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The primary bottleneck in understanding and modeling biological systems

is shifting from data collection to data analysis and integration. This pro-

cess critically depends on data being available in an organized form, so

that they can be accessed, understood, and reused by a broad community

of scientists. A proven solution for organizing data is literature curation,

which extracts, aggregates, and distributes findings from publications.

Here, I describe the benefits of extending curation practices to datasets,

especially those that are not deposited in centralized databases. I argue that

dataset curation (or ‘data librarianship’ as I suggest we call it) will over-

come many barriers in data visibility and reusability and make a unique

contribution to integration and modeling.

Introduction

Living organisms are exceptionally complex systems

and, even after decades of efforts, our understanding

of their logical circuitry is fragmentary. The limitations

of our knowledge are reflected in the fact that very

few biological phenomena have well-established mathe-

matical models that capture mechanisms in a rigorous

yet understandable way and, given known inputs, can

accurately predict outputs. The scarcity of such models

may seem surprising, considering the wealth of biologi-

cal data that we collected in recent years and the array

of discoveries that such data produced. So why, having

large volumes of quality data, aren’t we more success-

ful at modeling biological systems?

A good explanation is that building system-level

models that work and make sense is extremely difficult.

In most cases, the system of interest (e.g., a dividing

cell) has only partially known components (genes, pro-

teins, nutrients, co-factors) with partially known rela-

tionships between them (mutual regulation of

abundance, activity, specificity, localization) and

partially understood criteria for optimality in any given

scenario (growth, division, differentiation, senescence,

apoptosis). Modeling such a system requires a long

iterative process of analyzing the available data, envi-

sioning how the system might work, translating the

vision into mathematical terms, designing additional

experiments, and, most importantly, revising the math

to be consistent with both old and new information [1].

For the best part of the last two decades, it was fair

to assume that the biggest obstacle on our path to

modeling was the lack of data and that, once enough

data were produced, patterns would emerge and ideas

for plausible models would come forward. This rea-

soning inspired many technological and operational

achievements, including the yeast deletion collection [2]

and the Human Genome Project [3,4], that brought

rapid progress in automation and parallelization, and

increased data production by orders of magnitude.

Having acquired tremendous technical capabilities, we

realized that the path toward successful modeling is

Abbreviations

FAIR, findable, accessible, interoperable, and reusable; GEO, Gene Expression Omnibus; GO, Gene Ontology; GTEx, Genotype-Tissue

Expression; HCA, Human Cell Atlas; NLP, natural language processing; OMIM, Online Mendelian Inheritance in Man.

4594 The FEBS Journal 287 (2020) 4594–4601 © 2020 The Author. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-0123-2052
https://orcid.org/0000-0002-0123-2052
https://orcid.org/0000-0002-0123-2052
mailto:
http://creativecommons.org/licenses/by/4.0/


much more tortuous than anticipated. Beyond the data

collection challenge, we are now facing an even bigger

one – the challenge of combining and integrating dif-

ferent types of data. For example, we now understand

that sequencing thousands of human genomes is insuf-

ficient to model disease heritability; instead, genotype

data must be linked to multiple layers of phenotype

data (from clinical records to tissue-specific molecular

biomarkers), as well as environmental and socio-eco-

nomic factors. It is still unclear how combinations of

these factors affect an individual’s progression from

health to disease or how, more generally, different

types of data fit together to form a full picture of a

biological system. What is clear is that learning the

principles of this data puzzle will greatly improve our

modeling capabilities, and we must direct as much, if

not more, effort toward advancing data integration as

we did toward scaling data collection.

Here, I suggest that a powerful driver for innovative

data integration is great data librarianship, that is, the

art and science of dataset management. From my

point of view as a researcher and a computational

biologist, literature curation has proven incredibly use-

ful for dissemination and widespread reuse of scientific

findings. I argue that systematic curation of datasets

will have a similar impact on small, medium, and big

data that are released but not organized in a useful

manner. I propose that a greater focus on data

libraries and an explicit support of data librarians will

maximize the exposure and reusability of biological

data, and, by doing so, lay the foundation for integra-

tion and modeling.

