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Epidemic growth and Griffiths effects on an
emergent network of excited atoms
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Whether it be physical, biological or social processes, complex systems exhibit dynamics that

are exceedingly difficult to understand or predict from underlying principles. Here we report a

striking correspondence between the excitation dynamics of a laser driven gas of Rydberg

atoms and the spreading of diseases, which in turn opens up a controllable platform for

studying non-equilibrium dynamics on complex networks. The competition between facili-

tated excitation and spontaneous decay results in sub-exponential growth of the excitation

number, which is empirically observed in real epidemics. Based on this we develop a quan-

titative microscopic susceptible-infected-susceptible model which links the growth and final

excitation density to the dynamics of an emergent heterogeneous network and rare active

region effects associated to an extended Griffiths phase. This provides physical insights into

the nature of non-equilibrium criticality in driven many-body systems and the mechanisms

leading to non-universal power-laws in the dynamics of complex systems.
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The dynamical behavior of an exceptionally diverse spec-
trum of real-world systems is governed by critical events
and phenomena occurring on vastly different spatial and

temporal scales. A disease outbreak, for example, can be very
sensitive to the type of disease and the behavior of individuals, yet
epidemics generically feature a characteristic time dependence1

that emerges from the connections within and between com-
munities2,3. In studying these systems, complex networks provide
a crucial layer of abstraction to bridge the behavior of individuals
and the macroscopic consequences4. Accordingly, they have
found applications not only in biology and the study of epi-
demics2, but also in informatics5, marketing6, finance7, and traffic
flow8. An overarching challenge in these fields is to find general
principles governing complex system dynamics and to pinpoint
how apparent universal characteristics emerge from the under-
lying network structure.

In this work, we address this challenge using a highly con-
trollable complex system that consists of a trapped ultracold
atomic gas continuously driven to strongly interacting Rydberg
states by an off-resonant laser field (Fig. 1). Our main findings
include: first, the rapid growth of excitations driven by a compe-
tition between microscopic facilitated excitation and decay pro-
cesses (playing the role of the transmission of an infection and
recovery, respectively). The observed dynamics follow a power-law
time dependence that parallels that which is empirically observed
in real-world epidemics, providing a powerful demonstration of
universality reaching beyond physics. Second, a full description
and interpretation of the experiment in terms of an emergent
susceptible-infected-susceptible (SIS) network linking the
observed macroscopic dynamics to the microscopic physics.
Third, the unexpected presence of rare region effects and a
dynamical Griffiths phase9–11 associated with the emergent net-
work structure, which gives rise to critical dynamics over an
extended parameter regime and explains the appearance of power-
law growth and relaxation, but with non-universal exponents.

Results
Microscopic ingredients for an epidemic. The microscopic
processes governing the dynamics of ultracold atoms driven to
Rydberg states by an off-resonant laser field, shown in Fig. 1a, b,
bear close similarities to those in epidemics12. Each atom can be
considered as a two-level system consisting of the atomic ground
state (gray disks, healthy) and an excited Rydberg state (blue
disks, infected). An excited atom can spontaneously decay
(recovery, with rate Γ), or it can facilitate the excitation of other
atoms (transmission of the infection, with rate κ) that satisfy
certain constraints linked to their positions and velocities. This
results in rapid spreading of the excitations through the gas
(depicted by growing excitation clusters in Fig. 1a)13–17.

Our experimental studies start from an ultracold thermal gas of
3 × 104 potassium-39 atoms in their ground state gj i ¼ 4s1=2,
which are held in a two-dimensional optical trap with a peak
atomic density n2D(x= y= 0)= 0.76 μm−2 (Fig. 1a) and e−1/2

Gaussian widths of the atomic distribution of σx= 125 μm and
σy= 50 μm. To trigger the dynamics at t= 0 we apply a low-
intensity laser pulse tuned in resonance with the gj i ! rj i ¼
66p1=2 transition for a duration of 4 μs. This produces around
eight seed excitations at random positions within the gas. The
laser is then suddenly detuned from resonance by Δ=−30MHz
and adjusted in intensity. This makes it possible to facilitate
secondary excitations at an average distance Rfac= 3.5 μm
(illustrated by red circles), corresponding to the distance where
the dominant Rydberg pair-state energy compensates the laser
detuning. The two-body facilitation rate κ is proportional to the
laser intensity which can be tuned over a wide range. This can be
understood as an effective rate averaged over the different
excitation channels corresponding to many Rydberg pair-state
interaction potentials. We therefore experimentally calibrate κ
based on the characteristic doubling time measured at very early
times (see Methods). For the following measurements we choose

