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This review article addresses the various aspects of nano-biomaterials used in or being
pursued for the purpose of promoting bone regeneration. In the last decade, significant
growth in the fields of polymer sciences, nanotechnology, and biotechnology has
resulted in the development of new nano-biomaterials. These are extensively explored
as drug delivery carriers and as implantable devices. At the interface of nanomaterials
and biological systems, the organic and synthetic worlds have merged over the past two
decades, forming a new scientific field incorporating nano-material design for biological
applications. For this field to evolve, there is a need to understand the dynamic forces
and molecular components that shape these interactions and influence function, while
also considering safety. While there is still much to learn about the bio-physicochemical
interactions at the interface, we are at a point where pockets of accumulated knowledge
can provide a conceptual framework to guide further exploration and inform future
product development. This review is intended as a resource for academics, scientists,
and physicians working in the field of orthopedics and bone repair.
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INTRODUCTION

Bone undergoes self-repair of small defects due to the synergistic actions of mesenchymal cells,
osteogenic cells, and cells of the immune system (Marsell and Einhorn, 2011). This self-repaired
bone contains physico-chemical and mechanical properties that recapitulate the bone which was
replaced (Dimitriou et al., 2011). However, larger defects are unable to undergo the same level
of self-healing, and regenerative medicine approaches are paramount in addressing these clinical
challenges (Ho-Shui-Ling et al., 2018).

Autologous and allograft bone are generally considered the clinical standard-of-care for bone
repair (Grabowski and Cornett, 2013; Gupta et al., 2015), despite critical limitations such as supply
and quality of host bone, donor site morbidity (Angevine et al., 2005; Gruskay et al., 2014),
and immunogenicity, respectively (Stevenson and Horowitz, 1992; Bauer and Muschler, 2000).
Osteoinductive growth factors, in particular recombinant human bone morphogenetic protein-2
(rhBMP-2), have demonstrated remarkable efficacy, but a number of concerns and controversies
exist regarding the safety of their clinical use and high cost (Burkus et al., 2002, 2003; Carragee
et al., 2011; Singh K. et al., 2014; Vavken et al., 2016; Zadegan et al., 2017). Although numerous
synthetic bone graft substitutes are available, the problem of delayed and/or compromised healing
remains a significant clinical challenge (Zura et al., 2016; Fernandez et al., 2020).
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The ideal biomaterials for bone regeneration should not only
be biocompatible and osteoconductive but also osteoinductive.
They should be able to leverage the self-healing capabilities of
the bone by (i) providing the main structural, compositional, and
biochemical cues for the formation of new tissue; (ii) engaging
the host’s resident immune cells in the regenerative response;
(iii) promoting the recruitment, proliferation, and differentiation
of progenitor cells; and (iv) recovering an adequate local blood
supply to support healing and remodeling (Schmidt-Bleek et al.,
2014; Minardi et al., 2015a).

Recently, nanotechnology has become a domain with
breakthrough potential to further propel the field of bone
regeneration. Nanostructured biomaterials have proven superior
at enhancing bone regeneration due to their unique chemical
and physical properties (e.g., magnetic, electrical) that are
uniquely different from their bulk counterparts (Perez et al.,
2013; Wang Q. et al., 2016). These differences stem from an
ability to be engineered to precisely mimic the composition and
nanoarchitecture of bone, while allowing for the recapitulation of
crucial characteristics of its biochemical milieu at the nanoscale
(Minardi et al., 2016b). This translates in improved ability to
engage the host’s immune and progenitor cells at the nanoscale,
resulting in enhanced outcomes (Cheng et al., 2013).

In the rational design of regenerative nanotechnologies
for bone regeneration, four crucial elements of bone should
be considered and recapitulated as closely as possible: (i)
composition, (ii) physical stimuli, (iii) architecture and (iv)
biochemical cues, as summarized in Figure 1. Inspired by
mimicking these 4 fundamental characteristics of bone, a
plethora of nanostructured materials have been developed
over the last decade to elicit bone regeneration. Technologies
that recapitulate more than one of these four fundamental
elements have been shown to lead to superior outcomes.
This review highlights such ongoing work in the field of
nanostructured materials for bone regeneration and their
potential in clinical practice.

MIMICKING BONE COMPOSITION:
BIOCERAMICS AND COMPOSITE
NANOSTRUCTURED BIOMATERIALS

Bioceramics
Bone is a natural nanostructured composite, consisting of
approximately 60% (dry weight) mineral, mostly nano-apatite—
which is a calcium phosphate (CaP) ceramic (Minardi et al.,
2015a). Accordingly, a number of bioceramics containing
calcium and phosphorous have been proposed for bone
regeneration (Hench et al., 2014; Jones et al., 2016). Of these,
CaP materials most closely mimic the mineral phase of bone and
have demonstrated relatively greater osteoinductivity, making
CaP a common material of choice for bone grafts. A number
of bioceramics have been used clinically for several decades
(Szpalski and Gunzburg, 2002; Giannoudis et al., 2005; Campana
et al., 2014; Fernandez de Grado et al., 2018), both for load- and
non-load- bearing applications (Roberts and Rosenbaum, 2012).

While conventional bioceramics had poor mechanical properties
and unfavorable biodegradability and porosity (Fielding and
Bose, 2013; Wen et al., 2017), the latest generation of bioceramics
are structured at the nanoscale and have significantly improved
bioactivity, biodegradation and mechanical properties, and
are reviewed below. Their advantages and disadvantages are
summarized in Table 1.

Hydroxyapatite-Based Ceramics
Among CaP ceramic phases, synthetic hydroxyapatite
(HA) has been the one most extensively studied due to its
biocompatibility and resemblance to the composition of natural
bone mineral (Sadat-Shojai et al., 2013; Šupová, 2015). First
generation materials were fabricated with stoichiometric HA
[Ca10(PO4)6(OH)], which has been successfully synthesized and
mass produced through several synthesis strategies, including
hydrothermal reactions, sol–gel syntheses, and mechanochemical
syntheses (Kalita and Bhatt, 2007). However, natural bone
mineral is produced in a very dynamic environment with
numerous ions present (e.g., Mg2+, K+, Na+, CO2−

3 , HPO2−
4 ),

which frequently substitute ions in the apatite lattice. The apatite
present in natural bone is calcium deficient and is characterized
by a Ca/P ratio lower than the typical 1.67 of stoichiometric HA
(Kalita and Verma, 2010; Dziadek et al., 2017). Ion substitution
plays an important role in maintaining the low crystallinity of
bone apatite, which is crucial for bone metabolism. This low
crystallinity may correspond to higher reactivity in vivo, resulting
in faster bone formation and remodeling (Minardi et al., 2015a).
In contrast, stoichiometric HA is more crystalline and stable in
aqueous solutions, resulting in a less biodegradable material that
could impede the formation of new bone through the entirety of
a defect space or osteointegration with the surrounding matrix
(Liou et al., 2004; Tampieri et al., 2012). To overcome these
limitations, numerous biomimetic multi-substituted nano HAs
have been developed to mimic the natural mineral phase of
bone and enhance bioactivity and solubility (Boanini et al., 2010;
Zofková et al., 2013).

Various substituted nanostructured HAs have been proposed,
some of which have been used as tools to fine-tune or
stimulate specific biological functions. For example, Mg2+ plays
a vital role in osteogenesis and is present in young and newly
formed bone (De Bruijn et al., 1992). Landi et al. (2006)
found that Mg-substituted HA showed enhanced cell adhesion,
proliferation, and metabolic activity compared to HA. Due to
the smaller ionic radius of Mg2+ relative to Ca2+, the Mg-
substituted structure is more unstable when incorporated into
the crystal lattice (Fadeev et al., 2003). Mg is also thought to
induce nitric oxide production in endothelial cells, a critical
component of angiogenesis (Maier et al., 2004). Sr acts to enhance
bone formation in vivo by inhibiting osteoclast-mediated bone
resorption while upregulating osteoblast activity (Li et al.,
2009; Ozturan et al., 2011), which is why Sr-based drugs
have been long used to treat osteoporosis (e.g., strontium
renelate; Capuccini et al., 2008). Thus, Sr-doped nano-HA
has also been extensively used in bone regenerative strategies
(Wong et al., 2004; Frasnelli et al., 2017; Neves et al., 2017;
Ratnayake et al., 2017). Similarly, substitution with Zn has been
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FIGURE 1 | The five main properties of bone, which should be recapitulated into bone regenerative strategies for improved outcomes.

shown to enhance osteogenic activity (Ren et al., 2009), with
a proposed mechanism of inhibiting osteoclast resorption and
upregulating osteoblastic activity (Hadley et al., 2010; Yamaguchi
and Weitzmann, 2011). More recently, Tampieri et al. (2010)
proposed a conceptually new type of nanostructured calcium-
deficient HA, by substituting it with Fe2+ and Fe3+ to endow the
HA with superparamagnetic properties. This magnetic behavior
may potentially be exploited for bone regeneration purposes to
enhance osteogenesis (Tampieri et al., 2012).

Alternatively, a common anionic substitution involves CO2−
3

replacement of the phosphate group within nano-HA, which
may influence bone turnover and metabolism (Du et al., 2019).
When incorporated in HA, it showed enhanced osteoconductive
potential compared to pure HA (Du et al., 2019), while increasing
its solubility due to its decreased crystallinity (Wang and
Nancollas, 2008). In contrast to these effects, F− doped HA results
in decreased solubility (Kim et al., 2004) and increased strength,
therefore reducing the brittleness of the CaP (Bianco et al., 2010).
Si-HA showed instead improved osteoblast attachment and
differentiation, and decreased osteoclast differentiation in vivo
(Matesanz et al., 2014).

Tricalcium Phospohate-Based Ceramics
Another popular type of CaP ceramic used extensively in
orthopedics is tricalcium phosphate (TCP). Two types of TCP
have been pursued for bone regeneration: α-TCP and β-TCP.
They differ in their atomic arrangements (Wen et al., 2017),
but both have a Ca/P ratio of 1.5 (Wen et al., 2017). β-
TCP has become the TCP of choice, given its superior rate of
degradation and bioactivity over α-TCP (Kamitakahara et al.,
2008; Ghanaati et al., 2010). Hydroxyapatite and TCP can also

be combined in varying ratios within composite scaffolds to
tune degradation and potentially enhance osteoconductive and
osteoinductive properties (Daculsi, 1998; Arinzeh et al., 2005;
Samavedi et al., 2013). Similar to HA, TCPs can also undergo
ion-substitution as a tool to create ceramic-based materials
that target specific biological pathways in vivo. For example,
Mg-doped β-TCP and Sr-doped β-TCP-based materials have
shown improved bone healing through accelerated osteogenesis
and angiogenesis in a large animal model (Bose et al., 2011;
Tarafder et al., 2015), with improved mechanical strength
compared to the pure TCP scaffolds (Tarafder et al., 2015).
Similar to Fe-doped HA, Fe-doped TCP stabilized the β-
TCP phase, and osteoblasts showed enhanced cell adhesion to
doped-TCP relative to pure TCP (Vahabzadeh and Bose, 2017).
Moreover, cell proliferation was reportedly enhanced in TCP
doped with other ions, such as Mg2+, Zn2+, Sr2+, and Li+
(Vahabzadeh and Bose, 2017).

