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ABSTRACT Adult or postprimary tuberculosis (TB) accounts for most TB cases. Its hallmark is pulmonary cavitation, which
occurs as a result of necrosis in the lung in individuals with tuberculous pneumonia. Postprimary TB has previously been known
to be associated with vascular thrombosis and delayed-type hypersensitivity, but their roles in pulmonary cavitation are unclear.
A necrosis-associated extracellular cluster (NEC) refers to a cluster of drug-tolerant Mycobacterium tuberculosis attached to
lysed host materials and is proposed to contribute to granulomatous TB. Here we suggest that NECs, perhaps due to big size,
produce a distinct host response leading to postprimary TB. We propose that vascular thrombosis and pneumonia arise from
NEC and that these processes are promoted by inflammatory cytokines produced from cell-mediated delayed-type hypersensitiv-
ity, such as interleukin-17 and gamma interferon, eventually triggering necrosis in the lung and causing cavitation. According to
this view, targeting NEC represents a necessary strategy to control adult TB.

Tuberculosis (TB) is one of the most successful pathogens in
humans. The causative agent of TB, Mycobacterium tuberculo-

sis, has coexisted with humans since the earliest history of human-
kind (1). It continues to cause appalling morbidity and mortality
rates (2). Most pulmonary TB cases and almost all transmission of
the disease are due to postprimary TB, which is also known as
adult or secondary TB (3). Postprimary TB is characterized by
pulmonary cavitation in the upper lobes of lungs. Individuals can
die from an acute pulmonary cavitation, which presents with pro-
found coagulopathy and coughing up large necrotizing pneu-
monic materials, or they die from fibrocaseous TB, which is the
most common form of TB and has much less coagulopathy (R.
Hunter, personal communication). Fibrocaseous TB takes longer
to develop and presents with extensive granuloma within pneu-
monia that cannot be coughed up (4). Survivors become long-
term M. tuberculosis carriers when lung cavities are connected to
airways from which M. tuberculosis is coughed out to air.

Postprimary TB develops mostly in immunocompetent adults
who gained immunity earlier in their life from their first M. tuber-
culosis exposure and primary TB (3). Individuals who have ac-
quired strong cell-mediated immunity to M. tuberculosis proteins,
as detected by tuberculin (M. tuberculosis extract) skin test, are
more likely to develop and die from cavitary disease (5). This is
consistent with Koch’s phenomenon, in which TB patients be-
came severely ill or died after receiving tuberculin (6). In contrast,
in young individuals, M. tuberculosis induces granulomas charac-
terized by local accumulation of immune cells surrounded by ep-
ithelioid macrophages, Langerhans giant cells, and a rim of fibrous
tissue without cavitation. Disseminated tuberculosis in immuno-
suppressed individuals is not discussed here. As cavitation is be-
lieved to be caused by necrosis of granulomas in which M. tuber-
culosis persists or replicates, most TB research has largely been
focused on granuloma formation (7). However, in primates, gran-
ulomas are associated with M. tuberculosis killing, whereas pneu-
monia is associated with M. tuberculosis replication (8). Histology
of postprimary TB in humans indicates that lung necrosis and
pneumonia, but not granuloma, is associated with pulmonary
cavitation (3). Also, pneumonia and lung necrosis are the leading
cause of death among untreated adults with acute TB (3, 9, 10).

Hunter et al. (3, 9) and others (10, 11) suggested that vascular
thrombosis and delayed-type hypersensitivity (DTH) are associ-
ated with tuberculous pneumonia in postprimary TB. Vascular
thrombosis occurs when blood clots due to blood vessel injury.
DTH is a T cell-mediated inflammatory response. Lando and Edg-
ington identified DTH correlates with induction of macrophage
procoagulant activity by activated T cells (12). Recent progress on
understanding the mechanism of thrombosis may shed light on
the underlying mechanism of procoagulant activity induction by
DTH. Here we apply this knowledge to understand how vascular
thrombosis is formed and the role of DTH in the context of
postprimary TB. Our goal is to understand how M. tuberculosis
induces tuberculous pneumonia and what host factors contribute
to necrosis.

MACROPHAGE NECROSIS AND THE CONCEPT OF NECROSIS-
ASSOCIATED EXTRACELLULAR CLUSTER

Induction of macrophage necrosis is a key M. tuberculosis viru-
lence mechanism. Inhaled M. tuberculosis is first taken up by alve-
olar macrophages within which it persists or replicates. M. tuber-
culosis grows when more than 10 of these bacteria infect one
macrophage (13). If the infected macrophage contains more than
25 M. tuberculosis bacteria, the macrophage undergoes necrosis
and bursts to release M. tuberculosis (14). This process requires the
M. tuberculosis ESX-1 protein secretion system (15). The killing of
macrophages by M. tuberculosis can also occur without ESX-1
when the bacterial burden is high (16). However, such a scenario is
unlikely to occur if the initial infection dose is low, since ESX-1 is
required for M. tuberculosis to grow intracellularly (17).