Fig. 1 Physical system for studying epidemic growth and dynamics on complex networks. a Experiments are performed on a two-dimensional gas
containing N ~ 3 × 104 potassium atoms driven by an off-resonant laser field. The gas is initially prepared with a small number of seed excitations (blue
disks), which then evolves according to the microscopic processes depicted in sub-figure b, giving rise to growing excitation clusters that spread
throughout the system. After different exposure times t, the Rydberg atoms are field ionized and detected on a microchannel plate detector (MCP), where
the incident ions create voltage spikes (blue trace). b Each atom can be treated as a two-level system with a ground state gj i (gray disks) and excited
Rydberg state rj i (larger blue disks). Excited atoms can decay with rate Γ or facilitate additional excitations with rate κ at a characteristic distance Rfac
(determined by the laser detuning Δ) analogous to the transmission of an infection. c The dynamics of this system can be described by a susceptible-
infected-susceptible (SIS) model on an emergent heterogeneous network. Each node i represents a discrete cell of the coarse-grained system, which can be
infected (with excitation, blue) or susceptible (without excitation, white) and is connected to neighboring nodes according to the adjacency matrix aij. The
infection probability of each node is weighted by the number of atoms in that cell that can undergo facilitated excitation Ni (indicated by the numerical
labels on each node). Disconnected nodes with Ni= 0, corresponding to vacant cells, are depicted with dashed lines. d Exemplary data and numerical
simulations (solid line) showing two different stages of dynamics: rapid growth followed by saturation. Error bars represent the standard error of the mean
over typically 16 experiment repetitions.
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different values of κ ranging from 3.3 to 10 kHz. Additionally,
Rydberg excitations spontaneously decay after a characteristic
lifetime τ= (2πΓ)−1 with a calculated rate Γ= 0.84 kHz (includ-
ing black-body decay). There is also a strong dephasing of the
ground-Rydberg transition with estimated rate γde≳ 200 kHz.
This implies that in the experimentally relevant regime t≳ 1 μs,
the dynamics can be well described by classical transition rates.
Spontaneous (off-resonant) excitation events are very rare,
observed in an independent experiment without triggered seed
excitations to be ≲1 kHz integrated over the whole cloud. To
observe the system we measure the total number of Rydberg
excitations present in the gas using field ionization and a
microchannel plate (MCP) detector for different exposure times t
up to 2 ms. Although each atom is identical and its evolution is
captured by these simple excitation rules, the competition
between facilitated excitation and decay gives rise to complex
dynamical phases and evolution18–23. However, the full many-
body system is even more complex: 3 × 104 multilevel atoms
moving in space with random positions and velocities while
interacting with the laser field and each other, which makes it
challenging to connect the microscopic physics to the macro-
scopic excitation dynamics22,24,25.

Observation of epidemic growth. To exemplify the analogy to
epidemics, in Fig. 1d we present data for κ= 10 kHz showing
different stages of the dynamics. Immediately following the seed
excitation pulse we observe a period of very fast growth of the
Rydberg excitation number, that is, within the Rydberg state
lifetime the excitation number increases from its initial value to
more than 400, corresponding to more than five doublings in
0.19 ms. At around t ≈ 0.5 ms, after the initial growth stage, the
system saturates with a high constant excitation number (i.e., an
endemic state). However, the saturation value is still significantly
lower than the estimated maximum number of excitations that
can fit in the system ≳2000 assuming an inter-Rydberg spacing
of ~Rfac. On even longer timescales than those studied here (≳10
ms), the system should eventually relax back to an absorbing or
self-organized critical state due to the gradual depletion of
particles23,26.