Using these ceramic phases, numerous types of
nanostructured 3D scaffolds (and bone cements) have been
prepared through a variety of ways, including dry methods, wet
methods, and high temperature methods (Sadat-Shojai et al.,
2013). Dry methods include solid-state and mechanochemical
reactions. The solid-state and mechanochemical technique have
the advantage of a simple procedure for large scale production,
whereas the mechanochemical technique reliably produces a
specific nanostructure (Sadat-Shojai et al., 2013). Wet methods
are commonly used and include techniques including but not
limited to sol–gel synthesis and hydrothermal synthesis. These
methods have the advantage of producing nanoparticles with
a consistent morphology and size (Shepherd and Best, 2011;
Sadat-Shojai et al., 2013). The downfall of these techniques
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TABLE 1 | Summary of the main nanostructured calcium-phosphate based materials for bone regeneration, with their respective advantages and disadvantages.

Advantages Disadvantages References

Nanostructured Bioceramics

Nano-bioglasses Biocompatible Suboptimal
Biodegradation

Vallet-Regí et al., 2003; Izquierdo-Barba
et al., 2013; Ducheyne, 2015; Islam
et al., 2017; Mancuso et al., 2017

Enhanced bone integration Poor mechanical
properties

Improved biodegradation

Hydroxyapatite High biocompatibility Poor mechanical
properties

Liou et al., 2004; Capuccini et al.,
2008; Boanini et al., 2010; Tampieri
et al., 2012; Zofková et al., 2013

Resembles mineral phase of bone

Can be doped with multiple ions to closely mimic
bone mineral

Slow degradation rates
in vivo

Osteoconductive

Can be used in a plethora of formulations (e.g.,
powder, solid scaffold, cement, coatings)

Limited osteoinductivity

High biocompatibility

Tricalcium phosphate Provides main bulding blocks for new matrix
deposition

Poor mechanical
properties

Shepherd and Best, 2011;
Sadat-Shojai et al., 2013; Vahabzadeh
and Bose, 2017; Sergi et al., 2018

Can be doped with multiple ions to tune bioactivity
and degradation

Osteoconductive

Can be used in a plethora of formulations (e.g.,
powder, solid scaffold, cement, coatings)

Faster in vivo degradation

Nanocomposites

Ceramic/polymer
composites (e.g.,
HA/PLGA, HA/Alginate)

High biocompatibility May have limited
osteoinductivity

Kim et al., 2005; Miao et al., 2005;
Tampieri et al., 2005; Heo et al., 2009;
Akman et al., 2010; Bernstein et al.,
2010; Cruz, 2010; Bhumiratana et al.,
2011; Wang Z. et al., 2016; Zhu et al.,
2017; Bian et al., 2019

Ease of fabrication Fabrication requires
organic solvents

Can be used to prepare scaffolds with complex 3D
architecture

Improved mechanical properties of scaffolds

Tunable degradation rate

Bio-hybrid composites High biocompatibility Poor mechanical
properties (not load
bearing)

Tampieri et al., 2008; Tampieri et al.,
2011; Minardi et al., 2015a; Minardi
et al., 2019

Fabrication not requiring organic solvents

Highly biomimetic

Excellent bioactivity

is that the products can often have multiple phases present
(Sadat-Shojai et al., 2013). High temperature processes such as
combustion and pyrolysis are capable of bypassing the problem
of multiple phases, however control over the byproducts limits
this method’s applications (Sadat-Shojai et al., 2013). Moreover,
there a numerous techniques to introduce porosity within
3D CaP scaffolds, including a polymeric sponge technique
(Monmaturapoj and Yatongchai, 2011), foaming technique
(Sopyan et al., 2007), supercritical foaming technique (Diaz-
Gomez et al., 2017), gel casting of foams (Sopyan et al., 2007),
and slip casting (Sopyan et al., 2007). Although all of these

nanostructured ceramics are limited by poor mechanical
properties, their strong osteoconductive potential makes them
attractive for use as coating materials for load bearing implants,
where such use may enhance osteointegration or even have
antibacterial properties (Sergi et al., 2018).

Although nanostructured calcium-deficient CaP materials
have provided enhanced biomimicry of the mineral phase of
native bone, they have not proven capable of recapitulating
all of its subtle and complex physiochemical properties. Thus,
strategies based on nanostructured composites have been
developed to fulfill this goal.
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Nanostructured Composites
Biomimicry is an increasingly popular strategy in regenerative
medicine, aiming to engineer materials that closely resemble
the target tissue (Nandakumar et al., 2013). Since bone is a
natural composite—made of an inorganic component (mostly
multi-substituted HA) and an organic component (mostly
type I collagen)—researchers have long focused on developing
nanostructured ceramic/polymer composite materials with the
purpose of recreating the composition and function of natural
bone. Nanostructured composites for bone regeneration leverage
the osteoconductivity of synthetic CaP ceramic phases and
the unique mechanical properties of polymers. For example,
both synthetic polymers like poly(L-lactic acid) (PLLA; Cruz,
2010; Zhu et al., 2017), poly(e-caprolactone) (PCL; Heo et al.,
2009; Bernstein et al., 2010), poly(lactic-co-glycolic acid) (PLGA;
Miao et al., 2005; Wang Z. et al., 2016) as well as naturally
occurring polymers such as gelatin (Kim et al., 2005), silk
(Bhumiratana et al., 2011), chitosan (Akman et al., 2010), alginate
(Tampieri et al., 2005), and collagen (Bian et al., 2019) have been
combined with HA and TCP to fabricate a plethora of composite
materials over the past three decades. These composites have
been fabricated in a myriad of ways: electrospinning, gas foaming,
solvent casting and particulate leaching, phase separation, and
melt mixing have been widely used to fabricate scaffolds
(Alizadeh-Osgouei et al., 2019). The major drawback, common
to all these approaches in the manufacturing of porous structures
is the inability of conventional methods to completely control the
architecture of scaffolds, such as pore size and interconnections.
Furthermore, the use of solvents required by some of these
methods can impact scaffold biocompatibility (Alizadeh-Osgouei
et al., 2019). Additive manufacturing is a new and modern
technique that shows great potential to offer complete control of
architectural details such as pore size, which significantly affects
the properties of ceramic-based scaffolds. 3D-printing techniques
have received much attention due to the capacity to fabricate
specific and complex structures (further discussed in paragraph
4) (Kumar et al., 2019).

Numerous composite materials have been fabricated with
natural polymers, with the underlying hypothesis that mimicking
natural bone matrix would harness regeneration. A plethora of
CaP/natural polymer composites have been described. The first
generation of such composites was prepared by blending the
desired ceramic phase with the natural polymer of choice in
aqueous solutions (Ridi et al., 2017). Although these materials
contained the two main components of bone matrix, they lacked
vital chemical, physical, and topographical information at the
nanoscale, which cells need to repair bone (Tampieri et al.,
2011). The organic matrix (mostly type I collagen) of natural
bone acts as a template for the nucleation of the mineral
phase, directing its deposition, and guiding the growth of the
mineral crystals along its fibers via interaction of its functional
groups (e.g., carbonyl groups) with the apatite crystals. It is
believed that the mineralization begins in correspondence of the
hole zones of the collagen fibrils (intrafibrillar mineralization)
(Figure 2). This highly regulated chemical-physical interaction
between the inorganic and organic phase not only directs
the orientation of the forming apatite crystals, but also limits

FIGURE 2 | Intrafibrillar mineralization occurring during bone
biomineralization. The nucleation of the mineral (gray) is thought to begin at
the “hole zones” of the collagen fibrils (in red box), between single collagen
molecules (yellow), as depicted in this schematic.

their crystallinity, which is paramount to the formation of a
nanocomposite material (i.e., bone extracellular matrix [ECM])
(Kim D. et al., 2018). The unique characteristics of both stiffness
and flexibility of the bone result from this intimate interaction
between these two components (Nair et al., 2014). Thus, several
groups have focused on the development of biologically inspired
synthesis methods to mineralize natural polymers by mimicking
the process of bone biomineralization. In these syntheses, the
ceramic phase is deposited onto the organic template during
its self-assembly through a pH-driven process which resembles
that of bone biomineralization. Using this synthetic approach,
the mineral phase is not simply mixed with the organic
template, but nucleated directly onto it and intimately bonded
to the organic matrix, resulting in nanostrustured “bio-hybrid
composites” (Minardi et al., 2015a). Accordingly, many studies
have described the bio-inspired mineralization with nanoapatite
phases of several natural polymers, such as chitosan (Palazzo
et al., 2015), alginate (Tampieri et al., 2005), gelatin (Landi
et al., 2008), and type I collagen (Tampieri et al., 2008). The
main advantages of these materials are: (i) their ability to
mimic bone matrix at the nanoscale, storing the crucial nano-
compositional and topographical information necessary for cell
migration, proliferation and osteogenic differentiation (Minardi
et al., 2015a); (ii) their high degree of interconnected porosity,
conventionally achieved by freeze-drying (Wu et al., 2010a),
which facilitates cell infiltration and neovascularization (O’Brien
et al., 2004); (iii) their syntheses do not require harsh conditions,
allowing for the incorporation of a variety of delivery systems and
bioactive molecules (Minardi et al., 2016b). This class of nano
bone substitutes has shown great promise in a plethora of in vitro
studies as well as in non-load bearing in vivo models. More
recently, increasingly sophisticated bio-hybrid composites were
developed, which appear able to incorporate multi-substituted
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biomimetic apatite phases. For example, a Mg-doped apatite/type
I collagen nanocomposite was shown to closely resemble the
structure and composition of the human trabecular bone niche,
significantly improving the osteogenic differentiation of human
mesenchymal stem cells (MSCs) in vitro and bone regeneration in
both ectopic (Minardi et al., 2015a) and orthotopic large animal
models (Minardi et al., 2019). Using this biologically inspired
synthesis method, some researchers are currently working to
develop bio-inspired hybrid nanocomposites with enhanced
osteogenic features endowed with magnetic properties (D’Amora
et al., 2016; Tampieri et al., 2016). Their potential for bone
regeneration will be discussed further in section “Magnetically
Responsive Materials” of this review.

Nanostructured Bio-Glasses
Bioactive glasses are mainly comprised of calcium oxide, silicate,
borate, and phosphorous (Hench et al., 2014). By varying
the relative amounts of these components, different bioactive
glasses can be manufactured and, over the past three decades,
many variants have been proposed for bone regenerative
applications (van Vugt et al., 2017). Several are available clinically
(Jones et al., 2016), and have demonstrated biocompatibility,
osteoconductivity, and biodegradability (Kong et al., 2018).