Literature curation has a long
successful history

Data integration is a formidable challenge for several

reasons [5]. First and foremost, to enable integration,

data must be available as widely as possible, while, at

the same time, satisfying ethical, legal, and technical

requirements. Next, data must be discoverable; that is,

a scientist armed with a set of relevant keywords

should be able to find the data, even if she was origi-

nally unaware of their existence or did not know

exactly where to look. Once found, the data must be

understandable by those who did not generate it.

Finally, having retrieved and understood a diverse

family of datasets, scientists must develop new

hypotheses on how to integrate them, so that new bio-

logical mechanisms, hidden behind the limitations of

each individual experiment, can emerge from the union

of multiple complementary datasets. Conceiving new

integrative ideas is, in and of itself, a heroic endeavor

whose challenges and achievements are regularly dis-

cussed in the literature [6,7]. In contrast, a spotlight is

long overdue on the equally heroic enterprises that lay

the groundwork for integration and make the task

easier to approach – the organization and management

of datasets.

The scientific community has long promoted efforts

to make data globally accessible, discoverable, and

understandable [8]. Over 25 years ago, following the

release of the first genome sequences and the rise of

comprehensive gene catalogs, scientists recognized

that, for them to survive the incoming avalanche of

new information, they needed to actively gather and

organize knowledge about each gene. This need was

addressed by widely supporting systematic curation of

scientific publications which, at the time, were the

main source of biological information. Literature cura-

tion, along with database technologies and the Inter-

net, gave us Gene Ontology [9.10], model organism

databases [11], the Online Mendelian Inheritance in

Man database [12], and many other resources that

became irreplaceable research tools for millions of sci-

entists worldwide. Thanks to literature curators, the

reuse of public data and their integration into new bio-

logical models became effortless, generating massive

returns on the investment in obtaining the data them-

selves and producing knowledge well beyond the origi-

nal intent of the experiments [13].

Data curation is young but profoundly
impactful

As technology progressed and the influx of data

increased, our primary mechanism for gathering

information shifted from literature curation to data

deposition (Fig. 1), and the role of data producers in

making their own data accessible, discoverable, and

understandable expanded considerably. For many

popular experimental platforms (e.g., microarrays and

next-generation sequencing-based methods), a success-

ful strategy has been the establishment of central

repositories, such as Gene Expression Omnibus

(GEO) [14] and ArrayExpress [15], to be populated

by direct data submissions from scientists, typically

upon publication. Over time, these monumental data

hubs have accumulated thousands of independently

generated datasets that belong to the same ‘omic’

domain (e.g., transcriptomics), but span numerous

organisms, experimental designs, and biological ques-

tions, most of which are described in the metadata

supplied by the authors.

In contrast to GEO and other submission-based

repositories, data generated by large collaborative
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consortia, such as the Genotype-Tissue Expression

(GTEx) project [16] and the Human Cell Atlas [17],

are often distributed through dedicated portals. These

project-centered repositories host datasets that were

obtained, analyzed, and annotated in a standardized

way, following a common scientific purpose but har-

nessing diverse experimental technologies (e.g., genome

sequencing, expression profiling, imaging, clinical diag-

nosis). Organization and management of such datasets

requires significant effort as well as specialized skills

that neither data producers nor data analysts are typi-

cally trained for. The key actors in this process are

professional data curators, that is, a group of interdis-

ciplinary individuals with competence in experimental

biology, computer science, database administration,

information management, and visualization. Depend-

ing on their primary area of expertise and circle of

responsibility, these specialists may carry different, and

sometimes mysterious, titles (e.g., data engineers, cura-

tors, wranglers, architects, or stewards), but their vast

contributions to scientific research cannot be more

obvious: They gather, preserve, and provide access to

large-scale biomedical data, making integrative analy-

ses possible and democratic. In this view (and at the
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design, and
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Storage, single 
object retrieval
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Fig. 1. The path from new data to new knowledge lies through data libraries. Unlike data warehouses, which focus primarily on storing and

retrieving specific datasets via accession numbers, data libraries actively organize and manage their content, thus enabling advanced

searching, improved understanding, and easier reuse and integration of data.
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risk of making the problem worse), ‘data librarian’

may be another title added to their roster: Just like

traditional librarians, data librarians are custodians

and cataloguers of valuable material, and the results

of their work provide a critical foundation for educa-

tion and scholarship (Fig. 1).