The growth phase of many real epidemics is observed to follow
a characteristic power-law dependence described by the phenom-
enological generalized-growth model (GGM)1,

C0ðtÞ ¼ rCpðtÞ: ð1Þ
This describes a relation between incidence rate C0 and cumulative
number of infections C ¼ R t

0 C
0ðt0Þdt0, where r is the growth rate

at early times and p is the “deceleration of growth” which is an
important parameter in classifying epidemics1. Exponential
growth in time is characterized by p= 1, while p < 1 corresponds
to power-law growth ∝ tη with η= p/(1− p).

In Fig. 2a we represent the data from Fig. 1d in terms of C0
(instantaneous number of excitations divided by their lifetime
τ= (2πΓ)−1) against its time integral C, shown by the darkest
green data points. This clearly shows that the incidence rate
follows the GGM over several decades (evidenced by a straight
line on a double logarithmic scale) with a deceleration of growth
parameter p= 0.59(1) that is comparable to empirical observa-
tions of real epidemics1. In fact power-law growth with varying
exponents p < 0.6 is a general feature of the system dynamics, as
seen in Fig. 2a for different κ values from 3.3 to 10 kHz (depicted
with different colors), together with the corresponding p values
plotted in Fig. 2c as determined from fits to the initial growth
stage (see Supplementary Note 1). This is to be contrasted with
exponential growth (p= 1, solid black line with a steeper slope).
We also point out that each curve saturates at a different κ-

dependent value, with some curves showing evidence for slow
relaxation back toward zero incidences (the lowest three curves in
Fig. 2a). In the study of epidemics, power-law growth with p < 1 is
commonly associated with a few underlying mechanisms, most
prominently spatial constraints and heterogeneity in the under-
lying network structure1. In the following we use this insight to
develop a spatial network model which quantitatively describes
the experimental observations and can be directly linked to the
microscopic details of the system, something that is rarely
possible for real epidemics.

Emergent heterogeneous network. To explain the experimental
observations we develop a physically motivated SIS network
model. We assume that the two-dimensional gas can be sub-
divided into cells that represent nodes of a network (Fig. 1c). Each
cell i can either be in a susceptible state (absence of Rydberg
excitation, Ii= 0) or infected (one Rydberg excitation, Ii= 1), and
contains a certain number of particles Ni that can be excited.
Vacant cells with Ni= 0 (and hence also Ii= 0) translate to
unconnected, missing nodes. The probability for a given node i to
become infected is described by the following stochastic master
equation2

dE½IiðtÞ�
dt

¼ E �ΓIiðtÞ þ κNi 1� IiðtÞð Þ
X
j

aijIjðtÞ
" #

; ð2Þ

where E[⋅] denotes the expectation value. The node weights Ni

and the adjacency matrix aij together determine the probability
for transmission of an infection from cell j to i. In the special case
Ni ¼ const:; aij ¼ 1, this reduces to the well-studied homo-
geneous compartmental model2 that exhibits exponential growth.
For Ni ¼ const: and assuming a regular lattice with nearest-
neighbor transmission, this model is equivalent to directed per-
colation concerning its universal properties27. However, spatially
structured adjacency matrices can give rise to more complex
spatio-temporal evolution28.

To define the adjacency matrix entries aij we coarse grain our
system into hexagonal cells (each with area �R2

fac), corresponding
to a triangular network of nodes, where aij= 1 for each of the six
nearest neighbors j to each node i and aij= 0 for all other nodes j.
This is motivated by the fact that hexagonal packing provides the
densest possible tiling of strongly interacting Rydberg excitations
in two-dimensional space29, although the underlying atomic gas
has no such apparent structure. The Ni are sampled from a
Poissonian distribution with a spatially dependent mean
μi ¼ ϵðκÞn2dðxi; yiÞR2

fac, where ϵ(κ) < 1 is the accessible phase
space fraction for facilitated excitation (a free parameter,
elaborated on below) and n2d(xi, yi) is the two-dimensional
Gaussian density distribution of atoms in the trap. Thus, Eq. (2)
describes a heterogeneous network where each node has a
(spatially) fluctuating weighted degree si= ∑jaijNj with a mean
and variance approximately equal to 6μi.