Bioglasses can be prepared by melt–quench or sol–gel process
(Vichery and Nedelec, 2016). While the first generations of
bioglasses were solid or macroporous, the latest nanostructured
versions, synthesized through the sol–gel approach, have
unique nanostructural features, including improved nanotextural
properties, highly ordered structure, and controlled pore size and
pore interconnectivity (Islam et al., 2017; Mancuso et al., 2017).
Such nano-features greatly enhance osseointegration compared
to first generation bulk bioglasses. The graft-bone integration
begins with the solubilization of surface ions resulting in a
silica gel layer. A nanostructured calcium phosphate phase (i.e.,
hydroxyapatite) starts to nucleate on this layer, activating local
osteoblasts to form new bone (Ducheyne, 2015). This mechanism
contributes to the nano-bioglass degradation, while promoting
bone formation. Even their degradation depends on their
composition and nanostructure and can be tailored from days to
months; for example, borate-based bioglasses have been shown
to degrade much faster than silicate varieties (Balasubramanian
et al., 2018; Furlan et al., 2018). Recent studies showed that
increasing the surface area and porosity of nanostructured
bioglasses can greatly accelerate their biodegradation, as well as
biointegration (Kong et al., 2018).

The ability to release bioactive ions during degradation
is one of the most important features of these bioglasses
(Mouriño et al., 2019). For instance, it is known that the
early vascularization of biomaterials plays an essential role in
bone regeneration (Almubarak et al., 2016). Toward this end,
numerous nanoparticles and mesoporous bioactive glasses have
been specifically developed to enhance not only osteogenesis but
also early angiogenesis through the release of pro-angiogenic
ions (Kim J.-J. et al., 2017). Namely, strontium-doped bioglass
nanoparticles have shown to increase both osteoblast activity
(Fiorilli et al., 2018; Leite et al., 2018; Zhao et al., 2018), as well
as induce osteoblasts to secrete angiogenesis-associated cytokines

for early vascularization, ultimately resulting in improved bone
repair (Zarins et al., 2016; Zhao et al., 2018). Similarly, bioglasses
releasing copper or cobalt ions have also been proposed, due to
their angiogenic properties (Bari et al., 2017; Weng et al., 2017;
Kargozar et al., 2018; Zheng et al., 2018). Silver- (Kaya et al., 2018)
or manganese-doped nanobioglasses (Nawaz et al., 2018) have
instead been developed to deliver antimicrobial activity, and to
aid in the healing process by preventing infections.

Due to their highly ordered mesopores and surface area,
nanobioglasses can also be excellent delivery vehicles for bioactive
molecules (e.g., drugs and proteins) to further boost bone repair
(Baino et al., 2017; Wang et al., 2019; Lalzawmliana et al.,
2020). For example, Lee J.-H. et al. (2017) reported a significant
enhancement in osteoblast activity, secretion of ECM molecules
and calcification through the controlled release of phenamil (a
drug known as a potent BMP signaling activator) and strontium
ions from mesoporous bioglass nanoparticles. In recent proof-
of-concept in vivo studies, others have demonstrated how
mesoporous nanobioglasses can also be an ideal delivery system
for growth factors, such as IGF (Lalzawmliana et al., 2019) or
FGF (Kang et al., 2015), with significantly imporved regenerative
outcomes in preclinical animal models.

MIMICKING THE ELECTRICAL
ENVIRONMENT OF BONE:
NANOMATERIALS HARNESSING
PIEZOELECTRICITY, CONDUCTIVITY
AND MAGNETISM

The field of bone mechanobiology has vastly improved since
the advent of nanotechnology, expanding our fundamental
knowledge of how mechanical forces regulate the process of bone
homeostasis and remodeling (Chen et al., 2010). Although the
origin remains a topic of debate, mechanical stress-generated
electric potentials are known to be important in modulating
cellular behavior to control growth and the remodeling process
(Perez et al., 2015; Ribeiro et al., 2015b; Zhang et al., 2016).
In addition to stress-generated potentials, electric fields present
endogenously in living tissues, as well as electrical stimulation
applied externally have also been shown to influence cell behavior
and promote tissue growth (McCaig et al., 2005; Balint et al., 2013;
Kang et al., 2014; Reid and Zhao, 2014; Funk, 2015). Accordingly,
manipulation of the electrical environment has emerged as
a promising strategy to enhance bone regeneration, with
nanotechnological approaches offering tremendous potential for
achieving this aim. Collectively, the nanomaterials recapitulating
or leveraging the physical stimuli naturally present in the bone
can be categorized as (i) piezoelectric, (ii) electrically conductive,
and (iii) magnetic materials and are briefly summarized in
Table 2. The impact of nanotechnology on their development and
rational design is reviewed below.

Piezoelectric Materials
Piezoelectricity is observed when a mechanical deformation
causes the formation of a net dipole moment and subsequent
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TABLE 2 | Advantages and disadvantages of nanostructured materials harnessing physical stimuli for bone regeneration.

Advantages Disadvantages References

Nanostructured piezoelectic materials

Piezoelectric Ceramics
(e.g., BT, BN, ZnO)

Robust piezoelectric characteristics
Desirable osteoinductive potential

Potential for cytotoxicity Maeder et al., 2004; Boccaccini and Blaker, 2005; Opoku et al.,
2015; Panda and Sahoo, 2015; Rocca et al., 2015; Fernandes
et al., 2016; Li X. et al., 2016; Zhang et al., 2016; Bramhill et al.,
2017; Damaraju et al., 2017; Ribeiro et al., 2017; Tajbakhsh and
Hajiali, 2017; Ehterami et al., 2018; Kao et al., 2019

Piezoelectric Polymers
(e.g., PVDF and its
copolymers, PLLA,
PHBV)

Biocompatibility and non-toxicity
Manufacturing flexibility
High strength and impact
resistance

Unfavorable biodegradability

Piezoelectric
Polymer-Ceramic
Composites

Ability to tailor and enhance several
properties of the composite
construct: mechanical properties,
piezoelectric coefficient,
biodegradability, bioactivity

Lack of data regarding the
piezoelectric properties of certain
composite materials

Nanostructured electrically conductive materials

Conductive
Nanomaterials
(non-polymeric, e.g.,
graphene, gold
nanoparticles)

Excellent mechanical properties
High electrical conductivity ensuring
reliable delivery of bioelectric signals

Non-degradability
Questions/concerns regarding
biocompatibility and long-term
safety

Kim S. et al., 2011; Otero et al., 2012; Bitounis et al., 2013; Liu
et al., 2013; Nurunnabi et al., 2015; Sridhar et al., 2015; Assaf
et al., 2017; Kim J.W. et al., 2017; Silva et al., 2017; Wang et al.,
2017; Zhou et al., 2017; Chan et al., 2018; Cheng et al., 2018;
Lalegul-Ulker et al., 2018

Conductive
Nanopolymers (e.g.,
polyheterocycle family
of conductive polymers)

Improved biocompatibility and
biodegradability
Manufacturing flexibility

Unfavorable mechanical properties
and processability
Relative lack of animal studies
evaluating in vivo performance

Nanostructured Magnetically Responsive Materials

Magnetic Nanoparticles
(MNPs) and
Magnetoelectric
Composites

Superparamagnetic properties
Ability to deliver cues via remote
(external) stimulation

Uncertain biocompatibility and
long-term safety

Pisanic et al., 2007; Häfeli et al., 2009; Huang et al., 2009; Bock
et al., 2010; Wu et al., 2010b; Wu Y. et al., 2010; Wei et al., 2011;
Zhu et al., 2011; Panseri et al., 2012; Tampieri et al., 2012; Alarifi
et al., 2014; Singh R.K. et al., 2014; Shen et al., 2015; Li X. et al.,
2016; Ribeiro et al., 2016; Yun et al., 2016

polarization of the material (Tichý, 2010). Bone is a piezoelectric
nanostructured material, and this property was invoked as a
potential mechanism by which cells could detect and respond
to mechanical stress (Fukada and Yasuda, 1957). The role for
piezoelectricity in bone remodeling continues to be debated, and
there has been renewed appeal for its physiologic importance
in the process of bone mechanosensation (Halperin et al., 2004;
Noris-Suarez et al., 2007). As such, with the emergence of
nanotechnological approaches there has been a rapid increase
in the number of publications on piezoelectric materials for
bone regeneration (Tandon et al., 2018). They can be thought
of as sensitive mechano-electrical transducers, and as such,
they are typically applied to the implantation areas which are
exposed to mechanical loads (Zhang K. et al., 2018; Chorsi
et al., 2019). A number of different piezoelectric materials have
been investigated for bone regeneration applications, which are
briefly reviewed here.

Inorganic Piezoelectric Materials: Piezoelectric
Ceramics
Nanopiezoceramic materials investigated for bone regeneration
applications include barium titanate (BT), boron nitride (BN),
and zinc oxide (ZnO). While these materials possess a
high piezoelectric coefficient, some of them display lower
biocompatibility at high doses, which can represent a major

limitation for their use in tissue engineering applications (Maeder
et al., 2004; Opoku et al., 2015; Panda and Sahoo, 2015;
Kao et al., 2019). Nevertheless, each of these piezoceramics
has shown osteoinductive capabilities in vitro, supporting their
use in the development of bone regenerative biomaterials,
where they are often incorporated in a variety of ways into
3D scaffolds in order to impart piezoelectric characteristics
to augment bone formation. For example, BT nanoparticles
have been shown to enhance the osteogenic differentiation of
MSCs, and osteoblastic cells demonstrated superior adhesion,
proliferation, and migration into the pores of scaffolds comprised
of BT, while BN nanotubes (BNNTs) demonstrate high protein
adsorption ability and promotion of enhanced MSC attachment,
proliferation, and osteogenic differentiation (Rocca et al., 2015;
Li X. et al., 2016; Tajbakhsh and Hajiali, 2017; Ehterami et al.,
2018). Finally, the incorporation of ZnO nanoparticles has
proven capable of enhancing both the bioactivity and even the
mechanical properties of such composite materials (Shalumon
et al., 2011; Feng et al., 2014; Kao et al., 2019).

Organic Piezoelectric Materials: Piezoelectric
Polymers
Piezoelectric polymers have also received increasing
attention for bone regeneration applications in recent years
(Tichý, 2010). Typically fabricated either as films, rods,
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or tubes/fibers (Ribeiro et al., 2015b), they exhibit sound
mechanical properties, including superior strength and
impact resistance when compared to inorganic materials.
Biocompatibility, piezoelectric activity, and significant
osteogenic capacity have also been demonstrated both
in vitro and in vivo (Zhang et al., 2016; Damaraju et al.,
2017; Ribeiro et al., 2017; Kao et al., 2019). Among these, PVDF
[poly(vinylidene fluoride)] and its copolymers, PLLA, and
PHBV (poly-3-hydroxybutyrate-3-hydroxy valerate) are the
most studied.