Here, the use of a relatively new term (data librarian-

ship) to describe the annotation and organization of

datasets may seem redundant and unnecessary. In prin-

ciple, biocuration is a broad and well-established con-

cept that applies to scientific information of any kind

[13] – why not use it for datasets as well? The reasons,

in my opinion, are several. First and foremost, curation

takes many different shapes and forms depending on

the scope, scale, and projected user base of the curated

material. Relative to traditional literature-based cura-

tion [18], the process of organizing datasets and the

ways in which scientists interact with its end product

are quite different, and a more specific terminology can

help emphasizing their unique needs and goals. For

datasets, the term ‘library’ seems appropriate as it

describes ‘a curated collection of sources of informa-

tion’ [19], which conveys the difference between ‘source

of information’ and the information itself, and high-

lights the need for a higher-level organization. Indeed,

in a (data) library, sources of information (datasets)

are consistently annotated and cross-referenced to

enable navigation, thematic searching, and meta-analy-

ses that are more complex and more powerful than

those using only information (data) from individual

sources. The curation of specific data points from each

dataset is also important but conceptually closer to lit-

erature curation and often accomplished through simi-

lar annotation pipelines [20].

Recognizing the distinctive features of data libraries,

relative to other repositories of curated data, is also

key to appreciating the unique expertise of data librar-

ians, that is, a subgroup of curators who specialize in

building and maintaining libraries. Devising and

implementing a useful system for organizing a collec-

tion of datasets requires a deep and broad understand-

ing of how (and why) these particular data are

produced, analyzed, and used. By acquiring such

understanding (typically, through close collaboration

with a diverse group of experts), a data librarian gains

a global ‘data’ view of the field that is inaccessible to

many specialists, particularly those that study other,

more distant, areas of biology. This global view is an

incredible asset to the scientific community as it

enables librarians to offer assistance on a variety of

data-related questions (e.g., availability, access, tools,

and platforms) to a variety of stakeholders (e.g.,

researchers, funders, publishers, and policymakers).

The ability to advise, consult, or refer users to specific

material, similar to what traditional librarians do in a

specialized law or medical library, is an underappreci-

ated benefit of systematic dataset curation and would,

in my opinion, benefit from a more specific designa-

tion.

While being specific with terminology is helpful, it is

also not critical and should not hold back the adop-

tion of library practices. The boundaries between data

librarianship and other forms of curation are flexible,

and some librarian functions can be performed by

other data specialists, including curators, producers,

and analysts [13]. By adjusting the language, I aim to

highlight the unique challenges that dataset curation

faces and the unique opportunities that it affords,

when done professionally and systematically.

Data libraries, not warehouses,
promote data reuse and integration

The success of GEO, GTEx, and other public initia-

tives has fueled a culture of open data that promotes

free exchange of scientific information in a way that is

fast, practical, and beneficial for all parties involved

(i.e., data producers, owners, users, and funders) [5].

In most biomedical fields, some degree of data sharing

is now expected and also growing thanks to progress

in policy, advocacy, and technology [21]. Unfortu-

nately, solutions for organizing existing data have not

evolved at the same pace as ideas for producing and

sharing new data. By adopting the practice of data

deposition, instead of curation, we have effectively

moved from data libraries to data warehouses where

storage and single object retrieval are greatly priori-

tized over thematic searching and cross-referencing

(Fig. 1).

While in many ways the change was positive and

necessary, it certainly came with compromises. The

lack of professional help in preparing a dataset for

public release often results in incomplete metadata

annotations that may prevent the dataset from being

reused in the future. The inconsistency of keyword

usage across datasets makes searching unreliable: Just

because you could not find a dataset, you cannot be

sure that the dataset does not exist. It would be unfair

to imply that data libraries, which manage and consis-

tently annotate the data they host, never suffer from

similar issues; however, we should expect problems to

occur more often if, instead of relying on trained pro-

fessionals (i.e., data librarians), we delegate annotation

tasks to occasional contributors (i.e., data producers)

during one of the busiest and most stressful moments

of their projects (submission for publication).
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Example of much needed
librarianship: medium data

An area where data librarianship is particularly critical

is medium-size datasets. To date, most norms and

platforms for data sharing have been developed

around mainstream technologies (such as microarrays)

or large collaborative projects (such as GTEx), leaving

aside data that fit neither of the two categories. Such

data may include, for example, metabolomic profiling

of an array of cancer cell lines [22], or monitoring the

cellular localization of a fluorescent reporter protein in

a genome-wide genetic perturbation screen [23]. Quan-

titative measurements from such experiments suffer

from what can be called a ‘medium data’ problem:

They are too big to reside in the main body of a publi-

cation, yet not big enough to have an official reposi-

tory dedicated to their storage.

