radiation, stimulated 
photosynthesis (Ren et al., 2021). However, in arid or semiarid re-
gions, increased PPFD increased potential productivity (A0), result-
ing in increased water demand per unit leaf area and, since the water 
supply is limited, imposed a constraint on vegetation growth. This 
constraint has been partially offset by an increase in precipitation in 
water-limited areas, as also noted by Zhao et al. (2019), but changes 
in precipitation have had only a minor (albeit positive) effect on veg-
etation cover in energy-limited areas.

Increasing CO2 concentrations have had a positive influence 
on peak vegetation cover in both energy- and water-limited 
areas, although the effect is almost twice as strong in water-
limited areas. The same phenomenon has been observed in 
field experiments (Ainsworth & Long,  2005; Zhu et al.,  2020). 
Increased water use efficiency with increasing atmospheric CO2 
concentration (Donohue et al., 2013; Keenan et al., 2013; Ukkola 
et al., 2015) reduces the water constraint in water-limited areas. 
In energy-limited areas, increased CO2 concentration is expected 
to increase vegetation cover due to enhanced photosynthesis 
(Piao et al., 2020; Poorter et al., 2021). This enhancement, how-
ever, follows a saturating response curve of photosynthesis to 
CO2, thus having a weaker effect than in water-limited areas. The 
negative impact of increasing VPD on vegetation growth in both 
energy- and water-limited areas of the Tibetan Plateau has also 
been observed in global analyses (Yuan et al.,  2019). Increased 
VPD triggers stomatal closure, a mechanism for reducing water 
loss, leading to a decline in photosynthesis (Ding et al.,  2018; 
Smith et al., 2020; Yuan et al., 2019).

We have shown that warming results in an apparent increase 
in the unit cost of constructing and maintaining leaves (zcost). One 
interpretation of this is that warming leads to increases in below-
ground carbon allocation. This is consistent with in situ observations 
and experimental evidence, from the Tibetan Plateau and some 
other regions (Liu et al., 2018; Xu et al., 2012; Yan et al., 2021). Liu 
et al. (2018), for example, have shown that warming leads to a shift 
towards deeper rooting and more below-ground carbon allocation 
in alpine grasslands on the Tibetan Plateau, allowing plants to ac-
quire more water and nutrients. Xu et al.  (2012) showed a similar 
shift in a long-term warming experiment in tallgrass prairie, although 
this response was modulated by water availability. Studies of the 

impact of warming in tundra vegetation show that increases in 
below-ground allocation in response to warming are not universal 
(Hollister & Flaherty,  2010; Wang et al.,  2016); nevertheless, the 
observed decline in vegetation sensitivity to warming over the past 
three decades, noted in other studies (Keenan & Riley, 2018; Piao 
et al., 2014, 2017), may be a reflection of increased below-ground 
carbon allocation in regions where water supply is sufficient.

Our study confirms that the sensitivity of vegetation growth to 
increasing temperature has weakened in recent decades, as shown 
in other studies (Keenan & Riley, 2018; Piao et al., 2014, 2017). The 
magnitude of this decrease (36.9 ± 15.6%) on the Tibetan Plateau 
between 1982 and 2016 is similar to the value of 32.8% obtained 
from the analyses of the northern extratropics for the period be-
tween 1982 and 2012 (Keenan & Riley,  2018). In contrast to the 
findings of Keenan and Riley (2018) for the northern extratropics, 
this declining sensitivity does not translate into a reduction of the 
area that is energy limited on the Tibetan Plateau, which expanded 
by 11.8% over the period 1982–2016. This appears to be the result 
of the interplay between temperature and changes in other climate 
factors. The substantial increase in precipitation over the Plateau 
results in a decline in the area that is water limited but is insufficient 
to overcome the additional costs of constructing and maintaining 
leaves in energy-limited regions resulting from the increased radi-
ation and atmospheric dryness. Several studies have shown that 
increasing precipitation has led to increased vegetation growth in 
dry regions (Liu et al.,  2021; Maurer et al.,  2020), and thus, a re-
duction in the area of water limitation as in the Tibetan Plateau. 
However, these studies have not explicitly examined changes in the 
overall sensitivity to increasing precipitation, which we have shown 
has also weakened in recent decades—albeit at a lower rate than 
the sensitivity to temperature. Understanding how this change in 
sensitivity to precipitation will affect the response to temperature 
will be important for understanding future changes in vegetation 
growth.

The regional extent, strength and significance of trends in vege-
tation cover are all sensitive to whether mean or peak growing sea-
son values are used, the indices used as a proxy for vegetation cover 
and the time period considered, as well as the statistical approaches 
used (Cortés et al., 2021). Here, we have used peak fAPAR as being 
the remotely sensed index closest to plant growth and have focused 
on peak growing season fAPAR values as likely to be most sensitive 
to environmental changes. We are able to reproduce the spatial pat-
terns and trends in peak fAPAR using a simple and independently 
constructed EEO-based model of plant growth, which suggests that 
the reconstructed patterns over the Tibetan Plateau are realistic, 
and have diagnosed the impact of individual environmental factors 
on these trends. Process-based global vegetation models have been 
used to explore the causes of recent changes in vegetation cover 
(Piao et al., 2020; Winkler et al., 2021; Zhu et al., 2016). However, 
the global climate data sets used to drive these simulations repre-
sent the climate of the Tibetan Plateau poorly (see Figures S27 and 
S28) and this precludes any direct comparison of our results with 
existing process-based simulations. Nevertheless, EEO (Franklin 
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et al., 2020; Harrison et al., 2021) approaches have been shown to 
provide as good a representation of ecosystem processes as more 
complex global vegetation models (De Kauwe et al., 2015; Mengoli 
et al., 2021), and our analyses suggest that these approaches provide 
a useful alternative way of exploring the causes of recent vegetation 
changes.

5  |  CONCLUSIONS

Despite having experienced similar climate trends over the last three 
decades, drier regions of the Tibetan Plateau have shown enhanced 
vegetation cover (greening) while wetter regions have shown de-
creased peak seasonal vegetation cover (browning). These divergent 
responses can be explained using a model that invokes the limitation 
of vegetation growth by energy or water. While recent increases in 
CO2 have tended to increase vegetation cover in both energy- and 
water-limited regions, changes in temperature and atmospheric dry-
ness (VPD) have impacted these regions differently. Warming has 
brought additional allocation costs, weakening the sensitivity of 
vegetation to temperature increases, particularly in energy-limited 
regions. This parsimonious modelling framework based on eco-
evolutionary theory has thus succeeded in predicting maximum veg-
etation cover and its temporal trends, and the unexpected spatial 
divergence of these trends across the Tibetan Plateau. Our analysis 
demonstrates the potential of parsimonious EEO-based modelling to 
reveal the mechanisms underlying recent trends in vegetation cover 
and its sensitivity to climate change.
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