Poly(vinylidene fluoride) and its copolymers can provide the
necessary electromechanical stimulation for the differentiation
of human MSCs into the osteogenic lineage in vitro (Damaraju
et al., 2013, 2017; Nunes-Pereira et al., 2015; Ribeiro et al.,
2015a; Zhang et al., 2016), as well as the capacity to effectively
promote bone regeneration in vivo in rodent models (Zhang et al.,
2016; Ribeiro et al., 2017). In addition to its potential utility
as a bone graft substitute, PVDF has also shown promise as a
suitable coating for existing implant materials in order to enhance
osteogenesis (Zhou Z. et al., 2016). The primary concern with
PVDF and its copolymers is the lack of biodegradability, which
limits clinical potential. This limitation is being addressed with
the development of newer-generation piezoelectric polymer-
based materials with tailorable degradation properties. Poly-3-
hydroxybutyrate-3-hydroxy valerate and PLLA, both of which
are biodegradable, have emerged as promising candidates (Duan
et al., 2011), demonstrating osteogenic capacity both in vitro
and in vivo (Ikada et al., 1996; Sultana and Wang, 2012; Wang
et al., 2013). PLLA has also been explored for bone regeneration
utility beyond its use as a bone graft substitute. Due to its
biodegradability, non-toxicity, and advantageous mechanical
properties, PLLA is an attractive material for clinical application
in the fabrication of biodegradable fixation devices such as
screws, pins, and suture anchors, where a bioresorbable implant
is desirable to avoid the risk of complicating revision surgery or
the requirement for an additional procedure for implant removal
(Bucholz et al., 1994; Barber et al., 1995; Prokop et al., 2005;
Gkiokas et al., 2012).

Piezoelectric Polymer – Ceramic Composite Materials
Piezoelectric polymers and ceramics have also been used in
combination to fabricate a variety of composite materials
(Boccaccini and Blaker, 2005; Bramhill et al., 2017). Polymer
matrix composites harness the manufacturing flexibility afforded
by polymers and the substantial piezoelectric properties of
otherwise brittle ceramics to produce complex forms ideally
suited to support bone formation, including porous scaffolds
(Zhang et al., 2014; Liu et al., 2016), layered structures
(Dubey et al., 2015), nanoparticles (Marino et al., 2015, 2017;
Niskanen et al., 2016), and dense disks (Dubey et al., 2013). Of
the polymer matrix composites, PLLA-based composites have
been used most extensively in the field of bone regeneration
(Fernandes et al., 2016; Tajbakhsh and Hajiali, 2017). Composite
membranes incorporating PVDF-TrFE and BT have also been
found to support bone formation in several investigations
(Gimenes et al., 2004; Scalize et al., 2016; Zhang et al., 2016),
suggesting significant potential for clinical application owing to

the improved osteogenic capability demonstrated in vitro and
in vivo in rodent bone defect models. Of the ceramic matrix
composites, HA/BT-based materials are the most studied, with a
number of studies demonstrating the osteoinductive capability of
such composites (Jianqing et al., 1997; Baxter et al., 2009; Dubey
et al., 2014; Jiao et al., 2017; Ehterami et al., 2018).

The emergence of piezoelectric materials and their rapidly
increasing usage has motivated investigators to adopt new and
innovative approaches to create biomaterials with desirable
properties. Techniques which are gaining interest include 3D
printing (Kim et al., 2014; Schult et al., 2016; Bodkhe et al.,
2017), fabrication of piezoelectric nanofibers using solution blow
spinning (Bolbasov et al., 2014, 2016; Daristotle et al., 2016),
and the development of systems capable of applying controlled
mechanical stimulation to piezoelectric scaffolds (Trumbull et al.,
2016; Zhou X. et al., 2016).

A lack of quantitative data on the piezoelectric coefficient of
many composite materials is a limitation to this newly emerging
class of materials. However, although this area of research
remains in its relative infancy, nanopiezoelectric materials show
tremendous promise for bone regeneration.

Electrically Conductive Materials
In cases when the patient is immobilized, whether due to a
fracture or other health condition, or in a non-load bearing
healing setting, the natural mechanical stimulus does not occur
and the effectiveness of piezoelectric materials is subsequently
diminished (Mehta et al., 2012). Such limitations call for the
development of new approaches capable of delivering electrical
cues via alternative means, either by remote stimulation or
through innovative nanomaterials activated by micromotion.
Electrically conductive materials provide such an innovative
tool, serving as the substrate through which external electrical
stimulation is converted into bioelectric signals and delivered to
the site (Chen et al., 2019).

Electrical stimulation therapy has occasionally been attempted
as a supplement to promote bone healing in the case of
fractures and spinal arthrodesis, although with arguable success,
for decades (Gan and Glazer, 2006; Goldstein et al., 2010;
Einhorn and Gerstenfeld, 2015). Researchers have more recently
begun to explore conductive materials capable of propagating
electrical signals to the site of repair in order to accelerate bone
regeneration. Unlike piezoelectric materials, these require an
externally applied power source to produce electrical signals.
On one hand, this approach requires optimization of a number
of different parameters including the frequency, amplitude,
duration, and nature (alternating/direct) of the signal which may
complicate assessment of efficacy (Dubey et al., 2011). On the
other hand, it affords a great degree of control over the stimulus
which cannot be achieved with the use of piezoelectric materials,
allowing the functionality of the material to be tailored to its
specific application.

One method for producing electroactive biomaterials capable
of serving as conduits for the delivery of external electrical
stimulation to cells involves the use of a polymer matrix
incorporating conductive nanomaterials such as graphene (Assaf
et al., 2017), carbon nanofibers (Whulanza et al., 2013), or
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metallic particles (e.g., gold nanoparticles) (Sridhar et al., 2015).
Of these, graphene family materials have been found to
possess excellent mechanical and conductive properties (Kim
S. et al., 2011; Bitounis et al., 2013; Kim J.W. et al., 2017),
support proliferation (Kalbacova et al., 2010) and osteogenic
differentiation of MSCs (Nayak et al., 2011; Bressan et al., 2014),
yield high degrees of mineralization (Lee et al., 2011; Xie et al.,
2015), and even exert antimicrobial action (Pang et al., 2017).
A number of graphene-based materials have been developed
in the form of scaffolds, scaffold reinforcement materials,
and surface coatings for existing materials, with demonstrated
capacity to promote and enhance new bone formation in vivo
(Silva et al., 2017; Wang et al., 2017; Zhou et al., 2017). Significant
limitations to graphene and other similar electroactive materials
include their non-degradability and uncertain biocompatibility,
as well as questions regarding their long-term safety (Nurunnabi
et al., 2015; Cheng et al., 2018).

To address these limitations, other methods of obtaining
electroactive biomaterials which utilize intrinsically conductive
polymers (CPs) have been explored. Such an approach offers the
advantages of improved biocompatibility and biodegradability,
in addition to manufacturing flexibility allowing incorporation
of other components (Lalegul-Ulker et al., 2018). Among several
CPs in use, the polyheterocycle family, including polypyrrole
(PPy), polyaniline (PANI), and polythiophene (PTh) and its
derivative poly(3,4-ethylenedioxythiophene) (PEDOT), are the
most extensively studied for bone regeneration applications
(Otero et al., 2012). These materials exhibit desirable electrical
conductivity sufficient to promote cell proliferation and
osteogenic differentiation (Liu et al., 2013), but are limited
by inherently poor mechanical properties and processability
(Chan et al., 2018), prompting the development of conductive
polymeric composites. For example, CPs can be blended with
various other natural and/or synthetic non-CPs to fine-tune
degradation and mechanical properties (Kaur et al., 2015).
Conductive copolymers incorporating other electroactive
polymeric components provide for further enhancement of
biocompatibility, biodegradability, and electroactivity (Cui
et al., 2012). Conductive polymer-based conducting nanofibers,
conducting hydrogels, and 3D conductive composite scaffolds
are additional examples of electroactive biomaterials being
explored for bone regeneration applications (Sajesh et al.,
2013; Li L. et al., 2016; Guex et al., 2017; Chen et al., 2018).
While numerous investigations have generated exciting results
supporting the osteogenic capabilities of conducting polymers
and their composites in vitro, there remains a need for more
animal studies to validate the performance of this promising
family of electroactive biomaterials.

Magnetically Responsive Materials
Magnetic stimulation therapy, like electrical stimulation therapy,
has been used clinically for a number of years (Assiotis et al.,
2012). While the underlying mechanisms of action are unclear,
in vitro studies suggest that pulsed and static magnetic fields
are capable of enhancing osteoblast differentiation (Jansen et al.,
2010; Wang et al., 2014; Marędziak et al., 2016), and animal
studies have shown promise for promoting bony healing and

integration into graft materials (Fredericks et al., 2000; Puricelli
et al., 2006).

When describing the magnetic behavior of a material,
ferro- and ferrimagnetism refer to a material’s ability to
be magnetized by an external magnetic field and remain
magnetized upon its removal. Paramagnetism, on the other
hand, is defined by a material’s lack of retained magnetism
upon removal of the external magnetic field, a desirable
property in tissue engineering applications, as aggregation of
the material’s magnetic particles in vivo could lead to local
toxicity (Balavijayalakshmi et al., 2014). Of particular interest
are magnetic nanoparticles (MNPs) owing to their special
superparamagnetic properties. Superparamagnetic behavior,
exhibited by small ferro- or ferrimagnetic nanoparticles, do not
retain magnetism in the absence of external magnetic fields;
however, their magnetic susceptibility is much greater than that
of standard paramagnetic materials, permitting precise magnetic
control and functionalization for a given application (Reddy
et al., 2012). Among MNPs, iron oxide nanoparticles, typically
maghemite (Fe2O3) or magnetite (Fe3O4), have been the most
commonly used (Liu et al., 2016), as they have demonstrated
osteoinductive capacity in vitro, even in the absence of external
magnetic stimulation (Huang et al., 2009; Bock et al., 2010;
Wei et al., 2011). Thus, MNPs have been incorporated into
conventional bioceramic or polymeric scaffolds, adding intrinsic
magnetic properties capable of enhancing osteogenic potential.
Results from in vivo studies suggest that the magnetic field
resulting from the presence of incorporated MNPs, albeit small,
can indeed drive the formation of new bone, even without
external magnetic stimulation. Wu and colleagues incorporated
iron oxide MNPs into a CaP bioceramic scaffold and found this
material capable of enhancing osteogenesis in a rodent model
of ectopic bone formation (Wu Y. et al., 2010), while Singh and
associates produced a PCL biopolymeric nanofibrous scaffold
incorporating iron oxide MNPs, which demonstrated the ability
to enhance bone formation in a rodent segmental bone defect
model (Singh R.K. et al., 2014).