A common solution to the medium data problem is

to release the data, in part or in full, as supplementary

material on the journal’s website, a general-purpose

digital platform (such as figshare [24], Zenodo [25],

and Dryad [26]) or the authors’ homepage. These

strategies certainly fulfill the minimal requirements for

data availability [5], but they are not particularly con-

ducive to integrative data analysis: The datasets spread

across multiple locations, custom formats, and varying

depths of metadata annotation, all of which increase

the activation energy required to find, reuse, and inte-

grate them. Some of these obstacles are greatly

reduced by the adoption of data sharing standards

[27–30], which specify format requirements that any

dataset, large or small, stored alone, or in a central

repository, can conform to. However, understanding

and adhering to such standards is not trivial and the

effort may seem unjustified for medium data releases

that are relatively small and infrequent.

The effective omission of medium-size data from

standards and databases is an underappreciated prob-

lem. The dispersion of datasets across platforms and

formats prevents rigorous evaluation, leading to very

sparse and unreliable estimates of reproducibility.

Even more importantly, relative to data produced via

massively parallel assays (e.g., RNAseq), medium-size

data (e.g., high content imaging and microscopy) are

often produced at lower throughput but higher resolu-

tion and greater accuracy, and can therefore capture

biological mechanisms from a fundamentally different

vantage point. By not recording this information in an

accessible, discoverable, and understandable form, we

are limiting our chances of reusing and integrating it,

and wasting unique opportunities for modeling and

innovation.

What can be done to reduce such waste? The

strength lies, as is often the case, in the union. While

the size of any given dataset may be relatively modest

and the benefits of standardizing its format and meta-

data may seem unclear, the total number of such data-

sets is incredibly large, and organizing them, based on

a shared characteristic, into a data library can be extre-

mely valuable. In this context, organization means (a)

extracting relevant experiments from the public domain

(relevance may depend on technology, experimental

design, or biological question), (b) reformatting and,

sometimes, renormalizing the datasets, (c) researching

and compiling the appropriate metadata annotations,

and (d) distributing the harmonized data in a common

and practical format. The organization process should

not affect the original data but generate a copy and a

permanent link to the source (e.g., the supplementary

file, webpage, or figshare object released with the publi-

cation). Any manipulation of this copy, such as renam-

ing, restructuring, filtering, or normalizing, should be

recorded via self-contained and version-controlled

code, so as to minimize untraceable human error and

provide a historical log of the changes.

It is true that, due to the heterogeneity of medium-

size datasets, their organization almost inevitably

involves dataset-specific operations that are not easy

to scale or automate. However, at some steps, infor-

mation technologies can provide great assistance, mak-

ing the process easier, faster, or both. For example,

Google Dataset Search is a specialized search engine

that facilitates discovery of datasets on the Web [31].

The search algorithm relies on data providers describ-

ing their datasets using an open standard for struc-

tured metadata annotations, Schema.org [32], that

captures details about what the data measure, who

generated them and how, and what are the terms for

reusage. A complement to structured metadata annota-

tions is natural language processing (NLP), a class of

machine learning algorithms that can automatically

extract relevant information (e.g., experimental and

analytical metadata) from large volumes of free-form

documents (e.g., publications). The accuracy of current

NLP methods is not yet sufficient to annotate biologi-

cal datasets without supervision [33–35]; however, their
suggestions can certainly assist human editors in anno-

tating data accurately and efficiently [36–39].

The prospects of data librarianship

Fortunately, the need to actively curate, aggregate,

and harmonize datasets of all sizes is steadily gaining

recognition and motivating a progressive development

of data libraries. Databases containing only curated
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and consistently re-analyzed datasets are becoming

more common (e.g., Expression Atlas [40], gnomAD

[41], GenomeCRISPR [42]). Submission-based data

repositories are dedicating part of their resources to

create curated data collections (e.g., GEO DataSets

[43]) by selecting biologically and statistically compara-

ble experiments among their submissions. Scientific

organizations that regularly produce large datasets are

developing platforms to share the data in an organized

fashion that facilitates integration (e.g., DepMap [44]).