To numerically simulate this model we solve Eq. (2) using a
Monte-Carlo approach30. In each time step we compute the
transition rate for each node Ri= κNi(1− Ii)∑jaijIj+ ΓIi. One
node m is then picked at random according to the weights Ri and
its state is flipped Im → 1− Im. The timestep is computed
according to dt ¼ �ln ðXÞ=ð2πPiRiÞ, where ln is the natural
logarithm and X is sampled from a uniform distribution on [0, 1).
For the initial state we consider a fixed number of ∑iIi(t= 0)=
8 seed excitations randomly distributed among the nodes
according to their weights Ni.

The numerical simulations, shown as solid curves in Figs. 1d
and 2, are in excellent agreement with the experimental
observations. Importantly, they fully reproduce the fast power-
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law growth with p < 0.6, the different plateau heights, and even
the late-time relaxation as a function of κ. The only free
parameter in the model is ϵ(κ) which is adjusted for each curve
and is found to be a monotonically increasing function of κ with
0.02 < ϵ(κ) < 0.1 over the explored parameter range. This para-
meter directly controls the network structure, that is, for κ= 10
kHz the network consists of M ≈ 2300 nodes with Ni > 0 and the
local si follow approximately Poissonian distributions with 〈si〉=
var(si) ≤ 5.3 (maximal at trap center) while for κ= 3.3 kHz, M ≈
660, and 〈si〉= var(si) ≤ 1.3 (see Supplementary Note 2). For
comparison, the dashed blue lines in Fig. 2 show comparable
simulations with Ni= μi, that is, corresponding to a locally
homogeneous network with the same average node degree. These
homogeneous network simulations show faster initial growth,
constant p values ≈ 0.7, higher plateaus saturating at the system
size limit, and a dramatic shift of the critical point to lower κ
values, which are inconsistent with the experimental data. The
good agreement between experiment and heterogeneous network
simulations demonstrates that the emergent macroscopic
dynamics of the system crucially depend on the weighted node
degree distributions and heterogeneity controlled by the atomic
density and the parameter ϵ(κ).

The heterogeneous spatial network model described by Eq. (2)
provides an accurate and computationally efficient coarse-grained
description of the physical system and its dynamics involving just
a few microscopically controlled parameters. The importance of
heterogeneity is particularly surprising since atomic motion could
be expected to quickly wash out the effects of spatial disorder (the
characteristic thermal velocity corresponding to the gas tempera-
ture at 20 μK is vth= 65 μm/ms ≈3.5Rfac/τ). Our findings can be
explained by assuming that the facilitation constraint depends on
both the relative positions and velocities of the atoms. Taking into
account the Landau–Zener transition probability for moving
atoms confirms that only atom pairs with small relative velocities
vLZ≲ 1 μm/ms contribute to the spreading of facilitated
excitations22. This provides a qualitative explanation for the
inferred ϵ(κ)≪ 1 and its approximate κ dependence (due to the

intensity dependence of vLZ) (see Methods section). It also sets
the timescale for diffusion in phase space longer than the
duration of our observations ≳ 2 ms. Thus, spatial constraints
and (effectively static) heterogeneity can be understood as
properties of an emergent network structure that is dynamically
formed while the laser coupling is on (see also ref. 31 for a related
interpretation of excitation dynamics on smaller preformed
emergent lattices).

Spatial disorder is known to play a very important role in
condensed matter systems, giving rise to new many-body phases,
localization effects, and glassy behavior32. There is still much to be
explored concerning analogous effects of disorder and hetero-
geneity on non-equilibrium processes on networks. One key
theoretical finding however is the emergence of an exotic Griffiths
phase9–11, expected to replace the singular critical point between
the subcritical and active phase by an extended critical phase. The
dynamics in the Griffiths phase can be understood in terms of the
dynamics of rare supercritical clusters (κNi≳ Γ for all sites i of the
cluster), surrounded by subcritical regions. For a Poissonian
degree distribution the probability for a seed to land on a
supercritical cluster of Mclust nodes is pðMclustÞ � expð�xMclustÞ,
where x is a positive function of ϵi. The excitation number in such
clusters will grow initially up to a typical lifetime
τðMclustÞ � expðyMclustÞ, for some positive constant y, after which
it will decay due to rare fluctuations11. This yields an incidence
C0ðtÞ ¼ P

Mclust
pðMclustÞ expð�t=τðMclustÞÞ � tα with a non-

universal decay exponent α=−x/y (dependent on ϵi). This can
lead to slow relaxation and strong modifications to the non-
equilibrium critical properties (e.g., power-law correlations with
continuously varying exponents10).