MNP incorporation provides further functionality by
rendering the biomaterial magnetically responsive, permitting
the use of controlled external magnetic field stimulation
to potentially regulate and direct cellular behavior toward
osteogenesis and even angiogenesis (Sapir et al., 2012).
Yun et al. (2016) studied the effects of external magnetic
stimulation applied to magnetic PCL/MNP scaffolds on
osteoblast differentiation and bone formation and found that
external stimulation not only promoted in vitro osteoblastic
differentiation, but also significantly enhanced new bone
formation, compared to the magnetic scaffold alone, in mouse
calvarium defects.

New and innovative methods in this arena continue to
emerge. In a combined approach, magnetoelectric composite
materials bridge the magnetic and piezoelectric properties of
bone to produce a potentially synergistic regenerative effect.
Such materials respond to magnetic stimulation with mechanical
deformation (due to the magnetostriction of one component, that
is the change in shape occurring during magnetization), resulting
in electrical polarization (due to the piezoelectric behavior of
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the other component). Thus, bioelectrical cues can be delivered
to a desired cellular environment with precise remote control
(Ribeiro et al., 2016).

Since their introduction, concerns regarding the cytotoxic
effects of iron oxides have justifiably arisen, with a documented
relationship between their clinical use and the outbreak of
acute adverse events, such as nephrogenic systemic fibrosis,
formation of apoptotic bodies, inflammation, and other toxic
effects (Pisanic et al., 2007; Häfeli et al., 2009; Wu et al.,
2010b; Zhu et al., 2011; Alarifi et al., 2014; Shen et al., 2015).
This has provoked efforts to produce magnetic biomaterials
with improved biological features, such as doping well-known
biocompatible nanomaterials with a magnetic phase to replace
magnetite and the other iron oxides. Recently, Tampieri
and colleagues reported fabrication of biocompatible FeHA
nanoparticles with a superparamagnetic-like phase by doping
HA with iron (Fe2+/Fe3+) ions (Tampieri et al., 2012). In vitro
studies showed that these FeHA nanoparticles were capable of
enhancing cell proliferation to a greater degree than HA particles
alone, without reducing cell viability. Furthermore, the in vivo
biocompatibility of FeHA was demonstrated in a pilot animal
study of a rabbit critical bone defect (Panseri et al., 2012). While
approaches to bone regeneration based on magnetic stimulation
and magnetically responsive biomaterials are in the early stages
of development, the results to date suggest promise for such
strategies in bone regeneration applications going forward.

MATERIALS MIMICKING BONE
ARCHITECTURE: 3D PRINTED AND
BIOMORPHIC CERAMICS

Native bone displays structural features with levels of
organization spanning several orders of magnitude (nm to
cm scale) (Chen et al., 2008). This multiscale hierarchical
structure, as well as the interactions between its organic
and mineral components at the molecular level, contribute
significantly to biological and mechanical properties of bone
(Gupta et al., 2005). Thus, utilization of these features to guide
the hierarchical design of biomaterials represents a potential
strategy to promote bone regeneration. This section focuses on
nanostructured scaffold materials designed to recapitulate native
nanocues by providing mimicry of the structural features of the
natural bone matrix.

Architectural Considerations
For bone tissue engineering applications, a scaffold should
possess appropriate structural and mechanical properties to
sustain physiological loads in order to preserve weight-bearing
function, while also possessing intrinsic biocompatibility in order
to facilitate favorable biomaterial-native bone interactions, which
serve to enhance tissue regeneration and implant integration
(Ikeda et al., 2009). Many early bone tissue engineering designs
sought to accomplish this goal through synthetic structures which
imparted bulk properties to the constructs, such as adequate
mechanical strength and sufficient transport properties for cell
infiltration and tissue organization (Christenson et al., 2007).

These designs, although successful in replicating many of
the macroscopic properties of native bone, often failed prior
to full healing (Burdick and Anseth, 2002; Murugan and
Ramakrishna, 2005). A key factor identified in these failures
was inadequate tissue regeneration around the material shortly
after implantation, owing to poor interaction of the biomaterial
with the host tissue (Christenson et al., 2007). In fact, the
process of bone formation is governed by interactions and
informational cues derived from structural features spanning
multiple length scales from nanoscale to macroscale (Gusic et al.,
2014). Nanoscale interactions in particular have been shown to
be crucial in controlling cell functions such as proliferation,
migration, and adhesion in native tissues (Benoit and Anseth,
2005). Indeed, all living systems are governed by molecular
behavior at nanometer scales (Zhang et al., 2012). As in
other tissues, the cellular organization and corresponding tissue
properties of bone are highly dependent on the nanostructural
features of the ECM, since cells are predisposed to interact
with nanostructured surfaces (Kaplan et al., 1994; Taton,
2001; Liu et al., 2006). This may help to explain why
early generation tissue substitutes—produced through macro-
and microfabrication techniques that were unable to recreate
sophisticated structures that mimic the subtleties of the ECM—
showed suboptimal performance. Recent paradigm shifts to
nanoscience-enabled techniques have resulted in the emergence
of novel nanotechnological approaches that enable more precise
recapitulation of the architectural features of native bone, offering
greater potential for modulating cellular behavior and enhancing
bone regeneration (Webster et al., 2000; Murphy et al., 2010; Saiz
et al., 2013; Tang et al., 2016).

Native bone is characterized by unique topological features
derived from its micro- and nanostructured surfaces and
interfaces, which are crucial to its function and growth and
therefore promising targets for biomimicry (Nadeem et al.,
2015). Nanotechnology offers new opportunities to capitalize
on the structure-function relationships in bone by replicating
a number of these integral features. By providing the substrate
upon which cells attach and proliferate, surface topography
can modulate cellular behavior and function (Boyan et al.,
2002). Native bone is composed of collagen fibrils with rod or
needle-like HA deposits scattered across their surface. These
deposits produce surface roughness which has been shown to
promote both adhesion of osteoblasts as well as differentiation
of MSCs to the osteogenic lineage (Nadeem et al., 2015). Based
on this, researchers have developed approaches to introduce
surface roughness onto scaffold materials in order to more
effectively mimic the mineralized interface encountered by cells
adhering to native bone ECM (Henkel et al., 2013). Farshid
and colleagues (Farshid et al., 2017), for instance, introduced
microscale surface roughness onto polymeric scaffolds through
the incorporation of boron nitride nanotubes and nanoplatelets,
which resulted in greater collagen deposition and cell attachment
by pre-osteoblasts in vitro. In another approach, Shakir et al.
(2018) utilized nano-HA to enhance the surface roughness
of a resin-based chitosan scaffold, which they found capable
of promoting superior bone regeneration in vivo in a rat
calvarium defect model.
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Given that the HA deposits producing surface roughness
in native bone have dimensions in the nanoscale, fabrication
of surfaces with nanostructured topography can prove even
more beneficial to inducing osteogenesis than simply producing
roughness at the microscale (Lim et al., 2005). Indeed, Lim
and colleagues (Lim et al., 2005) generated nanoscale surface
roughness by introducing “nanoislands” of varying size to a
polymeric substrate and investigated their effects on osteoblastic
cell behavior. They found that a smaller island height produced
greater cell adhesion and spreading as well as increased alkaline
phosphatase activity, demonstrating the advantages of down-
scaling the dimensions of topographical features. Other surface
nanotopographies, such nanogrooves and nanopits, have also
been shown to enhance osteoblast differentiation and osteogenic
cell function in several studies (Dalby et al., 2007; Liu et al., 2014;
Gong, 2015; Xu et al., 2017).

In addition to surface topography, cell and ECM alignment
within the native bone represents a structural feature integral
to its growth and function, and is thus a promising target for
biomimicry (Takano et al., 1999). The anisotropic characteristics
of bone tissue—a result of its unique adaptive response to external
forces—is due to the longitudinal alignment of its collagen fibers,
and there is evidence that MSCs more readily differentiate to an
osteogenic phenotype when confined into such an alignment (Ber
et al., 2005; Li et al., 2007). This phenomenon is thought to be
mediated by contact guidance mechanisms whereby instructive
physical cues, generated through the local interactions which
occur in specific cellular orientations and alignment, act to
regulate cell morphology and function (Boyan, 1996; Badami
et al., 2006). Tissue engineering strategies which are capable of
exploiting these mechanisms may therefore allow cell fate to be
precisely directed for its intended application. For the purposes
of bone tissue engineering, simulation of the alignment found in
the native bone may potentially promote bone regeneration by
driving stem cells toward an osteogenic lineage and enhancing
their functions through the recapitulation of the native cues (Ber
et al., 2005; Nadeem et al., 2015).

To achieve the desired alignment, one approach involves the
creation of micron and/or nanoscale grooves on the substrate
material, which allows cells to grow and spontaneously elongate
along the direction of groove alignment (Perizzolo et al., 2001;
Zhu et al., 2005; Badami et al., 2006). Nadeem et al. (2015) utilized
such an approach through the introduction of integrated surface
micropatterns to their 3D CaP/gelatin biomaterials, producing
cell-instructive scaffolds which were osteoinductive in vitro and
promoted greater bone formation and osseointegration in vivo in
a rabbit radial segmental defect model. A more direct approach
toward biomimicry is to simply replicate the aligned fibers
seen in the native collagenous architecture of bone. Innovative
techniques utilizing aligned nanofibers created, for example,
by electrospinning, have made it possible to accomplish this
form of biomimicry with extraordinary precision (Jose et al.,
2009; Anjaneyulu et al., 2017). By replicating the morphological
and chemical structure of the natural ECM at the nanoscale
level, nanofibrous scaffold materials offer greater potential to
modulate cellular function and guide cell growth (Murugan and
Ramakrishna, 2005; Leung and Ko, 2011; Pas̨cu et al., 2013).

Additionally, such materials provide increased surface area-to-
volume ratios and porosity, thereby enhancing osteoconductivity,
as well as desirable biocompatibility, biodegradability, and
mechanical strength (Haider et al., 2018).