Policymakers at national and international levels are

taking concrete steps to recognize the pivotal role of

data librarians in scientific research and further incen-

tivize their support [45–47].
Particularly impactful is an interdisciplinary initia-

tive that developed a set of practical recommendations

for data producers and publishers to make their data

more findable, accessible, interoperable, and reusable

(FAIR) [5]. These recommendations, known as the

FAIR Data Principles, are designed to facilitate data

access for humans and computers by promoting rich

metadata annotations, adherence to community stan-

dards, search engine optimization, and many other

best practices [5]. Thanks to their simple yet powerful

philosophy, the FAIR principles have united a diver-

sity of scientific communities under a common goal of

increasing the usage of public data and maximizing

their impact.

A limitation of the FAIR principles is that imple-

menting them requires exceptional commitment from

the data producers as they are the primary source of

metadata information and, often, the first data pub-

lishers. For data producers, the responsibility of mak-

ing their data FAIR competes with many other

academic responsibilities, such as generating new data,

publishing results, and raising funds; however, achiev-

ing data FAIRness is not nearly as rewarded as the

other goals and is, therefore, difficult to sustain in the

long run. Fortunately, this motivational conflict can be

resolved in at least two ways, which are not mutually

exclusive. First, we can provide data producers with

professional FAIR assistance to prevent the burden of

data accessibility from resting entirely on their shoul-

ders. Second, we can create powerful incentives that

justify the effort of FAIR compliance and make it a

global priority.

Our ability to provide professional help with FAIR

principles depends on the availability of helpers, that

is, data librarians who can work with data producers

to organize their datasets, implement the appropriate

community standards, and engage with the relevant

search engines. Having greater data access benefits all

of us; therefore, supporting data librarianship is our

shared public responsibility. We must provide central-

ized funding for data librarianship that is proportional

to our spending on data generation. We must allocate

human and computational resources to create and

maintain data libraries for small, medium, and big

data. We must recognize data librarians for their con-

tributions to science and create trajectories for their

professional development. Ultimately, we must encour-

age new ideas on data storage and dissemination in

the same way we encourage new technologies and

algorithms.

In addition to providing FAIR help through data

librarians, we also need to make sure that compliance

with FAIR principles is beneficial to data producers

and the effort deserves their time. One strategy is to

consider measurements of data impact when making

decisions about hiring, recognition, and funding.

Unfortunately, traditional metrics for publication

impact, which measure the number of citations a pub-

lication receives, are ill-suited for capturing the value

of the associated datasets [13]. Such value is better

reflected by instances of data reuse and re-analysis,

and these account only for a fraction of the citations.

Tracking data usage requires new mechanisms, such as

a dedicated data citation metric or specialized Web

analytics for data access [48,49]. When implemented,

these mechanisms will work at their best with data

libraries because, unlike other repositories, they anno-

tate all datasets consistently and provide them with

equal opportunity to be discovered. Such balanced vis-

ibility enables download and citation rates to reflect

true differences in demand, rather than exposure, and

encourages data producers to contribute more data.

As discussed above, medium-size datasets benefit the

most from a concerted effort of data librarianship.

Yet, among data libraries, those devoted to medium-

size data are particularly underrepresented: Compared

to the management of big data, the collation and har-

monization of multiple heterogeneous medium-size

datasets is, without a doubt, more time- and labor-in-

tensive, and requires longer-term vision and planning.

Work is in progress to aggregate and jointly examine

quantitative data from ~ 15 800 phenotypic screens of

the yeast deletion collection [50]. Similar aggregation

efforts are ongoing for genome-wide CRISPR/Cas9

perturbations of mammalian genomes [20,42], as well

as naturally occurring loss-of-function variation in

human populations [41]. The scientific purpose of each

aggregation endeavor will inevitably be different, but

the inspiration is one and the same. Through these

efforts, independently generated datasets become truly

accessible to analysis in a bigger context. Through

joint analyses, the reproducibility of biological findings
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can be fully evaluated, providing a solid foundation

for future experiments and hypotheses. Through reli-

able data, the path to new integrative ideas is more

open and clear, and the chances of building good bio-

logical models are greatly improved.
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