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Age-related neurodegenerative diseases, such as Alzheimer disease (AD) and age-
related macular degeneration (AMD), are multifactorial and have diverse genetic and
environmental risk factors. Despite the complex nature of the diseases, there is long-
standing, and growing, evidence linking microbial infection to the development of AD
dementia, which we summarize in this article. Also, we highlight emerging research
findings that support a role for parainfection in the pathophysiology of AMD, a disease
of the neurosensory retina that has been shown to share risk factors and pathological
features with AD. Acute neurological infections, such as Bacterial Meningitis (BM), trigger
inflammatory events that permanently change how the brain functions, leading to lasting
cognitive impairment. Neuroinflammation likewise is a known pathological event that
occurs in the early stages of chronic age-related neurodegenerative diseases AD and
AMD and might be triggered as a parainfectious event. To date, at least 16 microbial
pathogens have been linked to the development of AD; on the other hand, investigation
of a microbe-AMD relationship is in its infancy. This mini-review article provides a
synthesis of existing evidence indicating a contribution of parainfection in the aetiology
of AD and of emerging findings that support a similar process in AMD. Subsequently,
it describes the major immunopathological mechanisms that are common to BM and
AD/AMD. Together, this evidence leads to our proposal that both AD and AMD may have
an infectious aetiology that operates through a dysregulated inflammatory response,
leading to deleterious outcomes. Last, it draws fresh insights from the existing literature
about potential therapeutic options for BM that might alleviate neurological disruption
associated with infections, and which could, by extension, be explored in the context of
AD and AMD.
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INTRODUCTION

Tissue inflammation, which was described initially as an
outcome of the host defense mechanism against intruding
pathogens and injury, is now also considered a hallmark
of aging, due to ‘‘inflammageing’’. This term was coined
(Franceschi et al., 2000) to describe the decline in immune
function due to aging and the immunological shift towards
a pro-inflammatory profile. It remains unclear whether the
inflammation is a driver of (‘‘pathogenic’’), or a response to
(‘‘protective’’), a degenerative condition. In infection-associated
neuroinflammation such as occurs in bacterial meningitis (BM)
the inflammatory process which comprises multiple networks of
protein mediators and cellular players acts as a double-edged
sword: it eliminates intruding pathogens but simultaneously
causes bystander immune pathology.

Although the brain and the eye are considered to be
immunologically privileged by dint of the blood-brain and blood-
retina barriers respectively neuroinflammation has been detected
in both organs. Immune contributions to Alzheimer disease
(AD; Hensley, 2010) and age-related macular degeneration
(AMD; Buschini et al., 2011) are now also recognised. But what
are the triggers for ‘‘inflammageing’’? In the context of AD,
the ‘‘plaque’’ theory has postulated that the neuropathological
hallmarks of AD [amyloid plaques, neurofibrillary tangles
(NFT), and neurodegeneration] are neuroinflammatory triggers
(Hensley, 2010). In AMD, lipoproteins and free radicals are
known initiators of retinal parainflammation, a form of chronic
low-grade inflammation caused by endogenous stress (Xu
et al., 2009). Furthermore, several genes in the complement
system, such as complement factor H (CFH)—whose product
regulates complement-mediated inflammation—are associated
with AMD (Geerlings et al., 2017). Parainfectious triggers of
neurodegeneration, i.e., infection in the central nervous system
(CNS) or systemic infection, have recently attracted significant
research attention. This has been supported by histopathological,
epidemiological, and microbiome findings (Itzhaki et al., 2020;
Komaroff, 2020). Regardless of the identity of such triggers, it is
believed that they might not only initiate an immune response,
but that they also potentiate such responses through persistence.

This mini literature review begins by providing a succinct
overview of the role of infections in AD, focussing on the
latest developments without extensively covering material that
has been reviewed elsewhere by other authors (Fulop et al.,
2018; Moir et al., 2018; Morris et al., 2018; Trempe and
Lewis, 2018; Ashraf et al., 2019; Moir and Tanzi, 2019;
Komaroff, 2020). Since, AD and AMD share common risk
factors, e.g., aging and smoking, and pathologic features, e.g.,
the presence of extracellular deposits and complement system
activation (Kaarniranta et al., 2011), this mini-review article
also integrates recent evidence that suggests a contribution of
parainfection in the aetiology of AMD. It then focuses on the
immunopathological properties common to the two age-related
neurodegenerative diseases and BM—a neuroinfectious disease
that often leads to lifelong neurological disorders. Extensive
research effort on BM has been put into alleviating its associated
lifelong neurological disabilities via adjunct immunomodulation.