3D Printing
The internal porosity of native bone is yet another important
structural feature which bone regenerative engineering
approaches have targeted for biomimicry. The presence of an
interconnected, 3D, porous architecture is a critical requirement
for any bone tissue engineering strategy in order to allow for
cell migration and the transport of nutrients and waste (Lee
et al., 2014). Nanofibrous scaffolds prove especially advantageous
in this regard, as the small fiber diameter creates a highly
porous matrix enabling effective cell migration and proliferation
throughout the scaffold (Rezwan et al., 2006; Zhang et al., 2008;
Xu et al., 2017). In addition to overall porosity, average pore size
is another significant consideration. Although the optimal pore
size to promote bone regeneration within engineered scaffolds
has not been definitively established, in general, smaller pore
sizes will promote initial cell adhesion due to higher substrate
surface area, while larger pores will enable greater cellular
infiltration from surrounding tissue, a critical requirement for
vascular ingrowth and subsequent tissue maintenance (Kenar
et al., 2006; Murphy et al., 2010; Cox et al., 2015). While
nanofibrous scaffolds provide a high overall porosity, nanofibers
created by electrospinning tend to produce constructs with
reduced average pore size compared to larger fiber scaffolds,
resulting in decreased cell penetration depth (Badami et al.,
2006). The need for more precise control of porosity and pore
size within scaffold materials has prompted the implementation
of novel 3D printing systems which may offer such capabilities.
3D printing technologies such as fused deposition modeling,
stereolithography, and selective laser sintering have enabled
the production of scaffolds with greater spatial resolution and
fidelity than traditional fabrication methods, while also offering
the ability to introduce precise pore gradients which more
effectively mimic the physical cues for growth found in native
bone tissue (Bracaglia et al., 2017; Alehosseini et al., 2018;
Malikmammadov et al., 2018; Babilotte et al., 2019). While 3D
printing approaches to the design of scaffolds for bone tissue
engineering are quite new and still being explored for their
utility, they also offer strong potential for the 3D patterning of
surface roughness and other key physical features, providing
even further recapitulation of the native cues present in bone
(Murphy and Atala, 2014).

Mimicking the architecture of native bone is an essential
component of material design for bone regeneration applications.
These materials must provide an environment suitable for
cellular recruitment, adhesion, proliferation, and pro-osteogenic
differentiation. There is an abundance of technologies that
provide tight control over topography, porosity, and mechanical
properties of various materials that have proven useful for bone
regeneration. Providing a suitable environment for osteogenesis
is a crucial aspect of material design for bone regeneration,
but it is not the only consideration. These materials must
also be durable, biocompatible, and capable of integrating with
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surrounding tissues, among other properties, to be relevant for
clinical applications.

Scaffolds Synthesized Through
Biomorphic Transformation
Long bone and critical-sized defects caused by trauma, non-
union, or tumors represent a difficult clinical challenge in
need of more reliable solutions (Berner et al., 2012; Roffi
et al., 2017). Most currently available synthetic scaffolds have
not proven capable of providing the necessary osteo- and
vascular conductivity within the innermost portions of the
scaffold. This could be attributed to a disorganized and
tortuous porosity impeding cell penetration into the scaffold and
subsequent tissue development; sufficient mechanical strength to
promote integration with host tissues can also be a challenge
(Mastrogiacomo et al., 2006).

In the attempt to overcome these limitations, “biomorphic
transformations” have been developed. These synthetic
approaches consist of a series of steps involving pyrolysis
and complex chemical reactions (mainly liquid or gas infiltration
processes), allowing for the chemical transformation of natural
substrates into ceramic scaffolds, while preserving their original
fine architecture from the nano up to the macro scale. Among
natural templates, one is particularly advantageous as a solution
to long bone defect healing—wood. Wood presents a unique
hierarchical architecture on a cellular micro and nano-structure
scale (Fratzl and Weinkamer, 2007). The pattern of fiber
bundles and channel-like porous areas of selected types of
wood (e.g., rattan) is surprisingly similar to that found in long
bone (Tampieri et al., 2009). There have been a few remarkable
attempts to utilize wood as a scaffold for the synthesis of
biomimetic hierarchically organized load bearing scaffolds for
long bone repair. In 2009, a biomimetic HA bone scaffold from
natural wood with highly organized multiscale porosity was
first proposed (Tampieri et al., 2009). The resulting material
was a porous nanostructured apatite scaffold with a hierarchical
structure, representing an inorganic substitute for bone graft
that allowed for cellular invasion while providing space for
vascularization (Tampieri et al., 2009). Recently, they used a
similar approach of bio-ceramization of a wood template to
prepare a hollow cylindrical ceramic scaffold to resemble cortical
bone, and filled it with a spongy HA/collagen bio-hybrid scaffold
to resemble spongy bone. They assessed the osteoconductivity of
the construct in a sheep critical size load bearing model (2 cm
metatarsus defect), finding significant osteointegration at the
bone/scaffold interface (Filardo et al., 2014). Using the same
large animal model, in a follow-up study, they increased the
diameter of the lumen of the external cortical-like biomorphic
scaffold (Filardo et al., 2019). Osteointegration was observed
in all samples, but the group with the largest internal diameter
(11 mm) showed the best results in terms of bone-to-implant
contact and new bone growth inside the scaffold. Additionally,
the investigators posited that scaffold degradation in the
cortical area—which induced osteointegration and new bone
formation—is possible evidence of activation of load-induced
biochemical signaling within the bone healing cascade.

Bigoni et al. (2020) reported that the mechanical properties
of these biomorphic HA scaffolds have superior mechanical
properties (higher strength, stiffness, and toughness at low
density) when compared to usual porous ceramics obtained
through sintering; probably due to the unique hierarchically
organized multiscale resolution down to the nano-scale, which
is not yet present in common ceramics.

While there is much potential for wood-based scaffolds
and biomorphic transformation, certain drawbacks exist in
comparison with other approaches. For instance, the process
of biomorphic synthesis requires complex and strict control of
reaction kinetics to avoid deformations and structural defects
and to maintain the multiscale porosity (i.e., down to the
nanoporosity) (Tampieri et al., 2018). Further, it relies on gas-
solid reactions that are strongly affected by different phenomena
relating to adsorption of the gaseous reactant by the solid, kinetics
of nucleation and growth of synthesized inorganic phase at the
surface, and the penetration of the gaseous reactant within the
innermost portion of the structure (Szekely, 2012). This control
is vital when fabricating larger pieces, since diffusive phenomena
affect the rate of phase transformation (Bigoni et al., 2020).
Without strict control of this process, the advantages of wood as
a template cannot be capitalized upon.

MIMICKING BONE’S BIOCHEMICAL
NICHE: DELIVERY OF BIOACTIVE
MOLECULES

A variety of bioactive molecules compose the biochemical milieu
of bone (Minardi et al., 2020). Several strategies have been
proposed to deliver biochemical cues (e.g., growth factors,
cytokines) to recapitulate this environment and enhance bone
regeneration, as summarized in Figure 3. Initial attempts
consisted of the direct adsorption or crosslinking of biomolecules
to implants, which resulted in suboptimal outcomes, mostly due
to burst release and molecule denaturation (Fan et al., 2012).

FIGURE 3 | Summary of the main strategies for the delivery of bioactive
molecules for bone regeneration.
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TABLE 3 | Main types of nanostructured delivery systems used in bone regeneration, with their respective advantages and disadvantages.

Advantages Disadvantages References

Inorganic nanostructured delivery systems

Ceramics (e.g., HA,
TCP)

Intrinsic osteoconductivity
Surface functionalization
Widely available

Unfavorable biodegradability profile
Low yield of payload loading

Matsumoto et al., 2004; Dong et al., 2007; Habraken et al.,
2007; LeGeros, 2008; Yuan et al., 2010; Xie et al., 2010;
Bose and Tarafder, 2012; Jeon et al., 2012; Fielding and
Bose, 2013; Fan et al., 2014; Wen et al., 2017

Metallic or metalloid
oxides (e.g., silica)

Tailorable mesoporous structure
Surface functionalization with
and/or encapsulation of bioactive
molecules
Modifiable architecture and
topography
Optimization of cell adhesion and
proliferation

Cytotoxicity at certain particle sizes
and/or concentrations

Oh et al., 2005; Raja et al., 2005; Magrez et al., 2009; Lai
et al., 2011; Lallana et al., 2012; Portan et al., 2012; Tang
et al., 2012; Setyawati et al., 2013; Shadjou and
Hasanzadeh, 2015; Zhou et al., 2015; Cui et al., 2018;
Tang et al., 2014; Hu et al., 2012; Huang et al., 2014; Kwon
et al., 2017; Liu et al., 2017

Organic nanostructured delivery systems

Synthetic polymers
(e.g., PLA, PLGA)

Widely available
Overall favorable biocompatibility
Many modifiable properties: e.g.,
L/G ratio, molecular weight.
Modifiable with cross-linkers or
surface functionalization

Low yield of payload loading
Burst release
Difficulty in accomplishing
sustained release
Certain polymers have cytotoxic
degradation products

Alcantar et al., 2000; Habraken et al., 2007; Lü et al., 2009;
Puppi et al., 2010; Anderson and Shive, 2012; Makadia
and Siegel, 2011; Jacob et al., 2018

Natural polymers (e.g.,
gelatin, chitosan)

Widely available
Favorable biocompatibility and
biodegradability
Biomimetic properties
Modifiable with cross-linkers or
surface functionalization

Low yield of payload loading
Rapid degradation in vivo
Burst release
Difficulty in accomplishing
sustained release

Friess, 1998; Aframian et al., 2002; Malafaya et al., 2007;
Niu et al., 2009; He et al., 2011; Vo et al., 2012; Farokhi
et al., 2014; Amjadian et al., 2016; Cai et al., 2016; Ding
et al., 2016; Shen et al., 2016; Jacob et al., 2018; Oliveira
et al., 2019

Composite nanostructured delivery systems

Composites High loading efficiency
Highly tunable release kinetics
Sustained release
Optimization of unique properties of
each material

Generally require more complex
syntheses

Li et al., 2006; Liu et al., 2009; Niu et al., 2009; Reves et al.,
2011; Fan et al., 2012; Singh et al., 2015; Minardi et al.,
2015b; Kim B.-S. et al., 2018; Wang et al., 2018; Zhang Q.
et al., 2018; Minardi et al., 2020

Delivery systems offer more effective and precise control
over release (Minardi et al., 2014). Among delivery systems,
nanostructured varieties have proven superior, as they can
be finely tuned to provide a higher yield of loading and
sustained release over time, while allowing for complex
temporally controlled release kinetics (Minardi et al., 2016b).
The most common nanostructured delivery systems developed
for bone regeneration are reviewed below and summarized
in Table 3.

Nanostructured Delivery Systems
Osteogenic growth factors, including bone morphogenetic
proteins (BMP-2 and BMP-7), or the transforming growth factor-
β (TGF-β) family, are known to play a crucial role in cell
proliferation, differentiation, and ultimately osteogenesis (Chen
et al., 2004). As FDA-approved in 2002, BMP-2 is delivered
with an absorbable collagen sponge (ACS) [INFUSETM] for
clinical applications (McKay et al., 2007). Although efficacious,
supraphysiologic doses of the growth factor are required, which
have been associated with a number of adverse side effects
(Tannoury and An, 2014). Given these challenges, there is
significant research interest in the development of novel delivery
systems to provide controlled release of lower doses of BMP-2
and other bioactive molecules important for bone regeneration.

Toward this end, a wide array of nano-structured systems capable
of delivering bioactive signals and molecules have been proposed.