Material from necrotic macrophages may be beneficial to M.
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tuberculosis. When cultured with lysed leukocytes, M. tuberculosis
attaches to extracellular matrix materials and enters into a drug-
tolerant persistent state (18). Orme suggested that M. tuberculosis
in this state forms a biofilm-like structure and referred to these
structures as necrosis-associated extracellular clusters (NECs)
(19). A single NEC likely contains enough M. tuberculosis to kill
macrophages upon contact, potentially because big particles make
phagocytosis difficult to complete and trigger deaths in macro-
phages and neutrophils (20). Depending on the local environ-
ment, M. tuberculosis may remain as a pellicle for years or spread
toward oxygen-rich areas such as blood vessels or bronchial air-
ways. Along the way, M. tuberculosis can trigger necrotic lesions
over time within a larger area of caseous pneumonia (4). The
lesions may harden or be healed by fibrosis and calcification. Oth-
ers can become soft. When this happens across a bronchus, the
softened materials are coughed out through the bronchus, and a
cavity is formed (4). M. tuberculosis can then grow a massive
amount by forming a pellicle on the surface of the cavity wall,
which can be coughed out for transmission (3, 11).

NEC was initially proposed in an attempt to understand gran-
ulomatous TB (19). Here we seek to determine whether the NEC
model can be extended to understand postprimary TB. We are
particularly interested in applying new findings in the field of
thrombosis in the context of postprimary TB.

EXTRACELLULAR TRAP: CONNECTING M. TUBERCULOSIS
INFECTION TO PNEUMONIA?

Necrotic cells release inflammatory intracellular molecules after
the plasma membrane collapses. ETosis describes a necrosis in
which a chromatin structure called an extracellular trap (ET) is
decondensed and extruded (21). An ET is a stretch of chromo-
somal DNA and globular protein domains. It traps pathogens and
prevents their spreading. M. tuberculosis induces ETosis in neu-
trophils and macrophages and associates with ETs (22, 23). Ac-
cordingly, ETosis could generate NECs.

The discovery of ETs provides a molecular basis of vascular
thrombosis (24). An ET induces blood clotting by activating plate-
lets and inducing fibrin and thrombus formation (25). A throm-
bus contains platelets aggregated within a network of fibrin and
chromatin DNA. Infected macrophages in tissues normally do not
encounter blood components, unless blood vessels are damaged.
In a rabbit model of postprimary TB, tissue-damaging MMP-1
activity is responsible for lung damage (26). Such tissue damage
may allow mixing of blood contents with M. tuberculosis-induced
ETs and trigger thrombosis. At this point, extracellular M. tuber-
culosis can encounter neutrophils and induce necrosis of the in-
fected neutrophils (27). Since M. tuberculosis-infected neutrophils
undergo ETosis, this M. tuberculosis-neutrophil interaction may
further promote thrombosis and NEC formation (23).

Thrombosis is associated with TB. Cudkowicz identified
thrombosis within pulmonary artery branches near tuberculous
foci in histological autopsy samples of pulmonary TB (28). Vas-
cular thrombosis has also been observed in patients with postpri-
mary TB by Hunter and colleagues (9). Cases of pulmonary TB
patients with pulmonary thromboembolism or venous thrombo-
embolism are noted (29–31). Patients with community-based
pneumonia also have an elevated risk of thrombosis-related vas-
cular diseases (32). Various animal models of TB also show evi-
dence of vascular thrombosis (33).

Thrombosis can cause airway obstruction, a feature of postpri-

mary TB also seen in a humanized mouse TB model (34–36).
Hunter suggested that bronchial obstruction triggers and exacer-
bates tuberculous pneumonia, another feature of postprimary TB
(35). Thus, vascular thrombosis arising from ET may lead to tu-
berculous pneumonia. Excessive ETs correlate with inflammation
and severe pneumonia (37). ET has been detected in sputum sam-
ples from patients experiencing community-based pneumonia
who were infected with bacterial or viral pathogens (38, 39). Thus,
ETs may represent a link between TB and thrombotic conditions.
Studies of active TB patients are needed to test the idea.