We aim to provide original insights that may bridge the research
gap between a neurological infectious disease, BM, and age-
related neurodegenerative diseases, AD and AMD, for which
there is increasing evidence of an infectious aetiology.

EXISTING EVIDENCE SUGGESTS AN
INFECTIOUS AETIOLOGY OF
NEURODEGENERATIVE DISEASES

The neurodegenerative diseases AD and AMD are complex
multifactorial diseases that share modifiable (e.g., treatable
medical conditions and lifestyle factors) and non-modifiable
(e.g., age and genetics) risk factors as well as common
pathological mechanisms, including inflammation and oxidative
stress (Figure 1).

Alzheimer Disease
AD, an irreversible, progressive neurodegenerative disorder,
contributes to 60%–80% of dementia cases among the elderly
(Alzheimer’s Association, 2015). It is a complex multifactorial
disease that has a strong genetic component with more than
50 risk loci identified (Silva et al., 2019). Mutations in the
genes APP, PSEN1, and PSEN2 encoding for amyloid precursor
protein, presenilin 1 and presenilin 2, respectively, account
for most of the early-onset AD, while mutated apolipoprotein
E (APOE) gene is frequently associated with late-onset AD
(Silva et al., 2019). Such genetic defects were initially linked
to amyloidosis—a well-known histopathological hallmark of
AD, the removal of which has been attempted as a treatment;
unfortunately, such clinical trials have failed (Oxford et al.,
2020). While this appears to preclude amyloidosis as a primary
causal factor for AD, it does not diminish the importance of
genetic factors in AD, and continued efforts to give biological
meaning to genetic information may facilitate the identification
of aetiological agent(s) and/or key immunopathological factor(s),
which ultimately are necessary for therapeutic discovery.

Theories of AD Aetiology
There are two principal theories of AD aetiology. The first,
and earliest, is amyloid-β (Aβ)—centric: it proposes a causal
relationship between Aβ and AD. The second, alternative, theory
proposes that Aβ does not directly cause AD, given that the
known neuropathological hallmarks—accumulation of amyloid
plaques around brain neurons and the formation of NFT—are
also present in other neurodegenerative diseases, including post-
stroke syndrome (Thiel et al., 2014), traumatic brain injury
(Kenney et al., 2018) and lead poisoning (Li et al., 2010).
Moreover, neuroimaging and post-mortem histopathology show
the presence of Aβ deposits and NFT in cognitively normal
elderly people (Fagan et al., 2009; Price et al., 2009; Chetelat
et al., 2013). One extension of this latter hypothesis is that the
plaques and tangles seen in AD represent a stereotypical response
to inflammation, which in turn is initiated by an infectious
agent. This is backed by several lines of evidence, including
detection of microbial components in AD biospecimens and
empirical demonstration of the antimicrobial properties of Aβ,
which is consistent with its production as part of a host
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FIGURE 1 | Schematic diagram of risk factors and mechanistic events that underlie the pathogenesis of Alzheimer disease (AD) and age-related macular
degeneration (AMD). The question sign indicates an unknown, potentially “infectious” contributor to the downstream immunopathological cascades that are common
in both AD and AMD.

defense mechanism to eliminate infectious agents (Soscia et al.,
2010). Numerous reviews are proposing the alternative theory
of microbiological pathogenesis in AD, with overlapping and
distinct perspectives (Fulop et al., 2018; Moir et al., 2018;

Morris et al., 2018; Trempe and Lewis, 2018; Ashraf et al., 2019;
Moir and Tanzi, 2019; Komaroff, 2020). Itzhaki and colleagues,
and Komaroff, recently enunciated their viewpoints on the
infectious aetiology of AD (Itzhaki et al., 2020; Komaroff,
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2020). In general, scientific evidence for an infectious aetiology
of AD comes from histopathological, epidemiological, and
molecular findings.