Such Griffiths effects provide a natural explanation for several
of our experimental observations. First of all, the relatively short
time for each curve to reach the plateau and the strong κ
dependence of the plateau heights are compatible with the
presence of rare regions with an above-average infection rate that
span only a fraction of the entire system, controlled by the
disorder strength entering via ϵ(κ). This also explains the sizable

Fig. 2 Rydberg excitation incidence curves for different facilitation rates showing power-law growth and Griffiths effects. a Incidence rate C0 versus
cumulative incidences C for different facilitation rates κ= {3.3, 4.2, 5.1, 6.0, 6.6, 7.6, 10} kHz (from purple to green). Error bars show the standard error of
the mean over typically 16 repetitions of the experiment. The straight dark green line is a power-law fit to a representative dataset yielding the exponent
p= 0.59(1). The solid curves are from the simulations of the SIS model on a heterogeneous network and the blue dashed line is a corresponding simulation
for a locally homogeneous network for κ= 10 kHz and a comparable system size which gives p≈ 0.67. b Transition from a subcritical state (C0 � 0) to an
active state (C0 >0) at late times t= 2ms as a function of κ. The solid black curve and the dashed blue curve (scaled by a factor of 10 for visual
comparison) show simulations of the heterogeneous and locally homogeneous network models, respectively, which exhibit different thresholds and
incidence rates. c Characterization of the deceleration of growth parameter p (experimental data points and simulations as a black line) and power-law
relaxation exponent α (orange line, numerical simulations only) versus κ. The vertical dashed line indicates the cross-over point between the Griffiths phase
(GP) and the active phase. Uncertainties computed from the standard deviation over 100 bootstrap resamplings are shown as error bars except where they
are smaller than the data points.
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shift of the critical point between subcritical (C0 � 0) and active
(C0 > 0) phases to higher values of κ as compared to the
expectation for a locally homogeneous system seen in Fig. 2b.
Finally, we point out the slow relaxation of the subcritical curves
in Fig. 2a. These curves are compatible with power-law decays
with disorder dependent relaxation exponents α < 0, which is the
defining characteristic of the Griffiths phase11. While these
experiments were limited to relatively short times <2 ms (to
minmize the impact of particle loss), the numerical simulations
confirm power-law relaxation over two orders of magnitude in
time, depicted by solid lines in Fig. 2a. These relaxation exponents
α were obtained from fitting an extended GGM (see Methods Eq.
(3)) to the data, with corresponding α ≤ 0 values shown in Fig. 2c.
On this basis we find that power-law growth (with 0.5 ≤ p ≤ 0.6) is
associated with the transition from a Griffiths phase to an active
phase (for κ > 6 kHz coinciding with α ≈ 0), whereas the
absorbing state phase transition without disorder should occur
for κ≲ Γ11.

Discussion
This work highlights a controllable physical platform for
experimental network science situated at the interface between
simplified numerical models and empirical observations of real-
world complex dynamical phenomena. Ultracold atoms provide
the means to introduce and control different types of reaction-
diffusion processes as studied here, but also to realize different
types of spatial networks by structuring the trapping fields33 and
to access the full spatio-temporal evolution of the system29. This
would allow for in-depth investigations of the phase structure and
critical properties with varying disorder strength and different
network geometries. Our discovery that the growth dynamics of a
driven-dissipative atomic gas is described by an emergent het-
erogeneous network that is relatively robust to particle motion
suggests that similar effects could also be observable in noisy
room temperature environments16,26. Thus, heterogeneous net-
work dynamics and Griffiths effects may arise naturally in very
different non-equilibrium systems, having important implica-
tions, for example, in understanding non-equilibrium criticality
without fine tuning23,26,34 and for finding effective strategies for
controlling dynamics on complex networks35. Future experiments
could also investigate the quantum contact process12,36–38 and
quantum analogs of the Griffiths phase on heterogeneous
networks39.