COMMON DETERMINANTS FOR LIPID PNEUMONIA
FORMATION AND MACROPHAGE NECROSIS

Postprimary TB is characterized by the presence of tuberculous
pneumonia surrounding alveolar airways, as observed in primate
models of TB (8, 40). Cavitation occurs when lung cells in a pa-
tient with pneumonia undergo necrosis. The lipid-rich nature of
cells in tuberculous pneumonia was first reported by the pathol-
ogist R. Virchow in 1860 (R. Hunter, personal communication).
The lipid accumulation correlates with increased expression of
host genes for lipid metabolism (41). Cholesterol crystals in le-
sions are observed in TB patients and in a humanized mouse
model of TB (34).

Tuberculous pneumonia is characterized by the presence of
lipid-rich foamy macrophages with few neutrophils (35). Foamy
macrophages are induced by at least two M. tuberculosis mecha-
nisms. One involves the interaction between M. tuberculosis keto-
mycolic acid and human nuclear receptor 4 (42, 43). Another
involves interrupting autophagy (44). Autophagy is a recycling
pathway critical for lipolysis (45). M. tuberculosis ESX-1 inhibits
host lipolysis by disrupting autophagy (46). ESAT-6 perturbs lipid
homeostasis and induces foamy macrophages (47). The host fac-
tor gamma interferon (IFN-�) can also promote foamy macro-
phage formation (48). Elevated intracellular lipid levels then cause
macrophage necrosis (49). Since IFN-� can promote ESX-1-
mediated macrophage necrosis (22), it may act in concert with
keto-mycolic acid and ESX-1 to induce macrophage necrosis by
promoting lipid accumulation.

Few M. tuberculosis bacteria or a lack of acid-fast mycobacteria
are found in lipid-rich tuberculous pneumonia (4). Acid fastness
is a physical property of M. tuberculosis’s cell wall. M. tuberculosis
living in a lipid-rich environment loses its acid fastness (50). The
mechanism is unclear but may involve dephosphorylation of a key
enzyme for mycolic acid synthesis (51). Acid-fast-negative M. tu-
berculosis is present in sputum of TB patients (19, 52). Acid-fast-
negative cases account for nearly a third of the ongoing TB trans-
missions in China (53). Half of these TB-transmitting patients do
not have cavities (53). We propose that sputum samples from
these patients contain NECs that originated from tuberculous
pneumonia lesions that are undergoing necrosis and have not yet
matured into cavitary lesions.

TISSUE DAMAGE MEDIATED BY DELAYED-TYPE
HYPERSENSITIVITY

Patients with cavitary TB tend to have a stronger reaction to tu-
berculin skin test. Canetti indicated that tuberculous lipid pneu-
monia is more frequent and more severe in hypersensitive hosts
(10). This is a classic example of DTH. Sensitization with repeated
high doses of heat-killed Mycobacterium bovis generates DTH that
triggers cavitation in a postprimary rabbit model of TB (26). M.
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tuberculosis trehalose dimycolate and ESAT-6 can induce DTH
(54, 55). DTH is mediated by IFN-�-producing CD4� T helper
cell (Th1) cells. IFN-� promotes survival of lightly infected mac-
rophages but induces ETosis in heavily infected macrophages (14,
16, 22). This suggests that infection of lightly infected macro-
phages is controlled by IFN-�-mediated DTH responses, without
which the infection becomes disseminated, as seen in AIDS pa-
tients. However, the same DTH response in immunocompetent
individuals may help heavily infected macrophages undergo ETo-
sis and help M. tuberculosis persist in a NEC.

The classical view considers IFN-� as the sole cytokine medi-
ating DTH. The discovery of interleukin-17 (IL-17)-producing T
(Th17) cells revises this view. Th17 cells develop after initiation of
DTH mediated by Th1 cells. Excessive and prolonged Th17 re-
sponses cause tissue damage (56). Th17 cells are implicated in
human chronic inflammatory lung diseases (57). All these condi-
tions are linked to airway obstruction, which can facilitate pneu-
monia and cavitation. In mice, Th17 cells play a protective role
during early M. tuberculosis infection, whereas excessive Th17 re-
sponses lead to severe immunopathology and increased M. tuber-
culosis burden (58–60). This discrepancy may be because, similar
to IFN-�, IL-17’s effect depends on how heavily the macrophages
are infected.

IL-17 is a cytokine that recruits neutrophils. TB patients with
pulmonary cavities have higher neutrophil levels in bronchoal-
veolar lavage fluid samples than those without pulmonary cavities
(61). Inside the pulmonary cavities, there are more neutrophils
than macrophages. Also, more than half of the M. tuberculosis
bacteria are found associated with neutrophils, compared to less
than a quarter of M. tuberculosis bacteria associated with macro-
phages (62). If neutrophils encounter an M. tuberculosis NEC,
they undergo NETosis (NET stands for neutrophil extracellular
trap) and release more ETs and other extracellular material to
produce a bigger NEC. NETs have been detected in pulmonary
cavities and sputum samples from patients with active TB (63).
This NET contains tissue-degrading MMP-8 that mediates cavi-
tation (63).