There is a long-standing thesis of herpes simplex virus
type 1 (HSV1) as a risk factor for AD among apolipoprotein
E gene (APOE-ε4) carriers (Itzhaki, 2018). It proposes the
latent presence of the virus in the human brain, with
limited reactivation beyond middle age triggering chronic
neuroinflammation that eventually escalates into progressive
neurodegeneration (Itzhaki et al., 1997; Itzhaki, 2018). Likewise,
infection by the human immunodeficiency virus (HIV) remains
a significant aetiological factor in HIV-associated dementia,
which reproduces the defining hallmarks of AD (Fischer-Smith
and Rappaport, 2005). Other AD-associated neurotropic viruses
include HSV6, Cytomegalovirus (CMV), Epstein–Barr virus,
Varicella–Zoster virus, and Hepatitis C virus (Sochocka et al.,
2017). On the other hand, several spirochetal infections have
been implicated in AD development and progression (Miklossy,
2015). To date, epidemiological and neuropathological studies
have identified at least 16 microbial pathogens, including seven
bacteria (such as Chlamydia pneumoniae) as having a role in
the development of AD (Sochocka et al., 2017; Balin et al.,
2018; Ashraf et al., 2019). Fungal contagion by Candida albicans
(Pisa et al., 2015) and parasitic infection by Toxoplasma gondii
(Nayeri Chegeni et al., 2019) also have been linked to AD. In
the 2000s, two cases of reversible AD were reported in which
patients pre-diagnosed with AD recovered from neurological
and cognitive symptoms following antifungal treatment for
cryptococcal meningitis (Ala et al., 2004; Hoffmann et al., 2009).

Age-Related Macular Degeneration
AMD is clinically defined as progressive loss of central vision
resulting from neuronal and non-neuronal degeneration in the
macula, the central part of the retina that is responsible for the
finest spatial, temporal, and spectral acuity. The mainstay of
management is secondary preventative treatments: in particular,
there is a widespread use of anti-vascular endothelial growth
factor agents (anti-VEGF) to manage disease progression for
neovascular ‘‘wet’’ AMD, but there is no currently approved
therapy for the atrophic ‘‘dry’’ form of AMD. There are
multiple risk factors for AMD, including advanced age, genetic
polymorphisms, light iris color, smoking, and a high-fat diet
(Lambert et al., 2016). The first two are the two strongest risk
factors, with genetic polymorphisms of CFH and age-related
maculopathy susceptibility 2 (ARMS2) accounting for more than
50% of the heritability of AMD (DeAngelis et al., 2017). Although
both AD and AMD have a strong genetic component, none of
the AD-associated genes are linked to AMD pathology, and vice
versa (Kaarniranta et al., 2011). Given the complex multifactorial
nature of AMD, the precise aetiological sequence remains elusive.

The concept of an infectious aetiology of AMD largely
stems from direct evidence of a serological association between
microbes and AMD, indirect evidence that links microbe-
associated diseases to AMD, or evidence that implicates microbe-
mediated inflammatory responses to AMD pathogenesis.
Three case-control studies separately established a significant
serological association between wet and/or dry AMD and

C. pneumoniae infection (Ishida et al., 2003; Kalayoglu et al.,
2003; Shen et al., 2009), an infectious pathogen that has emerged
as a risk factor for common non-infectious diseases, including
AD and cardiovascular disease. AMD patients with high
antibody titers of C. pneumoniae were also found to have a
2- to 3-fold increased risk of disease progression (Robman et al.,
2005). Another case-control study, however, found a significant
association between CMV infection and both forms of AMD,
but not infection with C. pneumoniae and H. pylori (Miller
et al., 2004), while four other studies reported no significant
association between AMD and C. pneumoniae or Mycoplasma
pneumoniae (Klein et al., 2005; Haas et al., 2009; Turgut et al.,
2010; Khandhadia et al., 2012). The inconsistent findings might
have been attributable to variations of types and stages of AMD
cases included in the studies (Chen et al., 2014), or underlying
variations in other factors contributing to the aetiology of AMD.