Inorganic Nanostructured Delivery Systems
Utilizing ceramic materials for drug delivery in the field of bone
regeneration presents advantages, as these materials themselves
have osteoconductive properties (Habraken et al., 2007; LeGeros,
2008; Yuan et al., 2010). Commonly used ceramics include CaPs,
such as HA and TCP. In the first generation of HA-based delivery
systems, HA was directly adsorbed with bioactive molecules
such as BMP-2 (Matsumoto et al., 2004; Dong et al., 2007; Xie
et al., 2010), however, side effects associated with their burst
release quickly demanded alternative strategies (Xie et al., 2010),
such as chemically bonding bioactive molecules to the surface
of the ceramic particles, which provides a more controlled and
sustained release over time (Fan et al., 2014). The surface of CaP
particles can be functionalized to bind a wide array of bioactive
molecules for bone regeneration (Bose and Tarafder, 2012). For
example, nano-HA particles can be functionalized to bind to
and provide sustained release of BMP-2 to stimulate osteogenesis
in vitro (Jeon et al., 2012).

Metallic or metalloid oxide nanomaterials such as silica
(SiO2) and titanium oxide (TiO2) nanotubes have also been
functionalized into nano-structured delivery systems for different
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bioactive molecules for bone regenerative applications (Lai
et al., 2011; Shadjou and Hasanzadeh, 2015; Zhou et al., 2015).
Silica-based nanomaterials (e.g., mesoporous silica) have been
engineered to provide controlled release of different biomolecules
(Shadjou and Hasanzadeh, 2015). These materials are generally
biocompatible and can be easily functionalized with a number
of different linker molecules (Lallana et al., 2012). Zhou et al.
(2015) utilized silica nanoparticles to enable dual-delivery of
BMP-2 and dexamethasone, and Cui et al. (2018) have utilized
a silica-based nanomaterial delivery system for controlled release
of BMP-2-related peptide both in vitro and in vivo. The tailorable
mesoporous structure and the ability to bind a variety of different
molecules are notable advantages of these silica-based materials
(Tang et al., 2012). Additionally, the architecture and topography
of these compounds can be engineered to promote cell adhesion,
proliferation, and differentiation—all critical requirements for
in vivo applications (Tang et al., 2014).

TiO2 nanotubes for delivery of drugs and other biomolecules
have also been described (Hu et al., 2012; Huang et al.,
2014; Kwon et al., 2017). These can be designed to both
encapsulate and display the molecule of interest on the material
surface (Huang et al., 2014). One group directly functionalized
the surface of TiO2 nanotubes with BMP-2, which promoted
osteogenic differentiation in vitro (Lai et al., 2011). In addition
to biomolecule delivery, the surface of TiO2 nanotubes can
be activated and coated with ceramics like CaP or HA (Oh
et al., 2005; Raja et al., 2005). However, concerns have arisen
regarding the toxicity of TiO2-based nanomaterials, with one
study suggesting that the strong adherence of osteoblasts to
the metallic material may induce apoptosis (Portan et al., 2012;
Setyawati et al., 2013; Liu et al., 2017). Dose-dependent cytotoxic
effects of TiO2 nanofilaments have also been described elsewhere
(Magrez et al., 2009).

Organic Nanostructured Delivery Systems
Alternatively, polymer-based delivery systems have been
fabricated using both synthetic and natural materials (Jacob
et al., 2018). Commonly used synthetic polymers include
polyethylene glycol (PEG), poly(L-lactic acid) (PLA), PCL,
PLGA, and poly(L-lactic acid) fumarate (PLAF). Polyethylene
glycol and PLA are comprised of single monomers, while PCL,
PLGA, and PLAF are copolymers. There has been extensive use
of synthetic polymers as delivery systems for bone regeneration
applications, including delivery of BMP-2, dexamethasone,
antibiotics, and other pharmacologics (Puppi et al., 2010).
Polyethylene glycol, PCL, and PLGA are all biocompatible
(Alcantar et al., 2000; Anderson and Shive, 2012), although
PLGA is generally favored, because it is FDA-approved and has
been demonstrated to be non-inflammatory in various studies
(Habraken et al., 2007; Lü et al., 2009; Makadia and Siegel,
2011). Additionally, various properties of PLGA—the L/G ratio,
molecular weight, and stereochemistry—can be modified to
control the polymer’s properties and degradation rate (Habraken
et al., 2007). Polymers such as PLA and PLGA can yield cytotoxic
acidic degradation products (Habraken et al., 2007). Therefore,
controlled degradation is important for both drug delivery and
to minimize toxicity.

Natural polymers used for the controlled release of bioactive
molecules to promote bone regeneration include gelatin,
chitosan, alginate, collagen, silk fibroin, hyaluronic acid, and
fibrin, among others (Jacob et al., 2018). These materials
are advantageous given their biocompatibility and biomimetic
properties, which result from a close resemblance of native
ECM, and are also fully biodegradable (Malafaya et al., 2007; Vo
et al., 2012). Natural polymers have been described in systems
delivering BMP-2 (Niu et al., 2009; Shen et al., 2016), vascular
endothelial growth factor (VEGF; Farokhi et al., 2014), antibiotics
(Cai et al., 2016), and immunomodulators (Amjadian et al.,
2016). However, there are known limitations to using natural
polymers as the foundation for delivery systems. For example,
controlling the release of molecules from these polymers is
challenging. Collagen is known to degrade rapidly in vivo
through protease action (Friess, 1998); however, various chemical
modifications—including cross-linking (Aframian et al., 2002;
He et al., 2011; Oliveira et al., 2019) or combination with other
compounds (e.g., composite materials) (Niu et al., 2009; Ding
et al., 2016)—have enabled researchers to significantly prolong
the degradation rates of these natural polymers. Other limitations
of natural polymers include fabrication costs, batch variability,
and harvesting (Vo et al., 2012).

Composite Nanostructured Delivery Systems
Composite materials are often developed to overcome specific
limitations of a given material, such as those described
above. The optimal properties of each individual material
can be leveraged when combining multiple components into
one delivery system. Contributing to the sustained release
of osteogenic factors, which is critical for in vivo outcomes,
composite materials provide additional functionality that can
be used to fine-tune the temporal release profile of a given
compound. Some common examples include ceramic/polymer
composites, polymer blends, and silica/polymer composites.
Several different polymer and HA composite materials for
controlled delivery of BMP-2 have been described, including
silk fibroin/poly(ethylene oxide)/nano-HA (Li et al., 2006),
gelatin/fibrin/nano-HA (Liu et al., 2009), collagen/poly(L-
lactic acid)/nano-HA (Niu et al., 2009), chitosan/nano-HA
(Reves et al., 2011), and ε-polycaprolactone/HA (Kim B.-
S. et al., 2018). The polymer components can be cross-
linked and functionalized, whereas the ceramic components
provide osteoconductive properties. Multiple polymers have been
combined to create polymer blends, which provide further
control of degradation rates (Wang et al., 2018). Metal/metalloid
and polymer composites for drug delivery are a popular
and expanding area of research in bone tissue engineering.
Although metallic oxides like silica can be engineered to provide
burst release of biomolecules, further functionalization with
polymers can provide sustained release over time. Poly(lactic-co-
glycolic acid)-mesoporous silicon composites have also gained
significant traction as a delivery system. For example, PLGA-
mesoporous silicon microspheres have been engineered to
deliver therapeutics, including BMP-2 (Minardi et al., 2020)
and other bioactive molecules (Minardi et al., 2015b); these
have demonstrated excellent release profiles, biocompatibility,
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and osteogenic profiles both in vitro and in vivo. Other
groups have utilized similar composite systems for bone tissue
engineering applications (Fan et al., 2012; Zhang Q. et al.,
2018). In another study, Singh et al. (2015) created a composite
of PCL nanofibers coated with a mesoporous silica shell that
was capable of binding to and providing sustained release of
several bioactive molecules, with a subsequent upregulation of
osteogenic differentiation in vitro.

Biomaterials Functionalized With
Nanostructured Delivery Systems
Scaffolds can be engineered to provide both spatially- and
temporally controlled release of important biomolecules that
facilitate bone regeneration and healing (Minardi et al., 2014,
2016b). While temporally controlled release is important to
orchestrate the cascade of molecular and cellular events necessary
to bone healing, the spatial release of biomolecules in vivo
ensures that it occurs at the defect or desired area of interest
for clinical applications (Minardi et al., 2016b). The most
popular types of scaffolds (hydrogels (Nguyen and West, 2002),
ceramics (Habraken et al., 2007), 3D-printed materials (Yi et al.,
2016), and various composite materials (Yi et al., 2016) have
all been proposed in combination with nanostructured delivery
systems. These scaffolds can be functionalized with various
bioactive components and molecules (Minardi et al., 2016b),
including growth factors, peptides and mimicker molecules,
immunomodulatory molecules, antibiotics, and even entire
cells. Well-established as a potent stimulator of osteogenesis,
incorporation of BMP-2 or BMP-2 mimetics into scaffolds is
understandably an active area of research. Angiogenic factors
such as VEGF, platelet derived growth factor (PDGF), and
fibroblast growth factor (FGF) have also been shown to play
an important role in bone regeneration and to support the
maturation of the newly formed bone (David Roodman, 2003;
Kaigler et al., 2006; De la Riva et al., 2010).

In addition to growth factors, systems can be functionalized
to deliver other important bioactive molecules for bone healing,
including immunomodulatory therapeutics and antibiotics to
optimize bone healing. The host inflammatory response plays
a critical role in osteogenesis and bone healing (Walsh et al.,
2006; Guihard et al., 2012, 2015; Corradetti et al., 2015),
and incorporation of immunomodulatory molecules within
scaffolds provides another means to optimize bone healing and
scaffold integration. Given that the risk of infection, including
osteomyelitis, is significant after placement of implants (Lucke
et al., 2003), the controlled release of antibiotics has the potential
to provide a huge advantage to implanted devices and subsequent
bone healing (Adams et al., 2009). Functionalization with these
various molecules can occur via several different mechanisms,
including incorporation of nanostructured systems within the
scaffold, cross-linking and surface modifications, adsorption,
direct loading of cells, among others. For example, various types
of scaffolds—fibrous gelatin, poly(L-lactide), and HA particle
composite (Amjadian et al., 2016) and electrospun nanofiber
disks (Li et al., 2015)—have been functionalized to deliver
local dexamethasone to improve osteogenesis. Herein, we list

and review the most common and successful strategies for
incorporation of delivery systems into 3-dimensional implants
for bone regeneration.