IL-17 stimulates MMP-1 expression from fibroblasts (64, 65).
Sputum MMP-1 activity from patients with TB correlates with
lung pathology (66, 67). In the rabbit postprimary TB model,
MMP-1 activity correlates spatially with tissue necrosis and pul-
monary cavitation (26). Transgenic mice expressing human
MMP-1 exhibit necrosis of lung tissue and lipid pneumonia upon
M. tuberculosis challenge (68). Collectively, Th17 cells may pro-
mote cavitation through IL-17-induced MMP-1.

Th17 differentiation can be promoted by cholesterol crystals
through NETosis and priming of macrophages for IL-1� produc-
tion (69). Interestingly, diabetes is associated with elevated intra-
cellular cholesterol and primes neutrophils to undergo NETosis
(70, 71). Diabetes is a risk factor of TB and pulmonary cavitation
(70, 72, 73). ETs are detected in the bronchoalveolar lavage fluid
samples from diabetic mice with TB (14). Pulmonary TB patients
with higher frequencies of Th1 and Th17 cells are more likely to
have diabetes (74). It may be possible that M. tuberculosis exploits
cholesterol-rich environments to promote NETosis, Th17 differ-
entiation, and ultimately, cavitation.

More Th17 cells were observed in peripheral blood samples
from TB patients than in healthy controls after M. tuberculosis
antigen stimulation (75). However, similar results were not found
in another study using peripheral blood and bronchoalveolar la-

vage fluid samples (76). M. tuberculosis-specific Th17 cells might
localize in tuberculous lesions and escape detection. Alternatively,
heterogeneity of M. tuberculosis strains from different geographic
regions might generate different Th17 responses. Clinical M. tu-
berculosis isolates secrete different levels of ESAT-6, which induces
Th17 differentiation (77). Finally, patients might develop TB
through a mechanism independent of a DTH response, such as
involving Th2 cells that contribute to TB pathogenesis by antago-
nizing Th1 responses.

What is the source of M. tuberculosis that triggers tuberculous
lipid pneumonia in postprimary TB? Increasing evidence from
high-burden settings indicates that exogenous reinfection con-
tributes considerably to postprimary TB in adults (78, 79). The
lymphatic system is a proposed reservoir of latent M. tuberculosis
(80, 81) and may provide another source. Either way, deposition
of M. tuberculosis into the upper lobes of lungs can trigger DTH
pathology toward M. tuberculosis. Skin graft rejection due to DTH
is associated with neutrophil recruitment and widespread micro-
vascular injury and is mediated by IL-17 and IFN-� (82, 83). Im-
munomodulation by mesenchymal stem cells suppresses DTH
and extends skin graft survival (84). This approach shows prom-
ising results when used as an adjunct therapy to treat drug-
resistant TB (85). It may be possible to treat or prevent postpri-
mary TB by a host-directed approach that targets DTH.

CONCLUDING REMARKS

Here we present a model of tuberculous pneumonia based on the
concept of NEC. Induction of macrophage ETosis by M. tubercu-
losis causes release of intracellular material such as ETs that can
initiate thrombosis. The intracellular material can also interact
with M. tuberculosis to form a biofilm-like NEC that is tough to
clear by host immunity or antibiotics. The persistent nature of
NEC might sustain tuberculous pneumonia. DTH responses me-
diated by IFN-� and IL-17 then inflict tissue damage on the lung
of an individual with pneumonia. Long-term interaction with the
human immune system may have selected for M. tuberculosis bac-
teria that are efficient at forming NECs for survival and exploiting
the human DTH for transmission. Accordingly, inhibition of
pneumonia and macrophage ETosis caused by M. tuberculosis
should help TB control, as has been shown recently in a mouse
model of pneumonia and TB (86).

Our NEC model of TB has several implications for developing
novel therapies for controlling TB. (i) Efforts need to be made to
develop vaccines that prevent the formation of the biofilm caused
by ET. This might be achieved by developing antibody responses
that prevent the biofilm formation or target their dissolution. (ii)
We need new chemotherapeutic strategies to kill M. tuberculosis in
a biofilm with drugs that either dissolve the biofilm or kill M.
tuberculosis bacteria that have entered into a persistent state. (iii)
Mycobacteriophages may provide attractive therapeutic reagents
for killing extracellular M. tuberculosis.
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