While activation of the complement system is central to
controlling microbial infection, it also is a well-recognised
player in AMD pathogenesis. This is demonstrated by the
identification of complement signalling protein constituents in
drusen—a pathological hallmark of AMD, the accumulation
of which disrupts retinal homeostasis supported by retinal
pigment epithelium (RPE; Anderson et al., 2010; Kawa et al.,
2014; Weber et al., 2014; McHarg et al., 2015). Second,
genetic polymorphisms of complement pathway-inhibiting genes
contribute to an increased risk of AMD (Lambert et al., 2016). Of
particular interest, the membrane cofactor protein CD46, which
was found to be downregulated in the RPE of early geographic
AMD, is an HHV-6A-specific receptor (Vogt et al., 2011).
In multiple sclerosis, HHV-6A infection in astrocytes leads
to CD46 downregulation, resulting in hyperactivation of the
complement system that is damaging to the local tissue (Pinter
et al., 2000). It, therefore, has been speculated that HHV-6A
infection may trigger the pathological events that eventually lead
to AMD development and progression (Fierz, 2017).

IMMUNOPATHOLOGICAL MECHANISMS
IN BM THAT ARE SHARED WITH
AGE-RELATED NEURODEGENERATIVE
DISEASES

BM is frequently caused by Streptococcus pneumoniae and
Neisseria meningitidis, with the former being associated with
high mortality rate or lifelong neurological sequelae in patients
with good recovery (Brouwer et al., 2010; also refer to review
Liechti et al., 2015 for the pathophysiology of BM). Although
there is no direct serological evidence that links primary
infectious pathogens of BM to AD or AMD, these diseases
share several common inflammatory events that may disrupt
normal physiological processes. Similar to other infectious
diseases, CNS infection by BM microbes typically triggers
an inflammatory response that comprises four elements: the
inducers, sensors, mediators, and effectors (Medzhitov, 2010).
While the ‘‘inducers’’ of AD/AMD can be multifactorial and
of infectious origin not directly linked to BM, the ‘‘sensors,’’
‘‘mediators’’ and ‘‘effectors’’ overlap between BM and AD/AMD
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(Table 1). The discovery of inflammation-related sensors,
mediators, and effectors in age-related diseases, e.g., AD and
AMD (Eikelenboom et al., 2000; Franceschi et al., 2000;
Buschini et al., 2011), leads to the current understanding that
inflammation is not exclusively a response to tissue injury
or infectious diseases. It also occurs throughout life, triggered
by various endogenous or exogenous factors, and becomes
pathological as a result of immunosenescence (Ferrucci and
Fabbri, 2018). Although it begins at different levels of intensity
(acute and heightened for BM vs. low and sustained during
aging (Franceschi et al., 2017), inflammation initially acts to
protect the host by eliminating invading pathogens (BM) or
endogenous waste (aging). However, in both cases, inflammation
becomes dysregulated by the yet-to-be-identified pathological
factor(s), causing a cascade of deleterious immunological events
that subsequently damage local neurons, eventually leading to
functional loss at the inflammatory loci.

Complement Pathways
During BM, the first line of innate immune defense involves
activation of the host classical complement pathway to label
the invading pathogen for eradication by immune cells, with
subsequent inhibition of the alternative complement pathway
by complement receptor 1, CFH, and complement protease
complement factor I to prevent an excessive, tissue-damaging
immune response. Activation of the classical complement
pathway is induced by C-reactive protein (CRP), upregulation
of which is common to BM (Prasad et al., 2005) and both
AD (O’Bryant et al., 2010) and AMD (Molins et al., 2018).
Furthermore, genetic polymorphism of the non-coding CFH
gene has been shown to associate with reduced CFH level in
the cerebrospinal fluid and increased mortality in both clinical
and experimental BM (Kasanmoentalib et al., 2019). This major
allele (G) rs6677604 has also been described as a risk factor for
AMD (Ansari et al., 2013). While there is no genetic linkage of
this allele to AD, another risk allele, rs1061170, is common to
both AD and AMD (Zhang et al., 2016), and molecular analyses
of drusen (AMD) and senile plaques (AD) reveal the presence
of common complement components, including C3, C5, C6-9,
and factors B, H, and I (Sivak, 2013), implying the occurrence of
a common inflammatory response in both diseases, which also
shares similarities to complement activation during BM (Molins
et al., 2018).