Methods
Experimental sequence and calibration of parameters. The experimental pro-
cedure to observe Rydberg excitation growth consists of three main steps, during
which we keep the optical trap on. Initially a small number of seed excitations are
prepared at random positions in the gas. For this we keep the laser frequency fixed
at Δ=−30MHz below the zero-field resonance and briefly applying an electric
field of 0.28 V/cm for 4 μs, exploiting the DC Stark effect to tune the atoms into
resonance. The laser is then momentarily switched off for 6 μs to ensure the electric
field is fully off before starting the off-resonant driving. Next we apply the off-
resonant laser field which causes rapid growth of the number of excitations in the
gas. We calibrate the single-atom facilitation rate κ against a measurement of the
initial growth rate r= 27(8) kHz, measured for high intensity and very short times
t≪ τ where many-body effects can be safely neglected. This is then divided by an
estimate of the (cloud averaged) mean number of particles that meet the facilitation
condition �μ ¼ 2:7 assuming each seed excitation is isolated. The latter is estimated
from the detailed experiment-theory comparison to the spatial SIS model presented
in the manuscript. After a variable exposure time t we measure the total number of
excitations in the gas. For this we switch on a large electric field to ionize the
Rydberg states and guide the ions onto an MCP detector. The conversion factor
from integrated MCP voltage to the number of Rydberg excitations is calibrated
against an independent absorption measurement of the number of particles
removed from the gas after a long exposure assuming each Rydberg excited atom is
eventually lost from the trap with rate Γ.

Extended generalized-growth model (GGM). To extract both the growth and
relaxation parameters from these data, we extend the GGM to allow for different

exponents in the growth and relaxation phases

C0ðtÞ ¼ rCpðtÞ 1þ CðtÞ
K

� �p�α
β

" #�β

: ð3Þ

In this equation p is the deceleration of growth parameter, α is the power-law
exponent for the late-time recovery phase. K and β determine the location and
sharpness of the crossover. Curves with α < 0 will eventually recover (i.e., number
of excitations decreases to zero) while α = 0 describes an endemic state. The
endemic state is characterized by a constant number of excitations C0 ¼ rKp . The
number of excitations at the crossover point (C= K) is C0 ¼ rKp=2β .

Landau–Zener probability for facilitated excitation. By comparing the SIS net-
work simulations to the data, we infer that the fraction of atoms that participate in
the excitation dynamics is relatively small. This is quantified by the fitted ϵ(κ)
values that vary between 0.023 and 0.094 (for κ= 3.3 kHz and κ= 10 kHz,
respectively). These small values of ϵ and the approximate κ dependence can be
explained by the velocity dependence of the Landau–Zener transition probability,
which restricts facilitation to atoms with small relative velocities v≲ vLZ≪ vth (for a
related calculations see Appendix E in ref. 22). The Landau–Zener velocity can be
expressed as vLZ ¼ π2Ω2= _V , where Ω is the light-matter coupling strength and _V is
the slope of the Rydberg-Rydberg interaction potential evaluated at the facilitation
radius22. ϵ can be understood as the number of atoms that can be facilitated in a
neighboring cell within the Rydberg state lifetime divided by the mean number of
atoms in each cell n2dR

2
fac. The flux of atoms passing through a 1/6 segment of the

facilitation shell is Φ= πRfacn2dvth/3. However, only a fraction of these atoms
f v � vLZ=

ffiffiffi
π

p
vth fulfill the Landau–Zener condition with relative velocity ∣v∣ < vLZ.

Combining the above gives ϵ ¼ Φτf v=n2dR
2
fac �

ffiffiffi
π

p
τvLZ=ð3RfacÞ.

For realistic experimental parameters Rfac= 3.5 μm, _V ¼ 1 ´ 105 kHz μm−1

(ref. 40) and Ω ~100 kHz, we find vLZ= 1 μm/ms. This is small compared to the
thermal velocity vth= 65 μm/ms for T= 20 μK. Inserting these parameters into

the expression above for the phase space fraction yield ϵ ¼ 0:03 Ω
100kHz

� �2
. This

simple estimate falls within the range of values inferred from the experiment-
theory comparison, even though it still does not account for all the microscopic
experimental details, for example, multiple excitation resonances associated with
Zeeman substructure or possible mechanical forces between the atoms.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code to produce the simulation data that support the findings of this study is
available from the corresponding author upon reasonable request.
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