Direct Incorporation of Nano-Delivery Systems in 3D
Constructs
Direct incorporation of bioactive molecules and nanostructured
delivery systems has been accomplished using a number of
different techniques. One common modality is the hydrogel.
Numerous polymeric hydrogels have been developed (Hoare
and Kohane, 2008), as they can be engineered to both control
the release of biomolecules (Gibbs et al., 2016) and enhance
cellular adhesion and differentiation (Tibbitt and Anseth, 2009).
These hydrogels are typically biocompatible and can be easily
functionalized with cell adhesion ligands by modification of their
surface (Hoffman, 2012). Some challenges persist, including their
fabrication and clinical deployment (Hoare and Kohane, 2008).
Hydrogels also inherently lack a solid framework, can be difficult
to handle, and they may be difficult to sterilize, which can limit
the clinical utility of these materials (Hoffman, 2012). Madl
et al. (2014) engineered alginate hydrogels functionalized with
a peptide mimetic of BMP-2, which were shown to upregulate
markers of osteogenic differentiation and increase mineralization
in vitro. Delivery systems of angiogenic factors such as VEGF
have also been incorporated into polymeric hydrogel scaffolds for
delivery in vivo (Kempen et al., 2009).

Surface Modification and Cross-Linking of
Nano-Delivery Systems to 3D Constructs
Surface modification and cross-linking are other modes of
biomaterials functionalization. Surface chemistries can facilitate
stable, covalent binding of molecules, with the potential to
provide tightly controlled release (Nie et al., 2007). Heparin-
based linkers, for example, are commonly used to link growth
factors to surfaces (Liang and Kiick, 2014). Various examples of
these linkers have been described for local delivery of BMP-2
(Kim S.E. et al., 2011; Yun et al., 2013) and angiogenic factors like
VEGF (Lode et al., 2008; Singh et al., 2011) and PDGF (Lee et al.,
2012). Delivery systems of BMP-2 have also been incorporated
directly onto the surface of 3D-printed ceramic scaffolds using
polymer emulsion (Kim B.-S. et al., 2018).

Surface modification with immunomodulatory molecules
has also been described. For example, Spiller et al. (2015)
functionalized a decellularized scaffold with IL-4 via biotin-
streptavidin binding and/or IFN-γ via adsorption, to facilitate
rapid release of IFN-γ to promote pro-inflammatory M1
macrophages and sustained release of IL-4 to promote pro-
healing M2 macrophages. Other groups have functionalized
scaffolds with immunomodulatory molecules, including IL-4
(Minardi et al., 2016a), IL-10 (Rodell et al., 2015), and IL-
33 (Liu et al., 2018) for various applications. The delivery of
immunomodulatory molecules is relatively novel, particularly
for bone tissue engineering, and this area of research is at
a pivotal stage. Notably, scaffolds functionalized with IFN-γ
have demonstrated increased vascularization relative to controls
(Spiller et al., 2015).
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FIGURE 4 | Role of classically and alternatively activated macrophages in inflammation, tissue injury and regeneration.

Many other scaffolds have been engineered to provide a more
sustained release of encapsulated BMP-2 (Yang et al., 2013;
Rahman et al., 2014; Gan et al., 2015; Kim B.-S. et al., 2018;
Mohammadi et al., 2018). Sun et al. (2018) fabricated a porous
scaffold comprised of sintered HA nanoparticles, functionalized
with either BMP-2 or BMP-2-related peptide, and both options
provided significant osteogenic potential when assessed in a
critical-size cranial defect model in rats. Hu et al. (2012) anodized
a titanium substrate to form TiO2 nanotubes that were loaded
with BMP-2 for sustained release, which showed promising
upregulation of osteogenic differentiation in vitro.

Multifunctional Nanofiber Scaffolds as Drug Delivery
Systems
Some nanostructured materials can simultaneously be used
for the loading and release of bioactive molecules or to
bind endogenous growth factors as well as to fabricate 3D
scaffolds. A prime example is the use of peptide amphiphiles.
Stupp and coworkers engineered a heparin-binding peptide
amphiphile (HBPA) nanogel capable of binding and mimicking
physiologic BMP-2 signaling (Lee et al., 2013). This BMP-2-
binding PA promoted bone regeneration in a rat critical size
femoral defect model with 10-fold lower doses than typically
required (Lee et al., 2013). Additional approaches by this
group have shown that BMP-2-binding PA nanogels provide
significant bone regenerative capacity in an established pre-
clinical posterolateral lumbar fusion (PLF) model with 10-fold
lower doses of BMP-2 than typically required (Lee et al., 2015). In
another study, hydrogels were designed with BMP-2 mimicking
peptides that were capable of inducing osteogenic differentiation
of rat MSCs in vitro. This osteogenic capacity was confirmed
in vivo using a rat cranial defect model (Liang et al., 2019). In
a recent study, peptide amphiphiles were functionalized with
supramolecular glycopeptide nanostructures containing sulfated

monosaccharides (Lee S. S. et al., 2017), given that heparan
sulfate chains are a critical motif for the binding of many
osteogenic growth factors under physiologic conditions (Xu and
Esko, 2014). When assessed in vivo using an established rat
PLF model, the PA nanostructures combined with a 100-fold
lower dose of BMP-2 than typically required (100 ng of BMP-
2 per animal) yielded an impressive 100% fusion rate (Lee S. S.
et al., 2017). PA nanostructures combined with an even lower
dose of BMP-2 (10 ng/animal, or 5 ng/scaffold) or without
BMP-2 did not yield fusion, although PA nanofibers alone were
minimally bioactive when assessed in vitro in C2C12 cells (Lee
S. S. et al., 2017). The pre-clinical data regarding the use of PA-
based materials for bone regeneration are promising. Although
it is possible to control the nano-scale properties of the PAs,
functionalize with different binding motifs, and gel the material
into a macrostructure for in vivo applications, some future
challenges include optimizing these materials for different clinical
applications, ensuring minimal batch-to-batch variability, and
large-scale fabrication of these materials.

These studies are but a few examples of the surface
chemistries that can be employed to functionalize scaffolds
with bioactive molecules. Given the multitude of variables that
can be manipulated, the potential for drug delivery and bone
regeneration applications are ever-expanding.

DISCUSSION AND CONCLUSION

While each of the previously discussed approaches to bone
regeneration show promise, bone defects are not all alike. For
instance, the repair of large bone defects resulting from trauma
requires a mechanically competent scaffold (Masquelet et al.,
2000). Arthroplasty, on the other hand, calls for strategies
that improve implant lifespan, as the longevity of conventional
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materials remains a major limitation in this setting (Smith et al.,
2018). For this application, the key to success lies in improving
the osseointegration of existing implants through surface
modifications (Serra et al., 2013; Puertolas and Kurtz, 2014).
Orthopedic infection is another major challenge to implant-based
bone healing, and additional material characteristics, such as
antimicrobial properties, should be considered.

Even so, the biological environment for bone healing may
also be compromised as a result of numerous patient-related
factors, local and/or systemic, including advanced age, gender,
tobacco, and/or alcohol use, pre-existing chronic illness, and
the use of certain medications (Andrzejowski and Giannoudis,
2019). For example, the bone healing deficiencies observed in
older patients or smokers may require cell-based approaches
or growth factors such as rhBMP-2, which may reliably
stimulate healing but can be associated with significant adverse
effects. Another example is the use of biologics, which is
a strategy of choice in several orthopedic procedures, but
that remains inappropriate in oncologic patients, where this
may potentially exert local or even systemic tumor-promoting
effects (Serakinci et al., 2014; Holzapfel et al., 2016). Together,
these influences act through a variety of mechanisms to
predispose some patients to impaired bone regeneration,
which can only be overcome by personalized regenerative
strategies. By providing more precise and individualized
treatment modalities, nanotechnological approaches to bone
regeneration may provide more effective and longer-lasting
implants, decreased infection rates, and improved bony healing,
which could ultimately translate to improved patient outcomes.
In particular, nanotechnology has allowed for the design of
materials that can approach the challenge of augmenting bone
regeneration from different angles, such as simultaneously
mimicking the bone nano-composition and structure, while
serving as a delivery vehicle for bioactive molecules and/or
cells (Zhao et al., 2011). Nano-biomaterials that are able to
recapitulate more than one of the aspects of bone as reviewed
herein may certainly offer superior performances in challenging
clinical settings. For example, nanotechnology offers oncologic
patients novel means of integrating drug delivery functions
into osteoinductive biomaterials which in turn can be used for
both the regeneration of bone defects as well as the targeted
treatment of the cancer (Acharya and Sahoo, 2011; Gu et al., 2013;
Rawat et al., 2015).

Given that each bone defect and combination of pre-existing
conditions may call for different regenerative strategies or a
combination of them, it is also crucial not to overlook the role of
the host’s immune system in bone healing. In fact, the immune
system not only protects the body from pathogens but also
orchestrates the response to foreign materials, and monitors for
possible alterations in tissue homeostasis through a mechanism
known as inflammation (Taraballi et al., 2018). While many
researchers have investigated methods to minimize the immune
response to materials to preserve their regenerative potential,
in recent years there has been a shift toward the development
of technologies able to preferentially engage the host’s immune
cells. In fact, inflammation and the subsequent recruitment of
immune cells to the diseases site are paramount to initiate

healing (Taraballi et al., 2018). Nonetheless, while inflammation is
desirable due to its key role in initiating tissue repair, it does need
to be controlled in order to avoid the initiation of a foreign body
response against bone regenerative materials (Franz et al., 2011).

Inflammation consists of the infiltration, proliferation, and
polarization of hematopoietic and non-hematopoietic cells,
that are recruited and activated by specific bioactive factors
produced within the lesion (Taraballi et al., 2018). Among the
cells involved in this highly orchestrated process, macrophages
have been found to be the primary players (Wynn and
Vannella, 2016; Michalski and McCauley, 2017). Classically
activated macrophages (M1) are the first to be recruited
to the site of injury and are gradually replaced by the
alternatively activated macrophages (M2) if a regenerative
response is initiated (Minardi et al., 2016a). M2 macrophages
are immunomodulatory and coordinate tissue repair-producing
anti-inflammatory molecules such as IL-10 and TGF-β; this
triggers angiogenesis and matrix remodeling, while suppressing
the M1-mediated inflammation (Figure 4; Minardi et al.,
2016a).

Currently, the two main strategies to modulate the
macrophage-driven inflammatory response are through (i)
materials functionalized with nanodelivery systems for the
release of immunomodulatory mediators (Spiller et al., 2015); (ii)
materials engineered at the nanoscale so that their composition
and structure itself may induce macrophage polarization toward
the M2 lineage (Vasconcelos et al., 2016; Zhang R. et al., 2018;
Lee et al., 2019). Compared to classical cell-based regenerative
strategies, immunomodulatory strategies leverage on the self-
healing capabilities of the body, thus resulting less technically
challenging, since they do not require the direct encapsulation or
delivery of live cells.

Although the field of immunomodulatory materials is still in
its relative infancy, nanostructured materials have proven to have
the necessary level of sophistication to address the challenges of
this new arena. Nanostructured immunomodulatory materials
will be amongst the most disruptive bone regenerative
technologies, as the future of bone regeneration is clearly
headed toward increasingly personalized approaches.
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