Pro-inflammatory Responses
Together with complement system activation during BM, the
toll-like receptors (TLRs) and NOD-like receptors (NLRs)
expressed on or within CNS antigen-presenting cells may
become activated by bacterial ligands, triggering the production
of various cytokines and chemokines (the ‘‘mediators’’) that
facilitate recruitment of immune cells (the ‘‘effectors’’) to the
central infectious loci to eradicate the bacteria (Mook-Kanamori
et al., 2011). At high bacterial infectious doses in the CNS, the
‘‘effectors’’ that also carry the ‘‘sensors,’’ for example, neutrophils
expressing TLR2, relentlessly elicit an immune response, tipping
the balance of pro-and anti-inflammatory responses towards
the former, resulting in an exaggerated immune response

and ensuing cytokine storm (Mook-Kanamori et al., 2011,
2012). Similarly, in AD, over-activated microglia contribute to
heightened production of inflammatory cytokines, triggering
a positive feedback loop; genetic polymorphisms of several
cytokines, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor
necrosis factor (TNF), modify the risk of AD development
and progression in certain populations (Su et al., 2016). In
AMD, parainflammation is proposed to be dysregulated when
an inciting insult pushes the response beyond a threshold that
can be coped with by the normal host autonomous response for
cellular repair during aging. This results in excessive activation of
resident and recruited immune cells and a subsequent cytokine
storm (Chen and Xu, 2015). Since certain immune cells release
reactive oxygen species as part of the pathogen-killing process,
the excessive production of cytokines and associated infiltration
of activated immune cells into affected tissues contributes
to heightened oxidative stress. This is postulated to be a
synapse/neuron-damaging phenomenon and is observed in both
BM and AD/AMD (Bonda et al., 2010; Barichello et al., 2013;
Chen and Xu, 2015).

DISCUSSION

There is growing evidence implicating various microbial
infections in the pathogenesis of diseases that historically were
not thought to be of infectious origin. A well-known example
is gastritis, which was traditionally thought to be caused by
stress and other lifestyle factors, but which has become treatable
by antibiotic eradication of Helicobacter pylori (Abbott, 2005;
Ahmed, 2005). Likewise, there is increasing evidence supporting
the role of infectious pathogens in the aetiology of cardiovascular
diseases (Fong, 2009; Khademi et al., 2019). To add to this
list, lines of evidence have emerged that suggest a microbial
aetiology for some age-related neurodegenerative diseases. While
individual microbial species and phyla have been investigated for
their association with AD and AMD, it is noteworthy that the
hypothesis of infectious aetiology of neurodegenerative diseases
may not require a specific disease-causing microbial strain or
variant. The trigger for inflammation that causes damage may be
attributable to interactions within the microbial population; for
example, dysbiotic oral and gut microbiota have been proposed
to play a role in the pathogenesis of AD/AMD (Pritchard et al.,
2017; Sochocka et al., 2019; Arjunan, 2020; Floyd and Grant,
2020). It remains unknown whether a keystone pathogen exists,
or an infection-initiated/mediated predisposing ‘‘immunological
signature’’ contributes to cumulative pathological pathways that
ultimately lead to disease development.

Common Immunopathological
Mechanisms
During infection, the complement system is activated to combat
intruding pathogens. This represents the first line of defense
by host innate immunity during BM (Prasad et al., 2005).
Similarly, the complement system is known to play a key
role in AD (McGeer and McGeer, 2002; O’Bryant et al.,
2010) and AMD (Molins et al., 2018) disease pathogenesis.
However, there remains no clear answer about the trigger(s)
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TABLE 1 | Key players in innate immunity that underlie the pathogenesis of bacterial meningitis, and potentially Alzheimer disease and age-related macular
degeneration.

Immunological players Bacterial meningitis Alzheimer disease Age-related macular
degeneration

Sensors Complement system Classic, lectin and alternative
complement pathways

Classic and alternative
complement pathways

Alternative complement
pathways

Other PRRs TLR1, TLR2, TLR4, TLR5,
TLR6, TLR9, CD14, NOD1,
NOD2, NLRP3

TLR2, TLR4, CD14, NLRC4,
NLRP1, NLRP3

TLR2, TLR3, TLR4, TLR9,
CD14, CD36, NOD1, NOD2,
NLRP3, RAGE

Mediators Cytokines TNF, IL-6, IL-1β, IFN-γ, IL-10,
TGF-β

TNF, IL-6, IL-1β, IFN-γ, TGF-β IL-18, IL-1β

Chemokines CCL1, CCL2, CCL3-4, CCL8,
CCL9, CCL11-12 CCL15,
CCL18, CCL20, CCL24-25,
CXCL1-2, CXCL4-5, CXCL7,
CXCL8, CXCL10, CXCL12-13,
CXCL16, MIF, XCL-1

CCL2, CCL5, CXCL8, CXCL10 CCL2

Effectors Immune cells Neutrophils (predominant),
monocytes, microglia,
astrocytes, macrophages,
T cells, endothelial cells,
ependymal cells

Microglia, macrophages,
astrocytes, monocytes,
neutrophils, T cells

Microglia, macrophages,
monocytes, dendritic cells,
T cells, retinal pigment
epithelia, choroidal endothelial
cells

References Nockher et al. (1999), Polfliet
et al. (2001), Koedel (2009),
Braun et al. (2011),
Mook-Kanamori et al. (2011),
Coutinho et al. (2013), Geldhoff
et al. (2013), Mamik and Power
(2017), and Thorsdottir et al.
(2019)

Landreth and Reed-Geaghan
(2009), Domingues et al. (2017),
Jevtic et al. (2017), Kong et al.
(2017), Mamik and Power
(2017), and Krance et al. (2019)

Kaarniranta and Salminen
(2009), Ambati et al. (2013),
Camelo (2014), and Chen et al.
(2015)

Shared properties are bolded. Abbreviations: CCL, CC chemokine ligand; CD, cluster of differentiation; CXCL, CXC chemokine ligand; IFN-γ , interferon-gamma; IL, interleukin;
MIF, macrophage migration inhibitory factor; NOD, Nucleotide oligomerisation domain; NLRP, nucleotide-binding domain, leucine-rich—containing family, pyrin domain—containing;
PRR, pattern recognition receptor; RAGE, receptor for advanced glycation end products; TGF-β, transforming growth factor-beta; TLR, toll-like receptor; TNF, tumour necrosis factor;
XCL-1, chemokine (C motif) ligand.

of complement activation in these diseases. The first theory
of AD/AMD aetiology posits the accumulation of endogenous
waste products, i.e., amyloid (AD)/drusen (AMD), as the
potential trigger. Alternatively, it has been suggested that
the presence of infectious agents activates the complement
system. BM and AD/AMD share other common inflammatory
events (Table 1) that end with pathological inflammation and
oxidative stress, resulting in local tissue damage and loss of
function. Activated microglia, macrophages, monocytes, and
T cells are some of the common cellular immune mediators
responsible for disease pathogenesis in BM and AD/AMD, while
upregulation of IL-1β and CC chemokine ligand 2 has also been
demonstrated in all three diseases (Kaarniranta and Salminen,
2009; Coutinho et al., 2013; Chen and Xu, 2015; Domingues
et al., 2017). Furthermore, researchers in the different disease
disciplines (BM, AD, or AMD) have separately looked at the
role of the proinflammatory cytokine, interferon-gamma (IFN-
γ), in disease pathogenesis. It has been proposed that targeting
IFN-γ might have therapeutic potential in all three conditions.
In our studies of experimental pneumococcal meningitis, we
identified an important role of IFN-γ in mediating host immune
responses that link to enduring neurological impairments
in mice that survived following antibiotic treatment (Too
et al., 2014). We found that IFN-γ-deficient mice treated with
the antibiotic ceftriaxone survived pneumococcal meningitis
with reduced cognitive and behavioral disorders compared to

their wild-type counterparts and that the nexus between the
toll-like receptors (TLRs) 2 and 4, IFN-γ and the enzyme
indoleamine 2,3-dioxygenase-1 contributed, at least in part,
to the neurological sequelae resulting from pneumococcal
meningitis (Too et al., 2014; Too and Mitchell, 2021). Similarly,
neutralising IFN-γ in a transgenic mouse model of AD was
found to ameliorate behavioral deficits and amyloid plaque
burden (Browne et al., 2013). In the context of AMD, analysis of
serum IFN-γ in AMD patients has given mixed results (Afarid
et al., 2019; Litwinska et al., 2019). Interestingly, though, in
human RPE-derived ARPE-19 cells, recent evidence suggests
that this cytokine induces expression of BRAF-activated non-
coding RNA (BANCR), a regulatory transcript involved in
immunopathological processes (Kutty et al., 2018); inhibition of
IFN-γ has therefore been postulated as a potential therapeutic
option in AMD.

Lessons Learned From BM
Despite there being no direct serological evidence that
links causative pathogens of BM to AD/AMD, a decreased
cerebrospinal fluid level of Aβ42—a biological phenomenon of
AD—was found in patients with acute purulent BM (Sjogren
et al., 2001). Moreover, the disease-causing immunopathological
pathways seen during the acute phase of BM partially resemble
the active disease stage of AD/AMD when host inflammatory
responses tip towards detrimental effects (Table 1). While
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correlations between BM and age-related diseases have rarely
been investigated, it is worth mentioning that the lifelong
cognitive and behavioral disorders among young BM survivors
may predispose them to reduced cognitive reserve during later
life, which increases the risk of AD (Stern, 2012). Furthermore,
in the context of BM, although antibiotic treatment substantially
reduces the mortality rate, survivors often exhibit neurological
disorders upon recovery. The process of bacterial clearance
by antibiotics, and bacterial autolysis, release immunoactive
bacterial components that excessively amplify the host immune
response and thereby cause permanent damage to host tissue
(Brouwer et al., 2010). In this regard, effective treatment for
BM can conceivably be achieved by optimally suppressing key
pathological immune processes without compromising bacterial
clearance. The search for an adjunctive treatment that mitigates
the augmented inflammatory response, to be administered
alongside a non-bacteriolytic antibiotic, may be a promising
therapeutic direction (Bewersdorf et al., 2018).

In light of these data, two fresh insights can be taken from
BM research. First, an immunomodulatory approach may not
work to ameliorate AD/AMD if microbial agents remain in
the host system (e.g., in the case of dysbiotic microbiota),
since it may affect the host’s innate immunity to combat
pathogens. Second, broad-spectrum antibiotic treatment may
not be feasible if the source of inflammation is unknown. For
instance, attempting treatment with a bacteriolytic antibiotic in
AD/AMD patients who may have been infected with pathogens
that are prone to release immunoactive components when lysed,
might well contribute to an undesirable outcome. Moreover, the
administration of broad-spectrum antibiotics may unfavorably
alter the oral/gut microbiome. Several clinical trials have tested
the efficacy of antibiotics in preventing or ameliorating cognitive
impairments in AD. The findings remain inconsistent. For
instance, antibiotic treatment with doxycycline and rifampin
of patients with mild to moderate AD, whose medical history
of infections was unclear, demonstrated protection against
cognitive decline in a 2004 clinical trial (Loeb et al., 2004),
but not in a 2013 trial (Molloy et al., 2013). Not identifying
the source of inflammation may have contributed to the
inconsistent findings seen in these clinical trials (Loeb et al.,
2004; Molloy et al., 2013). An immunomodulatory therapy as
an adjunct to antibiotic treatment may be useful to alleviate
inflammation-driven catastrophic events without compromising
host-pathogen clearance.

Open Questions
Our understanding of any parainfectious aetiology of age-
related neurodegenerative diseases remains in its infancy.
The mechanisms of AD and AMD are multifactorial, as a
consequence of the range of phenotypes and the stereotypical
nature of pathological responses to disease. These conditionsmay
each represent a final common pathway to a variety of disease-
causing processes which are clinically grouped as single entities.
To advance AD and AMD research, we propose that several
issues will need to be addressed:

1. Multiple microbes are serologically, histopathologically, or
molecularly associated with AD or AMD, but none of them
have been causatively related to either disease by fulfilling
Koch’s postulates for the establishment of a causative link
between a microbe and a disease (Tabrah, 2011). It, therefore,
remains a question whether the different microbes can
independently cause the disease, or a dysbiotic microbiome
is responsible for the disease development. If the latter is
true, it predicates caution in further clinical trials to treat AD
with antibiotics, since such therapy might cause unfavorable
alterations in the microbiome.

2. Given the existing evidence that supports an infectious
aetiology of AD and AMD, we will need to explore
when, where, and how the microbes initiate the
pathological mechanisms.

3. Findings from microbiological and immunopathological
research have led us to understand that numerous infectious
diseases induce some common immunopathological
pathways, such as classic complement pathway activation,
cytokine storm, and oxidative stress. It is important, therefore,
to identify any disease-specific immunopathological factor(s),
to facilitate the exploitation of therapeutic targets. In light
of findings from BM research that has explored therapies
to prevent infection-associated neurological disorders, a
potential treatment to block AD and AMD development
or progression might potentially combine antibiotics with
immunomodulatory agents.
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